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Abstract—Compression history of an audio may reveal very useful
information when traces of tampering has to be investigated or quality
of an audio has to be evaluated. Motivated by this, we introduce two
methods that can discriminate between single and double compressed
audio and can identify compression codec and bit rate of an audio. The
first method utilizes audio quality measures to realize this and operates
on decoded audio. The second method, alternatively, works on coded
audio, effectively the audio bit stream, and characterizes randomness
and chaotic properties of the bit stream to achieve these tasks. Unlike
the existing work in the literature, which are proposed mainly for MP3
encoded audio, both methods can be applied to all encoding formats.
Extensive tests have been performed to test the performance of both
methods under various settings. Results show that both methods can be
very reliably used to obtain information on compression history of an
audio.

I. INTRODUCTION

With powerful editing tools, tampering of an audio without leaving
any audible traces or artifacts has become an easy task. In practice,
audio tampering may be as blatant as deletion or insertion of audio
fragments or splicing segments of audio together and may be as subtle
as resampling of the audio. Since there are many such ways to tamper
an audio, the ability to investigate audio recordings for evidence of
editing and tampering is very crucial. Over time, many techniques
have been developed to achieve this goal by identifying traces of
various signal processing operations, analyzing harmonic consistency
and examining background noise characteristics.

Today, audio is almost always stored and transmitted in some
coded form; therefore, any type of audio tampering will require
encoded audio to be first decoded, processed and later encoded again
with one of many codecs. The most important goal of encoding
is compression, which mainly determines the data rate of coded
audio. Since codecs are designed to utilize different techniques to
code raw audio samples and each encoder operates at different
compression levels, consecutive encoding of an audio with different
codecs or a change in the data rate of an audio essentially translates
to multiple compression of the audio. Therefore, being able to
determine compression history of an audio or, at least, identify doubly
compressed audio plays a vital role in determining whether an audio
is in the format that it was initially recorded at or it has undergone
some processing. Such a capability also makes it possible to evaluate
the quality of an audio and detecting fake-quality ones, i.e., low bit
rate audio files transcoded at higher bit rates pretending to be in high
quality [1].

There is only a limited number of works that aim at determining
compression history of an audio and identifying doubly compressed
audio [2] [3] [4] [5] [6]. Yang et al. [3] introduced a method to
identify fake-quality MP3 files that are generated by up-transcoding
lower quality MP3 files. They observed that the number of MDCT
coefficients with small values in true quality MP3 files is higher than

it is in fake-quality ones. Based on this observation, they proposed to
use the number of MDCT coefficients with ±1 values in identifying
up-transcoded MP3 files. In [6], an improved version of the method in
[3] is introduced to determine not only up-transcoded MP3 audio but
also down-transcoded MP3 audio. The method utilizes both zero and
non-zero MDCT coefficients to obtain several statistics from which
117 features are extracted for classification.

In [2], authors proposed a method to determine whether a given
uncoded audio was previously coded with WMA or MP3 codecs and
to estimate coding bit-rate, if the audio was coded. The method is
based on detecting traces of compression through analysis of MDCT
coefficients. This is realized by comparing the average number of
zero-valued MDCT coefficients and the mean values of MDCT
coefficients grouped into 24 bins. In [7], a method for detecting
MP3 coded audio forgeries, like insertion, deletion and substitution,
is proposed by examining frame offsets, which required identification
of quantization characteristics. For this they utilized two important
features, namely, the number of non-zero spectral coefficients and the
properties of sorted spectral coefficient values.

All these works, report highly accurate performance results. How-
ever, they all have limited applicability when considered in the
context of detecting audio tampering as they are primarily focus on
MP3 encoding. Further, since at their core these techniques utilize
specifics of MP3 encoding they cannot be trivially extended to other
encoding techniques. In practice, tampering concerns audio samples
captured by various sources like voice recorders or samples recorded
on landline, cell phone and VoIP communication networks. Most
typically, tampered audio is encoded with one of the popular encoding
formats such as WMA, AAC and FLAC in addition to MP3.

