Solution of Systems of Linear Equations and Applications with MATLAB®:

II - Indirect Methods

Selis Önel, PhD
Solution methods for linear systems

\[A \mathbf{x} = \mathbf{y} \]

I - Direct Methods
- Cramer’s Rule
- Elimination Methods
- Inverse of a matrix
- LU Decomposition

II - Indirect Methods
- Iterative Methods
Iterative Solution

- Good for large systems of equations when Gauss elimination is NOT good, i.e., if \(n \gg m \) for \(|A_{m,n}| |x_{n,1}| = |y_{m,1}| \)
 (\# unknowns is very large compared to \# equations)
- Simple programming
- Applicable to nonlinear coefficients
- Requires an initial guess to start the iteration
- The goal is to:
 - Choose a good initial guess \(x_0 \) for \(x \)
 - Substitute \(x_0 \) in the equations and check if the right hand side of equations is equal to the left hand side or if \(x-x_0<\varepsilon \)
 - Increment/decrement \(x_0 \) until all equations are satisfied
Iterative Solution

- Popular technique for finding roots of equations
- Applied to systems of linear equations to produce accurate results (Generalized fixed point iteration)
- Jacobi iteration: Carl Jacobi (1804-1851)
- Gauss-Seidel iteration: Johann Carl Friedrich Gauss (1777-1855) and Philipp Ludwig von Seidel (1821-1896)
Quotations

- It is true that Fourier had the opinion that the principal aim of mathematics was public utility and explanation of natural phenomena; but a philosopher like him should have known that the sole end of science is the honor of the human mind, and that under this title a question about numbers is worth as much as a question about the system of the world. Quoted in N Rose *Mathematical Maxims and Minims* (Raleigh N C 1988). Carl Jacobi

- There are problems to whose solution I would attach an infinitely greater importance than to those of mathematics, for example touching ethics, or our relation to God, or concerning our destiny and our future; but their solution lies wholly beyond us and completely outside the province of science. Quoted in J R Newman, *The World of Mathematics* (New York 1956). Carl Friedrich Gauss
A \mathbf{x} = y \text{ Solution by Iteration}

Input an initial guess for iteration to get started

- Can be any arbitrary vector \(x_0 \)
- Good initial guess \(\rightarrow \) fast convergence
- Consecutive solution of similar problems: Use the solution of previous problem as the initial guess for the next
- Iteration does not always converge!

\[
\begin{bmatrix}
0 \\
0 \\
\vdots
\end{bmatrix} \quad x_0 =
\begin{bmatrix}
0 \\
0 \\
\vdots
\end{bmatrix}
\]
A x = y Solution by Iteration:

Convergence

Sufficient condition for iteration to converge:

- **Matrix A** should be **diagonally dominant**, for all i:

 \[
 |a_{i,i}| > \sum_{j=1, j\neq i}^{n} |a_{i,j}|
 \]

 or

 \[
 |a_{i,i}| > \sum_{j=1}^{i-1} |a_{i,j}| + \sum_{j=i+1}^{n} |a_{i,j}|
 \]

 i.e. diagonal elements are larger in absolute value than the sum of the absolute value of other coefficients

- If A is irreducible (no part of the equation can be solved independently of the rest) for all i
Is it diagonally dominant?

- The matrix is **NOT** diagonally dominant

- The matrix is diagonally dominant

\[
\begin{bmatrix}
-2 & 1 & 6 \\
4 & 7 & 1 \\
3 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
= \begin{bmatrix}
15 \\
-10 \\
5
\end{bmatrix}
\]

\[
\begin{bmatrix}
3 & -1 & 1 \\
4 & 7 & 1 \\
-2 & 1 & 6
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
= \begin{bmatrix}
5 \\
-10 \\
15
\end{bmatrix}
\]
The iterative solution described here converges \textit{unconditionally} if

- for a \textcolor{blue}{\textbf{nonsingular matrix}}, applied after premultiplying the equation $Ax = y$ by A^t.

$$A^tAx = A^ty$$
Ex: Diagonally Dominant Matrix

Set of equations given by:

