
 
Audio Codec Identification Through Payload 

Sampling  
Samet Hiçsönmez , Husrev T. Sencar , Ismail Avcibas * 

# Computer Engineering Department,  
TOBB University of Economics and Technology, Ankara, Turkey 

{shicsonmez,hsencar}@etu.edu.tr 
* Electrical and Electronics Engineering Department 

 Turgut Ozal University, Ankara, Turkey 
 iavcibas@turgutozal.edu.tr 

 
Abstract— W0065 present a new method for audio codec 

identification that does not require decoding of coded audio data. 
The method utilizes randomness and chaotic characteristics of 
coded audio to build statistical models that represent encoding 
process associated with different codecs. The method is simple, as 
it does not assume knowledge on encoding structure of a codec. It 
is also fast, since it operates on a block of data, which is as small 
as a few kilobytes, selected randomly from the coded audio. Tests 
are performed to evaluate the effectiveness of the technique in 
identification of the codec used in encoding on both singly coded 
and transcoded audio samples 

I. INTRODUCTION 
Digital audio is encoded and decoded using a variety of 
codecs that are primarily designed to compress sound and 
music for more compact storage, stream audio over the 
Internet, and transmit voice communications over PSTN's, 
cellular networks and VoIP networks. With more than 
hundred audio codecs available for use, the ability to quickly 
identify the codec used in coding of an audio without relying 
on any encoding metadata could provide new ways to tackle 
some existing challenges. For instance, all network-
monitoring tools try to characterize network traffic flows to 
analyze network performance. As multimedia becomes a 
larger part of network traffic, accurate and fast 
characterization of audio traffic in its different forms (e.g., 
streaming, file transfers, VoIP applications, etc.) becomes 
more and more important [1].  
Another field where codec identification or, more specifically, 
determining encoding history of (multiply transcoded) audio 
streams might be needed is the telephony system [2]. In 
today's vastly diversified and non-centralized telephony 
infrastructure, there are no reliable mechanisms to determine 
or verify the origin of an incoming call as the voice signal 
might have been routed over many networks. Lack of such 
capabilities serves as an enabler for new forms of malicious 
activity like voice spam and voice phishing attacks. Similarly, 
evaluation of quality of audio files and detecting fake-quality 
ones, i.e., low bit rate audio files transcoded at higher bit rates 
pretending to be in high quality, is another application area 
that can benefit from the ability to identify audio codec, and 

corresponding coding parameters, involved in generation of an  
audio [3].  
In all these application scenarios, it may seem file or packet 
metadata is sufficient to identify the encoder used in 
generation of the audio. Although this is true, in some cases it 
may simply not be viable to access this information. In 
network monitoring, for example, payload of packets at lower 
layers of the protocol stack has to be accessed. In a high-speed 
network with many active network flows this level of 
inspection will require significant computational resources. In 
cases of call origin identification and audio quality evaluation, 
however, where not only the most recently used codec but 
also transcoding history is needed such a simple approach 
won't help at all. These two cases require statistical analysis of 
audio packets and audio content, which can be 
computationally intensive. 
   In this work, we introduce a new technique for codec 
identification that can be utilized either as a complementary or 
an independent tool in all these application scenarios. By 
codec identification we mean the ability to classify a given 
audio byte stream as being generated by one of the fixed 
number of possible audio codecs. While a large number of 
codecs exist, essentially, codecs simply differ in the trade-off 
they make between numbers of competing design objectives. 
These objectives include a codec's ability to balance 
compression with sound quality, to provide robustness and 
error correction against noise and network glitches, and to 
adapt to varying transmission bandwidth. The crux of the 
paper lies in the fact that the net effect of these design choices 
inherent to encoding process reflects on the encoded byte 
stream.  The method exploits this by sampling a small window 
of data, i.e, a byte vector, from the audio byte stream to 
characterize the codec in terms of the inherent statistical 
properties, randomness vs. determinism, entropy, and chaotic 
properties of the byte stream. Since the technique operates on 
the encoded audio byte stream and decoding is not required, it 
is naturally fast. 
There are a few research works that use statistical 
characterization schemes to obtain information from encoded 
data. In [4], considering audio steganalysis application, 