In this paper, we propose two methods to obtain information
on compression history of a given audio. Both methods take into
account two different scenarios. The first scenario concerns with
singly compressed audio, by which we refer to an audio encoded with
a compression codec. The second one considers doubly compressed
coded audio, which refers to audio encoded twice by the same or
different codecs but most generally with a change in its data rate.
The goal in this scenario is to determine the codec used prior to
transcoding, which provides information on the initial compression
level of the audio. The two methods differ depending upon whether
the analysis has to be performed on coded or uncoded audio. The first
method works on decompressed (WAV formatted) audio to determine
the codec used for encoding. The second method, on the other hand,
assumes that only the coded audio is available for analysis.

In the following section, both of the methods are explained in
detail. Section III provides results for the carried out experiments
and presents performance results for the two methods. Lastly, our
remarks are given in Section IV.
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II. METHODOLOGY

The methods described in this section can be used for tracing the
compression history of both single and double encoded audios. In
this context, the first method utilizes audio quality measures extracted
from encoded (i.e., compressed) and decoded (i.e., uncompressed) au-
dio samples to differentiate between different levels of compression.
The second method, unlike the first one, attempts to make a decision
only through analysis of coded audio, effectively the bit-stream,
without decoding it or using any encoding metadata. It is essentially
based on characterization of encoding by measuring the inherent
chaotic and randomness characteristics of encoded data. In [8], we
initially proposed this method for fast and reliable identification
of codec used in encoding of an audio, and here we investigate
its capability to distinguish characteristics of compression. More
specifically, we test its ability to identify doubly compressed audio.

A. Method I

To measure and assess the impact of compression on audio sam-
ples, we deploy audio quality measures. These measures are primarily
used to diagnose problems in the quality of an audio by detecting
and quantifying the distortion due to encoding. Furthermore, it has
been demonstrated that such measures can be successfully employed
in audio steganalysis, where an audio is modified in much more
subtle ways than compression and the goal is to determine whether
or not an audio has undergone information embedding operation [9].
Essentially, quality of an audio that is subjected to some form of
processing needs to be evaluated with respect to a reference signal.
In conventional audio quality measurement, this reference is taken
as the original, unmodified audio. However, when it is not feasible
to access the original audio, an alternative approach is to generate
a reference that approximates the original. Most commonly this is
done by denoising the processed audio with the assumption that both
the original and its processed version will yield similar signals.

When an audio needs to be examined for traces of tampering, in
fact, presence of an original is in question. Therefore, to be able link
audio quality measurements to compression history of an audio, a
reference needs to be obtained blindly. There are several methods
to denoise a signal, which may be based on wavelet shrinkage,
independent component analysis, maximum likelihood and discrete
wavelet transform. In our method, we use a wavelet based de-noising
approach [10].

In total, 21 quality measures, relevant to perceptual, time and
frequency domains are extracted. These measures are then combined
into a feature vector, which is used for classification of audios
with different compression history. Each audio quality measure is
computed on a frame of audio that lasts 20-100ms, and the final value
is obtained as the average of measurements from each frame. The
formulation for each quality measure and the corresponding frame
size is given in Table I. In the table, y(i) and x(i) represents the
original and the reference signal, respectively. Bx(i), By(i) , Sx(i),
Sy(i) and M(i) represents Bark spectra in the i’th critical band and
perceptible distortion, respectively. And, a, c, Q and X(w), Y (w),
respectively, represent LPC coefficient vector, cepstral coefficients,
phase spectrum and magnitude spectrum. In what follows next, we
briefly describe the quality measures used in our tests.

Perceptual Domain Features:
Perceptual Audio Quality Measure (PAQM): A model of human

auditory system is simulated in calculation of this measure. A quantity
between 0 and 6,5 is determined as the quality measure.

TABLE I
AUDIO QUALITY MEASURES

Measure Frame
Size

Definition

Perceptual Domain Measures

BSD 60 ms
C∑
i=1

[Bx(i)−By(i)]2

C : CriticalBandSize

MBSD 80 ms
C∑
k=1

M(i)|Sx(i)− Sy(i)|

EMBSD 20 ms
15∑
i=1

Max {|Sx(i)− Sy(i)| − Th(i), 0} ∗
|Sx(i)− Sy(i)|

PAQM 32 ms Gives a distortion value between 0 and 6,5 for
audio signals.