(1) \[10x_1 - 2x_2 + 5x_3 = 8 \]
(2) \[x_1 + 7x_2 - 3x_3 = 10 \]
(3) \[-4x_1 - 2x_2 - 8x_3 = -20 \]

is **predominantly diagonal** as:

\[|10| > |-2| + |5| \]
\[|7| > |1| + |-3| \]
\[|-8| > |-4| + |-2| \]

\[Ax = y \]
\[
\begin{pmatrix}
10 & -2 & 5 \\
1 & 7 & -3 \\
-4 & -2 & -8 \\
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{pmatrix}
=
\begin{pmatrix}
8 \\
10 \\
-20 \\
\end{pmatrix}
\]

Unknown variables on the diagonal are given by:

\[x_1 = \frac{8 - (-2x_2 + 5x_3)}{10} \]
\[x_2 = \frac{10 - (x_1 - 3x_3)}{7} \]
\[x_3 = \frac{-20 - (-4x_1 - 2x_2)}{-8} \]
A \(x = y \) Solution by Iteration: Convergence

- Initial guess values are used to calculate new guess values
- New estimates of \(x \) are calculated
- Iteration continues until convergence is satisfied, i.e. \(f(x) < \varepsilon \)

\(\varepsilon \) : convergence criteria (tolerance)
Jacobi (Simple) Iteration

(1) \[a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,n}x_n = y_1 \]

(2) \[a_{2,1}x_1 + a_{2,2}x_2 + \ldots + a_{2,n}x_n = y_2 \]

..

(n) \[a_{n,1}x_1 + a_{n,2}x_2 + \ldots + a_{n,n}x_n = y_n \]

\[\sum_{j=1}^{n} a_{i,j}x_j = y_i, \text{ where } i = 1, 2, \ldots, n. \]

Extracting \(x_i \) yields \[a_{i,i}x_i + \sum_{j=1, j \neq i}^{n} a_{i,j}x_j = y_i \]

Solving for \(x_i \) gives:

\[x_i = \frac{1}{a_{i,i}} \left(y_i - \sum_{j=1, j \neq i}^{n} a_{i,j}x_j \right) \]

Consequently, the iterative scheme should be

\[x_i \leftarrow \frac{1}{a_{i,i}} \left(y_i - \sum_{j=1, j \neq i}^{n} a_{i,j}x_j \right) \]
Jacobi (Simple) Iteration

Iteration cycle:

- Choose a starting vector x_0 (Initial guesses)
- If a good guess for solution is not available, choose x randomly
- Use

$$x_i \leftarrow \frac{1}{a_{i,i}} \left(y_i - \sum_{j=1}^{n} a_{i,j} x_j \right)$$

with $x_j = x_0$

to recompute each value of x

4. Check if $|x-x_0| < \varepsilon$ (tolerance), if so $x = x_0$

5. If $|x-x_0| > \varepsilon$, assign new values to x_0

Repeat this cycle until changes in x ($x-x_0$) between successive iteration cycles become sufficiently small, i.e., $|x-x_0| < \varepsilon$
Jacobi (Simple) Iteration

\[x_i^{(t)} = \frac{1}{a_{i,i}} \left(y_i - \sum_{j=1}^{n} a_{i,j} x_j^{(t-1)} \right) \]

where \(t \) is the iteration count

for \(t=1 \)

\[x_i^{(1)} = \frac{1}{a_{i,i}} \left(y_i - \sum_{j=1}^{n} a_{i,j} x_j^{(0)} \right) \]

where \(x_j^{(0)} \) is the initial guess \(x_0 \)

if \(|x_i^{(1)} - x_i^{(0)}| > \varepsilon \),

\[x_i^{(2)} = \frac{1}{a_{i,i}} \left(y_i - \sum_{j=1}^{n} a_{i,j} x_j^{(1)} \right) \]

continue iteration until \(|x_i^{(t)} - x_i^{(t-1)}| \leq \varepsilon \) or \(|y_i - \left(a_{i,i} x_i^{(t)} - \sum_{j=1}^{n} a_{i,j} x_j^{(t)} \right) \| \leq \delta \)
Ex: Jacobi (Simple) Iteration