Böhme et al. proposed a procedure to determine the encoder 
of MP3 files (i.e., a certain implementation of the MP3 
format) so that at later stages of steganalysis appropriate 
detection algorithm can be run. For this purpose, a set of 10 
features is designated to capture implementation specific 
particularities. These features are then used in conjunction 
with a machine learning classifier to discriminate between 20 
MP3 encoders. Although high identification accuracy is 
reported (87% on a random sample of MP3's), generalization 
of this approach to other encoders is not trivial as feature 
extraction process relies on the knowledge of MP3 structure. 
Alternatively in [1], authors proposed a method, which forms 
this basis of our approach, to characterize the content of a 
network flow based on its statistical properties. Rather than 
determining the codec used in encoding of a given data, the 
primary goal of that study is to classify network packet 
content as belonging to one of a set of data types like text, 
image, audio, video, encrypted data, etc. The underlying idea 
of the approach is that, regardless of the codec used in 
encoding of one type of data, the degree of randomness and 
redundancy in the corresponding byte stream will differ.  
Using a set of 6-25 features and randomly sampling 32 kb of 
data from each flow in the test dataset, an average accuracy of 
90% was achieved in distinguishing 7 types of data, which 
included WMA and MP3 audio file formats as two different 
types. 

Although inspired by these techniques, our approach 
differs from both of them in two aspects. First, byte vectors 
generated by different audio codecs will exhibit very similar 
statistical properties as compared to those of different data 
types; therefore, a more distinguishing set of features is 
needed. Second, we don't assume the knowledge of file 
structure associated with any of the codecs. In our tests, we 
utilize 16 of the most popular audio codecs used for audio 
compression, PSTN's, cellular networks, and VoIP networks.  

The rest of this paper is organized as follows. In the next 
section, we present an overview of the system and introduce 
features that are used to build classification models capable of 
distinguishing between byte streams generated by different 
codecs. Main characteristics of selected audio codecs and the 
differences between them are described in Section 3. 
Experimental results are given in Section 4, and we conclude 
with further discussion in Section 5. 

II. METHODOLOGY 
The method described in this paper is developed for 
identifying the codec used in generation of an audio byte 
stream.  It neither utilizes any coding metadata nor assumes 
the knowledge of structure of coded data. The technique is 
based on characterization of encoding process, which involves 
striking a balance between compression, quality and 
robustness. This is realized by measuring the inherent 
randomness and chaotic characteristics of coded data and 
using these characteristics as a part of a classification system. 
  The system works in two phases: the offline phase and the 
online phase. In the offline phase, the system is initially built 
from scratch through a process called training. Operation 

during this phase can be broken down into three stages.  First 
one is the data sampling, which is performed by collecting a 
block of data from a random location in the coded audio file. 
In other words, a fixed-size vector of bytes (i.e., a vector of 
eight bit unsigned integers that take values from 0 to 255) 
represents each audio file. In the second stage, features needed 
for statistical characterization are extracted from the block 
data. Features are obtained from a training set of audio that is 
coded by different codecs.  In the third state, extracted feature 
data is used to train machine learning algorithms needed for 
classification. During the online phase, the system is tested 
against given audio files, and its performance is measured as 
average accuracy in discriminating between audio files 
encoded by the same codec.  
   Obviously, the most important aspect of the technique is the 
selection of features that will be used for statistical 
characterization. Features we used to build the model can be 
grouped into two broad categories as follows. 

A. Randomness Features 
Randomness characteristics are determined by statistical 
analysis of a block of encoded data. These features are 
primarily inspired by the randomness tests devised by NIST to 
evaluate randomness properties of cryptographic applications 
[8], and they can be broadly categorized as time or frequency 
domain depending on how features are computed.  

In time domain, we first compute simple statistics, like 
mean, variance, auto correlation, and entropy, and higher 
order statistics, like bicoherence, skewness and kurtosis. Since 
each codec uses a different encoding algorithm, it is expected 
that these differences would be reflected in the encoded data.  
To give an example, even a physical inspection of WMA 
encoded data will reveal frequent occurrence of long sequence 
of zeros. Similarly, one can observe that G.721 and G.726 
coded data have higher mean values as compared to other 
outputs of other codecs.  