PSQM 32 ms Gives a distortion value between 0 and 6,5 for
speech signals.

WSSD 40 ms
3∑
k=1

6w(k)

{
[X(k + 1)−X(k)]−
[Y (k + 1)− Y (k)]

}2

MNB 60 ms Calculated with different time-frequency struc-
tures

Time Domain Measures

SNR 20 ms 10 log10

∑N
i=1 x

2
i∑N

i=1(xi−yi)
2

SNRseg 20 ms 10
M

M−1∑
m=0

log10

Km+K−1∑
i=Km

x2i

Km+K−1∑
i=Km

(xi − yi)2

CZD 40 ms 1
K

K−1∑
i=0

(
1−

2min(xi, yi)

xi − yi

)
Frequency Domain Measures

LLR 60 ms log

(
aTxRyax
aTy Ryay

)
LAR 60 ms Depends on partial correlation coefficients

ISD 100 ms

π∫
−π

(
log

Y (w)

X(w)
+
X(w)

Y (w)
− 1

)
dw

2π

COSH 100 ms

π∫
−π

(
1

2

(
Y (w)

X(w)
+
X(w)

Y (w)

)
− 1

)
dw

2π

CD 20 ms [
[cx(0)− cy(0)]2 +
2
∑K
k=1 [cx(k)− cy(k)]

2

]1/2

SP 40 ms 1
K

K∑
w=1

|Qx(w)−Qy(w)|2

SPM 20 ms

1
K


λ

K∑
w=1

|Qx(w)−Qy(w)|2+

(1− λ)
K∑
w=1

||X(w)| − |Y (w)||2


λ = 0.025

STFT 60 ms R(ρ, θ) =
∫
x

∫
y
S(τ, ω)δ

 τcosθ+
ωsinθ−
ρ

 dτdω

Perceptual Speech Quality Measure (PSQM): Quantifies voice
quality of speech codecs operating in the frequency band 300Hz -
3400 Hz. Similar to PAQM, it takes values in 0-6,5 range [11].

Bark Spectral Distortion (BSD): Estimates the overall distortion
by using the average Euclidean distance between loudness vectors of
the given audio and the reference audio [12].



Modified Bark Spectral Distortion (MBSD): It is computed
similar to BSD with the only difference that it also takes into account
a noise masking threshold to estimate the audible and inaudible
distortions [13].

Enhanced Modified Bark Spectral Distortion (EMBSD): Only
the first 15 loudness components are involved in computation of the
MBSD [13].

Measuring Normalizing Blocks (MNB): Used for estimating
speech quality by transforming speech signal into approximate loud-
ness domain through frequency warping and logarithmic scaling [14].

Weighted Slope Spectral Distance (WSSD): Reflects phonetic
differences between spectral slopes in speech recognition applications
[15].

Time Domain Features:
Signal-to-Noise Ratio (SNR): A measure of signal strength

relative to the background noise.
Segmental Signal-to-Noise Ratio (SNRseg): Average value of the

SNR calculated in each audio frame.
Czekanowski Distance (CZD): Correlation based measure that

compares two signals in time domain.
Frequency Domain Features:
Log-Likelihood Ratio (LLR): The LLR, also known as Itakura

Distance, considers an all-pole linear predictive coding (LPC) model
on speech segments [16].

Log-Area Ratio (LAR): Another LPC-based distance that uses
partial correlation coefficients.

Itakura-Saito Distance (ISD): Represents the discrepanciency
between the power spectrums of the given audio and the reference
signal.

COSH Distance (COSHD): Symmetric version of Itakura-Saito
distance.

Cepstral Distance Measure (CD): The difference between cep-
stral coefficients of the given audio and the reference signal.

Spectral Phase Distortion (SP) and Spectral Phase Magnitude
Distortion (SPM): Represents the phase distortions between the two
signals.

Short Time Fourier-Radon Transformation (STFRT): Defined as
the mean-square distance between Radon transforms of the short time
Fourier transform (STFT) of two signals.

