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Effort quotes

 Success is a ladder you cannot climb with your hands in your 
pockets. ~American Proverb

 Be not afraid of going slowly; be afraid only of standing 
still. ~Chinese Proverb

 When I was young, I observed that nine out of ten things I 
did were failures. So I did ten times more work. ~George 
Bernard Shaw, Irish playwright, 1856-1950

 Opportunity is missed by most people because it is dressed in 
overalls and looks like work. ~Thomas Edison, American 
inventor and businessman, 1847-1931

 All the so-called "secrets of success" will not work unless you 
do. ~Author Unknown

http://en.wikipedia.org/wiki/File:GeorgeBernardShaw-Nobel.jpg
http://en.wikipedia.org/wiki/File:Thomas_Edison.jpg
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When do we need data/function interpolation?

 Need to obtain estimates of function 
values at other points

 Need to use the closed form 
representation of the function as the basis 
for other numerical techniques
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Goals

 Fit a polynomial to values of a function at 
discrete points to estimate the functional values 
between the data points

 Derive numerical integration schemes by 
integrating interpolation polynomials
– Power series
– Lagrange interpolation forms

 Differentiation and integration of interpolation 
polynomials

 Interpolation polynomials using nonequispaced points → 
Chebyshev nodes (roots of the Chebyshev polynomial of 
the 1st kind)
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Polynomials

 Power series form:

y=c1x
n+c2x

n-1+…+cnx+cn+1

n : order of polynomial

ci : coefficients

 Cluster form:

y=((…((c1x+c2)x+c3)x…+cn)x+cn+1)

 Factorized form:

y=c1(x-r1)(x-r2)…(x-rn)

ri= roots of polynomial
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Ex: Polynomials

 Power series form:

y=x4+2x3-7x2-8x+12

 Cluster form:

y=((((x+2)x-7)x-8)x+12)

 Factorized form:

y= (x-1)(x-2)(x+2)(x+3)
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Polynomials

 A polynomial of order n has n roots:

– Multiple roots

– Complex roots

– Real roots

 If all ci are real, all the complex roots are 
found in complex conjugate pairs
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Polynomials in MATLAB®

% y=4x4+2x3-7x2+x+7=0
% p = [4 2 -7 1 7]
% roots: Finds the roots of a polynomial
>> p = [4 2 -7 1 7]
p =  4     2    -7     1     7
>> x=roots(p)
x =
0.93158276438947 + 0.60071610876714i
0.93158276438947 - 0.60071610876714i

-1.18158276438947 + 0.16770340687492i
-1.18158276438947 - 0.16770340687492i
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Polynomials in MATLAB®

% y=4x4+2x3-7x2+x+7
% poly: Determines the coefficients of the original polynomial knowing 

the roots. 
% The polynomial is normalized to make the leading coefficient 1

>> r=[  0.93158276438947 + 0.60071610876714i
0.93158276438947  - 0.60071610876714i
-1.18158276438947 + 0.16770340687492i
-1.18158276438947  - 0.16770340687492i];

>> p=poly(r); p’
ans =

1.00000000000000   
0.50000000000000  
-1.75000000000000
0.25000000000000   
1.74999999999999

4
2
-7
1
7

(4)
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Accuracy of Conversions
Conversions may not be accurate due to rounding errors in computations 

Coefficients → Roots
Roots → Coefficients

• Multiple roots: Less accurate conversion
“Computing a highly multiple root is one of the most difficult problems for 

numerical methods”1

Ex: 
y=(x-5)5   (This equation can be expanded symbolically using simple(y) or
>> expand(y)
y=x^5-25*x^4+250*x^3-1250*x^2+3125*x-3125

>> p=sym2poly(y)
p =    1         -25         250       -1250        3125       -3125
>> roots(p)
ans =
5.00482653710827 + 0.00350935026218i
5.00482653710827 - 0.00350935026218i
4.99815389493583 + 0.00567044756022i
4.99815389493583 - 0.00567044756022i
4.99403913591176
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Accuracy of Conversions

Use the round and real functions to get integer
results in taking the roots of polynomials:

>>round(real(5.0048+0.0035i))

ans =     5

>> p =    [1  -25   250  -1250  3125  -3125]

>> r=round(real(roots(p)));     r'

ans =

5     5     5     5     5
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Symbolic Calculations

>> syms x y z 
>> sym2poly(4*x^4+2*x^3-7*x^2+x+7)
ans =      4     2    -7     1     7

>> poly2sym([4     2    -7     1     7])
ans = 4*x^4+2*x^3-7*x^2+x+7

>> f1=poly2sym([4     2    -7     1     7],sym('t'))
f1 = 4*t^4+2*t^3-7*t^2+t+7

>> horner(f1)
ans = (((4*t+2)*t-7)*t+1)*t+7

>> f2=x^5-25*x^4+250*x^3-1250*x^2+3125*x-3125
>> factor(f2)
ans = (x-5)^5
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Symbolic Calculations to Numbers

Symbolic substitution:
subs(f): replaces all the variables in the symbolic expression f with 

values obtained from the calling function, or the MATLAB 
workspace

Ex:
>> f = (x-5)^5;
>> x=6;
>> subs(f)
ans =     1
>> subs(f,7)
ans =    32

subs(f,old,new) replaces old with new in the symbolic expression f
>> syms a
>> subs(a*x,a,5)
ans = 5*x
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Polynomial Calculations in MATLAB®

polyval: Evaluates polynomials
Ex:
>> syms x
>> f=4*x^4+2*x^3-7*x^2+x+7;
>> p=sym2poly(f)
p =     4     2    -7     1     7
>> x=1;
>> fx=polyval(p,x)
fx =     7
>> fx=polyval(p,10)
fx =    41317
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Polynomial Calculations in MATLAB®

polyvalm(p,x): Evaluates polynomial with matrix argument 
x must be a square matrix