Entropy is another discriminative feature we used in 
experiments. Since entropy quantifies the degree of 
randomness in the data, it is very reliable in differentiating 
non-encoded data like WAV and PCM from compressed data. 
Autocorrelation feature on the other hand is used to find 
repeating patterns in the encoded data which relates to coding 
structure. Therefore, first 20 coefficients of autocorrelation 
function are included as features. 

We also computed higher order statistics like bicoherence, 
which is a measure of non-linearity and non-Gaussianity in 
the byte vector. Bicoherence takes values bounded between 0 
and 1, ranging from non-significant to significant, and it is 
useful in discriminating between different levels of 
compression. We computed average bicoherence and power of 
the bicoherence amplitude as features. Skewness and kurtosis 
of each byte vector are also included as two features that 
denote two possible ways how the distribution of data deviates 
from the normal distribution. In frequency domain, however, 
we examine distribution of energy in different bands. For this, 
we divide the frequency band into four equal sub-bands and 
compute mean, variance and skewness in each band as 
features. 



B. Chaotic Features 
There is theoretical and experimental evidence for the 

existence of chaotic phenomena in speech signals that is left 
uncovered by linear models [7]. Assuming that the speech 
signal is produced by a chaotic system, different compression 
algorithms will change the chaotic structure of the speech 
signal and therefore the chaotic features such as Lyapunov 
Exponents (LE) and false neighbour fraction (FNF) and 
correlation dimension will be different for each of the 
compressed version of the speech signal. In our method, we 
included a total of 26 features out of which 11 are related to 
LE and 15 to FNF.  

The main concept of the LE and FNF is based on the 
neighbourhood of the speech signal vectors in the phase space. 
Compression process changes the   neighbourhood distances 
between each of the compressed signal vectors in the phase 
space. Compression algorithms exploit the redundancy present 
in the signals and their performance is measured by the 
amount of correlation left at their output. As there is no 
perfect (practical) compression algorithm, there still remain 
unexploited correlations at their output stream. Chaotic type 
features obtained in the phase space simply measures the 
leftover multidimensional correlations in the output stream. 
Our main hypothesis is that these features are different in a 
statistical sense for each of the compression algorithm, as they 
leave unique leftover correlations at their output stream to 
such an extent that we can design successful classifiers.	   

III. AUDIO CODECS 
When designing our system and conducting experiments, we 
used 16 widely deployed audio codecs used in compression 
and transmission of audio [5] [6]. Below, we briefly describe 
these codecs and their main characteristics by grouping them 
into four categories depending on their main purpose of use. It 
should be noted that except for Flac codec, all codecs perform 
lossy compression when encoding data. 

A. Voip Codecs 
• Speex [10] is a wideband speech codec based on CELP 

(Code Excited Linear Prediction) that is designed for 
VoIP applications and voice file compressions. It 
provides three sampling rate options 8 kHz as narrow 
band, 16 kHz as wide band and 32 kHz as ultra-wide 
band and variable bit rate options (from 2 kbps to 44 
kbps). It is widely used in teleconferencing, VoIP 
systems and also in video games.  

• iLBC [11] is a narrow band speech codec that is very 
robust against packet losses. iLBC has 8 kHz sampling 
rate and operates on two bit rates, 13.33 kbps for 30 ms 
frames and 15.2 kbps for 20 ms frames. This codec uses 
a block independent LPC (Linear Predictive Coding) 
algorithm. iLBC is a compulsory standard for VoIP 
over cable and is also used in applications like Google 
Talk, Yahoo Messenger and Skype.  

• G.721 is an ADPCM (Adaptive Differential Pulse Code 
Modulation) codec and is standardised in the mid 80s 
by CCITT. It has a sampling rate of 8 kHz and operates 

on 32 kbps bit rate. Its speech quality is as good as 64 
kbps PCM codec (i.e., G.711). 

• G.726 is another ADPCM codec that uses 8 kHz 
sampling rate and operates on four bit rates, i.e., 16, 24, 
32 and 40 kbps. Main application of 16 and 24 kbps bit-
rates is for overload channels carrying voice in digital 
circuit multiplication equipment (DCME). This codec is 
also the standard codec used in DECT wireless phone 
system.  