B. Method II

In [8], we introduced a new technique for characterization of
encoded data and demonstrated that it can distinguish between many
codecs used in encoding of speech and music. The underlying idea
of the method is that factors influencing the design of a codec, like
encoding technique, compression level, quality, and complexity of
a codec, has a combined effect that reveals itself in the chaotic
and randomness properties of the coded bit-stream. To capture such
characteristics, a few kilobytes of data is randomly carved out from
the encoded audio and a number of statistics have been proposed.
These statistics are then used as features to build a multi-class
classification system.

Features used for characterizing coded audio are grouped into two
main categories. First group comprises randomness features that are
determined by statistical analysis of sampled byte streams in both
time and frequency domain. In time domain, simple statistics like
mean, variance, entropy, auto-correlation function (first 21 coeffi-
cients) and higher order statistics such as bicoherence, skewness and
kurtosis are calculated. In frequency domain, the spectrum is divided
into four equal subbands and mean, variance and skewness in each
subband are computed as features Overall, there are 39 randomness

features with 27 computed in time domain and 12 in frequency
domain.

The other group includes chaotic features such as Lyapunov expo-
nents (LE) and false neighbors fraction (FNF). Concerning FNF, the
fraction of false nearest neighbors, average size of the neighborhood
and average of the squared size of the neighborhood for first 5th
embedding dimensions are calculated. As LE type features, logarithm
of the stretching factor for first 11 iterations are calculated. With the
addition of these 26 chaotic type features, we end up having a 65
dimensional feature vector.

Tests performed considering 16 very popular codecs used in
encoding of speech and music at data rates ranging from 8 kbps to
128 kbps show that an identification accuracy higher than 96% can
be achieved. Since these results establish the fact that singly-encoded
audio, at difference compression levels, can be reliably discriminated,
in this work, we take it one step further and test the technique’s ability
to identify doubly-encoded audio.

III. EXPERIMENTS

Experiments are conducted on four data sets. First set consists
of 500 speech samples taken from VoxForge speech corpus [17].
Each sample in this set is 1-13 seconds long and has a data rate
of 256 Kbps. Second data set consists of 1000 five second long
music samples taken from 500 different songs across various genres,
recorded at CD quality (1411 Kbps). The two samples taken from
each song are obtained by pulling out two randomly determined non-
overlapping and non-contiguous segments. In the rest of the paper,
the first data set will be referred to as Speech data set, and the second
as Music data set.

In some of the tests, we used two more data sets to assess the
generality of the results. One of them consists of 1000 music samples
provided as part of Marsyas project [18]. These samples are all
22KHz, mono, 30 seconds long and have 353 Kbps bit rate. Last
data set consists of 4000 music samples taken from 4000 different
songs, and it is generated in a manner similar to Music data set.
These latter two data sets will be hereafter referred to as Marsyas
and Music-II data set.

We performed two groups of tests considering both methods. First
group of tests are conducted on uncoded audio to determine the
performance of Method I in identifying compression bit rate of single
and double compressed audio. Second group of tests are designed to
measure the ability of Method II in identifying compression bit rate
of double-compressed audio, and tests are performed on coded audio.
In all tests, we use a standard machine learning technique, support
vector machine (svm) implemented in the Libsvm package [19] with
radial basis kernel for classification. In all cases, half of the samples
are used for training the other half is used for testing.

A. Tests on Uncoded Audios

Tests performed on single and double compressed audio are
discussed separately in the following subsections.

1) Single Compression Tests:
Bit-Rate Test: We used Music data set in experiments to

determine whether a given WAV formatted audio is an original
(uncompressed) audio or an audio compressed at a fixed rate. Audio
samples in this data set have been compressed and decompressed
by a mix of codecs such as MP3, AAC, WMA and OGG, at 32
Kbps, 40 Kbps, 48 Kbps, 56 Kbps and 64 Kbps compression rates.
Results associated with the experiments are given in Table II. Average
identification accuracy in differentiating uncompressed audio from
compression audio at different bit rates is calculated as 98.62%.