(1) \[4x_1 - 2x_2 + x_3 = 3\]
(2) \[3x_1 - 7x_2 + 3x_3 = -2\]
(3) \[x_1 + 3x_2 - 5x_3 = -8\]

\[x_1 = \frac{3 - (-2x_2 + x_3)}{4}\]
\[x_2 = \frac{-2 - (3x_1 + 3x_3)}{-7}\]
\[x_3 = \frac{-8 - (x_1 + 3x_2)}{-5}\]

\[
\begin{pmatrix}
4 & -2 & 1 \\
3 & -7 & 3 \\
1 & 3 & -5
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
3 \\
-2 \\
-8
\end{pmatrix}
\]

\[ax = y\]

\[
\begin{pmatrix}
0.7500 & 0.0000 & 0.0000 \\
0.0000 & 0.7500 & 0.0000 \\
0.0000 & 0.0000 & 0.7500
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
0.0000 \\
0.0000 \\
0.0000
\end{pmatrix}
\]

\[t = 2\]
\[x = 0.49285714285714\]
\[0.28571428571429\]
\[1.60000000000000\]

\[
\begin{pmatrix}
0.7500 & 0.0000 & 0.0000 \\
0.0000 & 0.7500 & 0.0000 \\
0.0000 & 0.0000 & 0.7500
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
0.0000 \\
0.0000 \\
0.0000
\end{pmatrix}
\]

\[t = 2\]
\[x = 0.49285714285714\]
\[0.28571428571429\]
\[1.60000000000000\]

\[
\begin{pmatrix}
0.7500 & 0.0000 & 0.0000 \\
0.0000 & 0.7500 & 0.0000 \\
0.0000 & 0.0000 & 0.7500
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
0.0000 \\
0.0000 \\
0.0000
\end{pmatrix}
\]

\[t = 2\]
\[x = 0.49285714285714\]
\[0.28571428571429\]
\[1.92142857142857\]
Ex: Jacobi (Simple) Iteration

%Solve 3 strictly diagonally dominant linear equations for 3 unknowns: **Jacobi iteration**

```matlab
a=[4 -2 1;3 -7 3;1 3 -5];    %Coefficient matrix
y=[3;-2;-8];                %Vector for values of f(x)=ax
n=length(y);
x=zeros(n,1);           %Create an empty matrix for x
x0=x;                      %Initial guess values for x
tmax=50;                    %Set max iteration no to stop iteration if system does not converge
tol=10^-3;                  %Set the tolerance to end iteration before t=tmax
for t=1:tmax,
    for j=1:n,
        x(j)=(y(j)-a(j,[1:j-1,j+1:n])*x0([1:j-1,j+1:n]))/a(j,j);
    end
    error=abs(x-x0);  x0=x;
    if error<=tol
        ' Convergence is good. Iteration ended before tmax ' 
        break
    end
end
display('Iteration no=');  display(t-1);
x
```
Ex: Jacobi (Simple) Iteration

Results of the Jacobi iteration in the command window:

\[
\text{ans} = \text{Convergence is good. Iteration ended before } t_{\text{max}}
\]

Iteration no =

\[
\text{ans} = 18
\]

\[
x = \\
1.00011187524906 \\
1.99949883459545 \\
2.99983186316654
\]

Direct solution by Gauss elimination in the command window:

\[
>> x=a\backslash y
\]

\[
x = \\
1 \\
2 \\
3
\]
Gauss-Siedel Iteration

Iteration cycle:

■ Choose a starting vector x_0 (Initial guesses)
■ If a good guess for solution is not available, choose x randomly
■ Use

$$x_i^{(t)} \leftarrow \frac{1}{a_{i,i}} \left(y_i - \sum_{j=1}^{i-1} a_{i,j} x_j^{(t)} - \sum_{j=i+1}^{n} a_{i,j} x_j^{(t-1)} \right)$$

to compute each element of x, always using the latest available values $ox\ x_j$

■ Helps accelerate convergence
■ Simplifies programming as the new values can be written over the old ones
Gauss-Siedel Iteration

\[x_i^{(t)} = \frac{1}{a_{i,i}} \left(y_i - \sum_{j=1}^{i-1} a_{i,j} x_j^{(t)} - \sum_{j=i+1}^{n} a_{i,j} x_j^{(t-1)} \right) \]

where \(t \) is the iteration count

for \(t=1 \)

\[x_i^{(1)} = \frac{1}{a_{i,i}} \left(y_i - \sum_{j=1}^{i-1} a_{i,j} x_j^{(1)} - \sum_{j=i+1}^{n} a_{i,j} x_j^{(0)} \right) \]