 
B. Cellular Network Codecs 

• AMR (Adaptive Multi-Rate) codec, also known as Gsm 
6.90, is a narrow band (200-3400 Hz) codec, which is 
mandatory standard codec for 2.5G/3G wireless 
networks based on GSM (WDMA, EDGE, GPRS). 
AMR uses different encoding techniques like ACELP 
(Algebraic CELP), DTX (Discontinuous Transmission), 
VAD (Voice Activity Detection) and CN (Comfort 
Noise). The only sampling rate is 8 kHz but 7 different 
bit rates (from 4.75 to 12.20 kbps) are available. 

• AMR-WB or AWB (G.722.2) [12] is a wide band (50-
7000 Hz) audio codec that provides excellent speech 
quality. This codec has 16 kHz sampling frequency and 
operates on 9 different bit rates from 6.60 to 23.85 kbps. 
This codec uses ACELP as encoding technique and is 
used in a variety of applications like VoIP, Mobile 
Communication (UMTS, CDMA) and ISDN wide band 
telephony.  

• GSM 6.10 or GSM-FR (full rate) [13] is the first digital 
speech-coding standard used in GSM mobile phone 
system that is still widely used in networks around the 
world. This codec uses RPE-LTP (Regular Pulse 
Excitation - Long Term Prediction) as speech coding 
scheme. 8 kHz sampling rate results in an average bit 
rate of 13 kbps. 

• GSM 6.10 (WAV) is known as Microsoft GSM 06.10 
and has a sampling rate of 11025 Hz and a bit rate of 18 
kbps. 

 
C. PSTN Codecs 

• PCM (Pulse Code Modulation) is the process of 
converting analog signals into digital via sampling and 
quantization. It is the standard storage format used in 
computers and digital telephony system. 

• A-law and µ-law [14] are two other commonly used 
PCM codecs deployed in telephony system. They both 
use a fixed sampling rate of 8 kHz and quantization 
resolution of 8 bits/sample, resulting in a 64 kbps bit 
rate. The difference between the two is that µ -law takes 
14 bit signed linear PCM samples whereas A-law takes 
13 bit PCM samples before conversion 8 bit samples.  

 
D. Compression Codecs 

• MP3 (MPEG layer III) [6] is the standard format of 
digital audio compression for the transfer and playback 
of music in almost all digital audio players. MP3 uses 
psychoacoustic compression techniques and is based on 



MDCT (Modified Discrete Cosine Transform). MP3’s 
are encodes using Huffman algorithm and can be 
encoded at different sampling rates, ranging from 8 kHz 
to 48 kHz and bit rates of 32-320 kbps. 

• AAC (Advanced Audio Coding) is a lossy compression 
and encoding algorithm for digital audio that is 
designed to be the successor of MP3 format. Like MP3, 
AAC uses MDCT as encoding scheme. This codec has 
variable bit rate and fixed bit rate options. AAC 
supports various bit rates from 16 to 256 kbps and 
sampling rates of 8-96 kHz. It is the default audio 
format used in Apple products.  

• Ogg Vorbis [15] is an open source audio codec 
designed specifically for digital music. Although it 
provides better sound quality than other MDCT based 
codecs, encoding and decoding operations are very 
computation intensive. Ogg Vorbis operates on 
sampling rates from 8 kHz to 192 kHz and up to 255 
discrete channels (e.g., monaural, polyphonic, stereo, 
quadraphonic, ambisonic). Since Ogg Vorbis is a 
variable bit rate codec, its quality is not represented in 
bit rates but instead expressed on a quality scale where 
1 corresponds to highest compression level and 10 to 
least compression.  

• WMA (Windows Media Audio) is a lossy audio codec 
created by Windows. It uses a psychoacoustic model 
similar to MP3. WMA can encode signals to a sample 
rate of 48 kHz. WMA supports encoded streams at both 
constant bit rate and variable bit rate. In constant bit rate 
mode, WMA supports bit rates from 5 kbps to 384 kbps. 
Similar to AAC and Ogg Vorbis, WMA is also based on 
MDCT.   

• Flac (Free Lossless Audio Codec) [16] is an audio 
compression codec uses lossless compression algorithm. 
Flac achieves almost 50% compression level for most 
music. To guarantee the encoding is fully lossless Flac 
uses fixed-point samples instead of floating-point. Flac 
manages sampling rates from 1 Hz to 655,350 Hz with 
1 Hz steps and from 4 to 32 bits per sample.  