TABLE II
CLASSIFICATION ACCURACIES FOR DISCRIMINATING BETWEEN ORIGINAL

AND SINGLE COMPRESSED WAV FORMATTED AUDIO

Bit Rate 32 kbps 40 kbps 48 kbps 56 kbps 64 kbps
Accuracy 100% 99.9% 100% 99.2% 94.0%

To determine the method’s ability to identify the compression bit
rate, a second experiment is performed. In this case, rather than
deploying binary classification, a multi-class classifier is built. Table
III presents the corresponding confusion matrix for this experiment.
The average accuracy of this experiment is 94.77%.

TABLE III
CONFUSION MATRIX FOR IDENTIFYING COMPRESSION BIT-RATES OF

SINGLE COMPRESSED AUDIO.

Bit-Rate Wav 32
kbps

40
kbps

48
kbps

56
kbps

64
kbps

Wav 89.6% * * * * 10.2%
32 kbps * 98.0% * * * *
40 kbps * * 98.0% * * *
48 kbps * * * 99.0% * *
56 kbps * * * * 96.4% *
64 kbps 12.4% * * * * 87.6%

Encoder Test: In these experiments, we used Speech data set
to detect whether a given WAV file has been compressed with AAC,
AMR, G.729, GSM 6.10, GSMWAV, MP3 codecs or not compressed
at all. (It should be noted that AMR, G.729, GSM 6.10, GSMWAV
codecs are designed for speech coding.) In the experiments, compres-
sion bit rate for each codec is set to its default bit rate. Compression
bit rates are different for all codecs and they vary between 10kbps
and 128 kbps. The results associated with these experiments, where
a binary classifier is built for each encoder, is given in Table IV.
Average accuracy in discriminating audio compressed with these
codecs from the uncompressed, original, audio is found to be 98.80%.

TABLE IV
CLASSIFICATION ACCURACIES FOR DISCRIMINATING WAV FORMATTED
UNCOMPRESSED AUDIO FROM AUDIO ENCODED WITH VARIOUS CODECS

AT DIFFERENT BIT RATES

Codec Aac Amr G729 Gsm 6.10 GsmWav Mp3
Accuracy 94.0% 100% 98.8% 100% 100% 100%

We also extended this experiment to a multi-class classification
scenario to test method’s ability to distinguish audio encoded with
different codecs. The confusion matrix associated with this experi-
ment are given in Table V. Classification accuracy corresponding to
this experiment is found to be 96.60%.

TABLE V
CONFUSION MATRIX FOR IDENTIFYING ENCODER OF SINGLE

COMPRESSED AUDIO.

Codec Aac Amr G.729 Gsm 6.10 GsmWav Mp3
Aac 98.0% * * * * *
Amr * 91.2% * 8.8% * *

G.729 * * 100% * * *
Gsm 6.10 * 8.8% * 91.2% * *
GsmWav * * * * 100% *

Mp3 * * * * * 99.2%

2) Double Compression Tests: In the previous tests, audio samples
are compressed using AAC, AMR, G.729, GSM 6.10, GSMWAV and
MP3 codecs. In these tests, these audio samples are re-compressed

using AAC and MP3 codecs at relatively high bit rates. The purpose
of the first test is to identify whether a given AAC or MP3 compressed
WAV formatted audio is in fact single or double decompressed audio.
Results corresponding to this experiment are given in Table VI.
Regardless of whether the second codec is AAC or MP3, it can
be seen that an average accuracy above 95% can be obtained in
classifying single and double coded audio.

TABLE VI
CLASSIFICATION ACCURACIES FOR DISCRIMINATION OF SINGLE AND

DOUBLE COMPRESSED AUDIO

Second
Codec

First Codec

Aac Amr G.729 Gsm 6.10 GsmWav Mp3
Aac * 100% 96.8% 100% 99.2% 98.2%
Mp3 90.8% 99.6% 90.4% 100% 98.0% *

Another experiment is performed to test the ability to identify
the first compression codec of a double compressed audio. For
this purpose, multi-class classifiers are built to differentiate between
audio compressed with one of the above codecs followed by re-
compression. Tables VII and VIII provide the confusion matrices
associated with these experiments, where MP3 and AAC codecs
are, respectively, used for re-compression. The results show that the
proposed method has an accuracy of around 90% in identifying the
codec used during initial compression step.