where \(x_j^{(0)} \) is the initial guess \(x_0 \)

and \(x_j^{(1)} \) is the updated value calculated using \(x_j^{(0)} \)

if \(|x_i^{(1)} - x_i^{(0)}| > \varepsilon \),

\[x_i^{(2)} = \frac{1}{a_{i,i}} \left(y_i - \sum_{j=1}^{i-1} a_{i,j} x_j^{(2)} - \sum_{j=i+1}^{n} a_{i,j} x_j^{(1)} \right) \]

continue iteration until \(|x_i^{(t)} - x_i^{(t-1)}| \leq \varepsilon \) or

\[y_i - \left(a_{i,i} x_i^{(t)} - \sum_{j=1}^{i-1} a_{i,j} x_j^{(t)} - \sum_{j=i+1}^{n} a_{i,j} x_j^{(t-1)} \right) \leq \delta \]
Gauss-Siedel Iteration with Relaxation: Successive Over Relaxation

To improve the convergence of Gauss-Siedel method using relaxation:

- Take the new value of x_i as a weighted average of its previous value and the predicted/calculated value

\[
x_i^{(t)} = \omega \frac{1}{a_{i,i}} \left(y_i - \sum_{j=1}^{i-1} a_{i,j} x_j^{(t)} - \sum_{j=i+1}^{n} a_{i,j} x_j^{(t-1)} \right) + (1 - \omega) x_i^{(t-1)},
\]

where

- t : iteration count
- ω : over-relaxation parameter satisfying $1 \leq \omega < 2$

If $\omega = 1$, the SOR reduces to the Gauss-Siedel method
Successive Over-Relaxation: SOR

- If $\omega=1$, no relaxation
- If $\omega<1$, under-relaxation, i.e. interpolation between the old x_i and the calculated x_i
- If $\omega>1$, over-relaxation, i.e. extrapolation
- A good estimate for an optimal value of ω can be computed during run time:

Let $\Delta x^{(k)} = |x^{(k-1)} - x^{(k)}|$ be the magnitude of the change in x during the k^{th} iteration for $\omega=1$ (without relaxation).

If k is sufficiently large, say $k \geq 5$,

$$\omega_{opt} \approx \frac{2}{1 + \sqrt{1 - \left(\frac{\Delta x^{(k+p)}}{\Delta x^{(k)}} \right)^2}}$$

where p is a positive integer.
%Solve 3 linear equations that are strictly diagonally dominant
%for 3 unknowns using SOR iteration

a = [4 -2 1; 3 -7 3; 1 3 -5]; %Vector for values of f(x) = ax
y = [3; -2; 8]; %Vector for values of f(x) = ax

n = length(y);

x = zeros(1, n); %Create an empty matrix for x
w = 1.2; %Relaxation constant

for t = 1:50
error = 0;
for i = 1:n
s = 0; xb = x(i);
for j = 1:n
 if i ~= j, s = s + a(i,j)*x(j); end,
end

x(i) = w*(y(i) - s)/a(i,i) + (1 - w)*x(i);
error = error + abs(x(i) - xb);
end

fprintf('Iteration no = %3.0f, error = %7.2e \n', t, error)
if error/n < 10^(-4), break; end
end,

x
Ex Contd.: Successive Over-Relaxation

<table>
<thead>
<tr>
<th>Iteration no</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.42e+000</td>
</tr>
<tr>
<td>2</td>
<td>1.52e+000</td>
</tr>
<tr>
<td>3</td>
<td>1.12e+000</td>
</tr>
<tr>
<td>4</td>
<td>2.13e-001</td>
</tr>
<tr>
<td>5</td>
<td>9.29e-002</td>
</tr>
<tr>
<td>6</td>
<td>3.20e-002</td>
</tr>
<tr>
<td>7</td>
<td>1.21e-002</td>
</tr>
<tr>
<td>8</td>
<td>4.42e-003</td>
</tr>
<tr>
<td>9</td>
<td>1.63e-003</td>
</tr>
<tr>
<td>10</td>
<td>5.99e-004</td>
</tr>
<tr>
<td>11</td>
<td>2.20e-004</td>
</tr>
</tbody>
</table>

\[x =
\begin{align*}
1.00004015934601 & \quad 1.99999668943987 & \quad 3.00001586803950
\end{align*}\]