IV. EXPERIMENTS AND RESULTS 
The data set used in experiments consisted of 1000 audio 
samples taken from 50 music CDs covering different genres 
such as classical, pop, folk, rock, and instrumental. Each 
sample is approximately 5 seconds long and 850 KB in size. 
During experiments, audio samples are encoded with 16 
different codecs described in Section III, which resulted with 
16K coded audio samples. Corresponding coding parameters 
for each codec are given in Table I. Except for AMR and 
AWB codecs, whose parameters are selected to provide the 
highest quality encoding, all others are default parameters 
used by the encoders.   

For statistical characterization, from each coded audio 
sample, a randomly selected 1 KB of byte vector is extracted 
and features are computed. (This is realized by reading 1 KB 
of data starting at a randomly determined offset relative to 
start of by byte stream.) Our feature vector has 65 elements of 

which 39 represent the randomness properties, 15 the chaotic 
characteristic false nearest neighbour fraction and 11 the 
Lyapunov exponents. We then use a standard machine 
learning technique, a support vector machine (svm) 
implemented using Libsvm package [9], with a radial basis 
function kernel, for classifying feature vectors associated with 
different codecs. In all experiments, half the feature vectors 
from audio samples are used for training and the other half for 
testing.  

In our experiments, two different scenarios are considered. 
In the first scenario, the goal is to quantify the performance of 
the method in identification of codec used in encoding of raw 
audio samples. Whereas in the second scenario, coded audio 
are transcoded with another codec (i.e., audio sample is 
decoded with the first codec and coded again with another 
codec), and the goal is to identify the first codec used in 
coding of the transcoded audio sample. 
 

TABLE I 
Encoding Parameters for Each Codec  

  Sampling Rate Bit Rate 
Speex 8 kHz 18 kbps 
iLBC 8 kHz 13,33 kbps 
G.726 8 kHz 16 kbps 
AMR 8 kHz 12,20 kbps 
AWB 16 kHz 12,65 kbps 
GSM 6.10 8 kHz 13 kbps 
GSM (wav) 11,025 Hz 18 kbps 
PCM 22,050 Hz 16 bits per sample 
MP3 44,1 kHz 192 kbps 
AAC 44,1 kHz 128 kbps 
WMA 44,1 kHz 128 kbps 

 

A. Single Coding Scenario 
In our first test, we determine the ability of the technique in 
discriminating between 16 encoders. In the experiments, the 
set of un-coded (raw) audio samples is also included as a 
separate class. Feature vectors obtained from 8500 audio 
samples are used to train a 17-class svm, which is then tested 
on the remaining 8500 audio samples. The confusion matrix 
(i.e., error matrix) showing the classification results is given in 
Table II.  

Overall classification accuracy, which is obtained by 
averaging the success in correctly classifying test samples in 
each class, is measured to be 85.1%. As can be seen from the 
confusion matrix, resulting classifier is quite successful in 
identification of most codecs but has difficulty in 
discriminating certain codecs from each other. Most notably, 
G.721 and G.726 couldn’t be distinguished from each other 
accurately. This is primarily due to the similarity of the two 
encoding algorithms. Same reasoning applies for classification 
between MP3 and Ogg Vorbis codecs both of which utilize 
MDCT based encoding.  

In experiments, we also tested how well codecs in each 
category can be differentiated from each other. For this 



purpose different classifiers are built only considering four 
codecs used in cellular networks, six in compression, three in 
PSTN’s and four in VoIP networks. Average identification 
accuracy within categories of cellular, compression, PSTN 
and VoIP codecs are obtained, respectively, as 96.2%, 83.8%, 
98.5% and 80%. Identification of codecs used in compression 
and VoIP communication has the lowest accuracy. This can be 
attributed to centrality of compression in these codecs, which 
causes encoded audio to exhibit similar characteristics. 

B. Transcoding Scenario  
In practice, when two parties using different communication 
platforms communicate audio (i.e., cell phones, landlines, 
Internet phones) the audio has to be transcoded at the 
boundary of the two communication networks. (For example, 
when calling a landline from a VoIP service provider, audio 
coded by a VoIP codec has to be first decoded and re-encoded 
by the appropriate PSTN codec before it reaches its 
destination.) In such cases, the question will be about getting 
knowledge on the first codec used for encoding. To determine 
this, in this scenario, we investigate whether our proposed 
model can distinguish between singly- and multiply-coded 
audio, and moreover, whether it can identify the codec used 
during initial encoding. We consider three experimental 
scenarios to represent transcoding from one network to other.  