TABLE VII
CONFUSION MATRIX FOR DETECTING INITIAL COMPRESSION CODEC OF

DOUBLE COMPRESSED AUDIOS WITH AAC CODEC. (OVERALL ACCURACY
91.13%)

Codec Aac Amr G.729 Gsm 6.10 GsmWav Mp3
Aac 92.0% * 5.2% * * *
Amr * 91.6% * 8.4% * *

G.729 * * 97.6% * * *
Gsm 6.10 * 28.4% * 71.2% * *
GsmWav * * * * 98.8% *

Mp3 4.4% * * * * 95.6%

TABLE VIII
CONFUSION MATRIX FOR DETECTING INITIAL COMPRESSION CODEC OF

DOUBLE COMPRESSED AUDIOS WITH MP3 CODEC. (OVERALL ACCURACY
88.80%)

Codec Aac Amr G.729 Gsm 6.10 GsmWav Mp3
Aac 97.2% * * * * *
Amr * 71.6% * 25.2% 2.8% *

G.729 * * 97.6% * * *
Gsm 6.10 * 23.6% * 74.4% * *
GsmWav * * * * 95.2% *

Mp3 2.8% * * * * 96.8%

B. Tests on Coded Audio

Two group of tests are performed on coded audio. The first group
concerns double compressed audio. In these tests, we aim to deter-
mine the performance of Method II in discriminating between single
and double compressed audio and identifying the initial compression
rate (prior to transcoding). (Since our earlier work, [8], covers coding
history identification for single coded audios using this method, those
tests are not repeated here.) The second set of experiments focus on
detection of MP3 files with fake quality, i.e., low quality audio re-
encode at higher bit-rates to give the impression that they are of
high quality. Here the emphasis on MP3 is due to the fact that MP3



has been the most commonly used codec in distributing and sharing
music.

1) Double Compression Tests: Experiments are performed con-
sidering the fact that in a tampering scenario, audio will most likely
be re-encoded with one of the codecs like MP3, AAC and WMA
due to extensive support for those codecs on various platforms. We
first compress raw audio samples in the Speech data set with PSTN
codecs like a-law and u-law, GSM codecs like AMR and GSM 6.10,
and VoIP codecs like G.726, G.729 and Speex. It must be noted that
all these codecs provide compression bit rates ranging from 64 Kbps
to 8 Kbps. Then all these coded audios are re-encoded with MP3 at
64 Kbps and with AAC at 128 Kbps.

To test the method’s ability to distinguish double compressed
audios, which are first coded with one of the mentioned PSTN, GSM
and VoIP codecs and later re-encoded with MP3 and AAC codecs,
from single compressed audios encoded with MP3 or AAC codecs,
we combined all single and double compressed audios in separate
classes and built a binary classification system. Results show that the
method can discriminate between single and double coded audios
with an accuracy of 95.8% and 82.8% when AAC and MP3 are used
as the transcodecs, respectively. Examining the results, where MP3
codec is used for re-compression, we observed that confusions are
mainly due to VoIP codecs. Repeating the same experiment with the
exclusion of the VoIP codecs, we observed that the accuracy increased
to of 99.5%. Considering the MP3 transcoding case, we performed
several binary classification experiments to demonstrate the discrim-
ination between single and double compressed audios, where seven
different codecs are used for initial encoding. Classification results
corresponding to the these experiments are given in Table IX.