In the first experiment, we consider transcoding from a 
cellular network to PSTN. That is, the audio is initially 
encoded with one of the four codecs mentioned in Section III-
B. Then, depending on the choice of PSTN codec these audio 
samples are transcoded with one of three different codecs 
mentioned in Section III-C. Therefore in the experiments, raw 
audio samples are first encoded with four cellular network 
codecs, resulting with 4K audio samples, followed by 
decoding and encoding with each of the three different PSTN 
codecs, yielding 12K samples. Because there are three 
different PSTN codecs, three tests are performed. (Due to lack 
of space, resulting confusion matrices are not given.)  

In the first test, audio encoded with AMR, AWB, GSM 
and GSM 6.10 (WAV) codecs are converted to A-law coded 
audio. Then a five-class classifier is trained to differentiate 
between four forms of A-law coded data and singly encoded 
audio using A-law codec. Overall accuracy of this 
classification is measured to be 81.72%. Results show that 
singly coded data and GSM 6.10 coded data can be identified 
with accuracy above 97% and confusions are mainly due to 
inability to discriminate between GSM 6.10 and AWB 
encoded data. In the second test, µ-law PCM codec is used 
instead. The overall accuracy in this case is measured as 
79.68%. Similar to previous test, singly encoded data and 
GSM 6.10 codec has been identified with highest accuracy. In 
the third case, where PCM codec is used for transcoding, 
overall accuracy is measured as 74.60%. The most noteworthy 
result here is that singly encoded data is classified with 100% 
success. 

Our second experiment is based on transcoding from GSM 
network to VoIP network. In this case, data is first encoded 
with one of the four GSM codecs and then converted with one 
of the four VoIP codecs mentioned in Section III-A. Therefore, 

four different tests are conducted. Similar to previous 
experiment, singly coded data is also included in the 
classification. In the first test, transcoding is done using iLBC 
codec. Corresponding classification results show that an 
accuracy of 80.40% is achievable. Furthermore, singly 
encoded data and GSM 6.10 coded data can be distinguished 
with 99% and 92%, accuracy, respectively. In the following 
tests, Speex, G.726 and G.721 codecs are used for transcoding 
and overall identification accuracy is obtained, respectively, 
as 78.7%, 73% and 63.2%. One interesting result here is that 
both with G.721 and G.726 codecs singly encoded data 
couldn’t be distinguished from transcoded data as good as in 
the previous cases (72% and 56%). This is likely to be due to 
the compression algorithms used in these codecs, which are 
effective in suppressing traces of earlier encoding.  

Our last experiment considers transcoding from VoIP 
network to PSTN. Similar to previous experiments, audio 
samples are first encoded with the four VoIP codecs, decoded 
and encoded again with each of the PSTN codecs. The 
classification accuracy in identifying whether a given PSTN 
coded audio is transcoded or not and, if so, identifying the 
codec is obtained for A-law codec, u-law codec, and PCM are 
obtained, respectively, as 78.75%, 78.3%, and 83.45%. In all 
cases, singly coded data was discriminated from transcoded 
data with accuracy close to 100%.  

 

V. DISCUSSION AND CONCLUSIONS 
A fast and simple method is introduced to identify codec used 
for the encoding of a given audio sample. The method uses a 
multi-class classification system based on features, which 
characterize randomness and chaotic behavior of coded data, 
and support vector machines. Two sets of experiments are 
performed. In the first one, identification among 16 audio 
codecs is considered. Results show that except for G.726 
codec, which was mainly confused with the similar G.721 
codec, most codecs can be identified quite accurately, with an 
average accuracy of 85%. In the second set of experiments, 
encoded audio samples are transcoded with another codec and 
the technique is used to identify the first codec. Results in this 
case show that singly coded and transcoded audio codecs can 
be discriminated from each other with an accuracy close to 
100%, and in each category of codecs the codec  before 
transcoding can be identified approximately with 80% 
accuracy. Overall, results show that as compression gets more 
severe, it becomes more difficult to discriminate among 
codecs.  Further experiments will be performed to take into 
account different codec parameters and an increased number 
of codecs will be considered in the experiments. 
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