TABLE IX
BINARY CLASSIFICATION RESULTS FOR SINGLE AND DOUBLE

COMPRESSED AUDIO WHERE MP3 CODED IS USED FOR DECOMPRESSION

Transcodec First Codec
A-law U-law Amr Gsm G.726 G.729 Speex

MP3 99.8% 99.4% 98.8% 99.6% 63.8% 68.4 54.4%

2) Fake Quality MP3 Tests: MP3 file format still remains to be the
most popular audio file format used for encoding music content, and
fake quality MP3 files are generated by re-encoding lower bit rate
files at a higher rate. It also needs to be emphasized that existing work
in the literature that aim at identification of compression history of
an audio has mainly focused on this scenario. To detect fake quality
MP3 files, we conducted extensive experiments using the three music
data sets, namely, Music, Marsyas and Music-II data sets. We choose
32, 40, 48 and 56 Kbps as bit rates of original lower bit rate MP3 files
and highly popular bit rates 192, 256 and 320 Kbps as up-transcoding
bit rates. For testing the performance of the method, we first encode
all uncoded samples of all data sets using 32, 40, 48, 56, 192, 256
and 320 Kbps bit rate options. Then, 32, 40, 48 and 56 Kbps coded
MP3 files are decoded and re-encoded at 192, 256 and 320 Kbps bit
rates. This yielded two types of encoded MP3 files where one group
consists of samples double compressed at a fake quality and the other
including single compressed high quality samples.

Using these two datasets we constructed a binary classification
system to identify whether or not a given MP3 file has fake quality.
Corresponding test results are presented in Tables X, XI and XII for
all the data sets where the final compression bit rate is, respectively,
set at 192, 256 and 320 Kbps. In the tables, first column shows
the initial and second compression bit rates for transcoded MP3
files. Since all these tests establish binary classifications, second bit

rate also indicates the bit rate for true quality MP3 files. Average
accuracies for identification of fake quality MP3 files in each data
sets are determined to be as 98.7%, 98.4% and 99.9%.

To ensure that classification accuracies are not biased by the initial
compression bit rate, all the fake quality MP3 files at different initial
compression rates are combined into a single class and tested against
true quality MP3 files. (In this case, when training the classifier,
the number of true quality and fake quality MP3 files are still kept
equal by selecting equal sized subsets of samples from each fake
quality MP3 group.) The last column in each table gives the results
corresponding to this test case. It can be seen that even under this
setting, average identification accuracies are above 96.5% for each
data set.

TABLE X
RESULTS FOR CLASSIFICATION OF FAKE AND TRUE QUALITY MP3 FILES

ENCODED AT 192 KBPS.

Accuracy (%)

First-Second Music-I Marsyas Music-II
Bitrate (44Khz) (22Khz) (44Khz)

32-192 98.7 98.4 99.9
40-192 98.6 98.3 99.87
48-192 98.7 98.3 99.77
56-192 97.8 97.8 99
All-192 98.1 98.3 99.4

TABLE XI
RESULTS FOR CLASSIFICATION OF FAKE AND TRUE QUALITY MP3 FILES

ENCODED AT 256 KBPS.

Accuracy (%)

First-Second Music-I Marsyas Music-II
Bitrate (44Khz) (22Khz) (44Khz)

32-256 98.6 98.4 99.6
40-256 97.5 98.3 99.97
48-256 97.9 97.9 99.97
56-256 99.2 99.2 98.72
All-256 98.3 97.8 98

TABLE XII
RESULTS FOR CLASSIFICATION OF FAKE AND TRUE QUALITY MP3 FILES

ENCODED AT 320 KBPS.

Accuracy (%)

First-Second Music-I Marsyas Music-II
Bitrate (44Khz) (22Khz) (44Khz)

32-320 96.8 96.7 99.42
40-320 96.5 95.8 99.95
48-320 97.9 97.1 99.95
56-320 99 98.7 98.05
All-320 97.4 96.5 97.9

IV. CONCLUSION AND FUTURE WORK

Two methods are proposed to identify traces of compression in
encoded audio. Proposed methods can be used to identify the codec
used in compression of an audio and its compression bit rate, to
discriminate between single and double compressed audio, and to
determine the initial compression codec, along with its compression
bit rate, of a double compressed audio.



Results show that Method I is able to classify a given WAV file as
single or double compressed with an accuracy around 95%. Accura-
cies for codec identification from single and double compressed audio
are measured to be around 97% and 90%, respectively. Moreover,
Method I has the ability to detect the bit rates of single compressed
audio with various codecs such as MP3, AAC, WMA and OGG with
an accuracy higher than 95%. Results also show that Method II is able
to determine whether a given audio is double or single compressed
with an accuracy above 95% as long as transcoding is performed at
relatively high bit rates. In a similar manner, the method can identify
fake quality MP3 files with an accuracy close 98%. Overall, these
results are among the highest reported in the literature
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