Ex:
>> syms x;    f=4*x^4+2*x^3-7*x^2+x+7;
>> p=sym2poly(f)
p =     4     2    -7     1     7

>> x=[1 10; 10 1];
>> fx=polyvalm(p,x)
fx = 42307       18090

18090       42307
>> fx=polyval(p,x)
fx =     7       41317

41317       7
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Polynomial Calculations in MATLAB®

polyfit: Fits polynomial to data
p= polyfit(x,y,n): Finds the coefficients of a polynomial p(x) 

best in a least-squares sense
n: degree of polynomial
y: data  
p: row vector of length n+1 (polynomial   

coefficients In descending powers)

A polynomial of order n is determined uniquely if n+1 data 
points (xi,yi), i=1,2,…,n+1 are given
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Ex: Polynomial Calculations in MATLAB®
%Example for using the Polyfit function
x=[-2.4 -0.8 0.7 1.5 3.6];
y=[10 8 5 3 1.5];
figure(1)
plot(x,y,'*-'); grid on,  xlabel('x'); ylabel('y');
n=length(x)-1;
an=polyfit(x,y,n); an,
a3=polyfit(x,y,3);  a3,
a2=polyfit(x,y,2);   a2,
fitn=poly2sym(an);   fitn,
fit3=poly2sym(a3);   fit3,
fit2=poly2sym(a2);   fit2,
figure(2)
x1=-3:0.1:4; 
plot(x,y,'*',x1,subs(fitn,x1),x1,subs(fit3,x1),x1,subs(fit2,x1));
xlabel('x'); ylabel('y'); grid on,  
legend('data points','n=length(x)-1','n=3','n=2');
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Ex: Polynomial Calculations in MATLAB®
Results of the Polyfit example in the command window:
an =  3.0510e-002  3.6803e-002 -3.5038e-001 -2.0526e+000  6.5885e+000
a3 =  9.2996e-002 -8.9465e-002 -2.2459e+000  6.3930e+000
a2 =  8.5356e-002 -1.6096e+000  5.9597e+000

fitn = 
8793908579215767/288230376151711744*x^4+5303925840414337/144
115188075855872*x^3-1577961026311739/4503599627370496*x^2-
4621972395784683/2251799813685248*x+7418029510271909/11258999
06842624 

fit3 = 
6701046569015015/72057594037927936*x^3-
6446656677519129/72057594037927936*x^2-
5057276482062349/2251799813685248*x+3598950055733773/56294995
3421312

fit2 = 
6150542143648561/72057594037927936*x^2-
3624406419963885/2251799813685248*x+6710023340029315/11258999
06842624
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Ex: Polynomial Calculations in MATLAB®

-3 -2 -1 0 1 2 3 4
1

2

3

4

5

6

7

8

9

10

x

y

-3 -2 -1 0 1 2 3 4
0

2

4

6

8

10

12

x

y

 

 

data points

n=length(x)-1

n=3

n=2



SelisÖnel© 20

Integration of Polynomials

y=c1x
n+c2x

n-1+…+cnx+cn+1

If the coefficients of the polynomial are given in a row 
vector p:

 polyint: Integrates the polynomial analytically

 polyint(p,K) returns a polynomial representing the 
integral of polynomial p, using a scalar constant of 
integration K

 polyint(p) assumes a constant of integration K=0

1 21 2
1 2

2

...
1 2

where  is an integration constant

n n n
n n

n

cc c
ydx x x x c x c

n n

c
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Differentiation of Polynomials

y=c1x
n+c2x

n-1+…+cnx+cn+1

If the coefficients of the polynomial are given in a row 
vector p:

 polyder: Differentiates the polynomial
 polyder(p) returns the derivative of the polynomial whose 

coefficients are the elements of vector p
 polyder(A,B) returns the derivative of polynomial A*B

 [Q,D]=polyder(B,A) returns the numerator Q and 
denominator D of the derivative of the 
polynomial quotient B/A

1 2

1 2( 1) ...n n

n

dy
nc x n c x c

dx
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Remember: Quotient Rule
Quotient rule, in calculus, is a method of finding the derivative of a 

function f(x) that is the quotient of two other functions g(x) and h(x), 
i.e., f(x)=g(x)/h(x) where h(x)≠0, for which derivatives exist

Ex: Let f(x)=(x2-5)/(2x3+4x+8)

>> B=[1 0 -5]; A=[2 0 4 8];
>> [q,d]=polyder(B,A)
q =    -2     0    34    16    20

d =     4     0    16    32    16    64    64

 
2

( ) '( ) ( ) ( ) '( )
If ( ) ,   then ( ) '( )

( ) ( )

g x d g x h x g x h x Q
f x f x f x

h x dx Dh x


   

2 3 2 2

3 3 2

( 5) (2 )(2 4 8) ( 5)(6 4)
( ) ,   then ( ) '( )

(2 4 8) (2 4 8)

x d x x x x x
f x f x f x

x x dx x x

     
  

   

http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Quotient
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Ex: Differentiation of Polynomials

>> syms x;  A=x^2+3*x+2; B=4*x^4+2*x^3-x^2+3*x+5;
>> A=sym2poly(A), B=sym2poly(B)
A =     1     3     2
B =     4     2    -1     3     5

>> polyder(A,B)
ans =    24    70    52    12    24    21
>> poly2sym(polyder(A,B))
ans =    24*x^5+70*x^4+52*x^3+12*x^2+24*x+21

>>[Q,D]=polyder(B,A) 
Q =     8    38    44     6   -14    -9
D =     1     6    13    12     4
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Product (Convolution) of Polynomials

 conv: Convolution and polynomial multiplication

C = conv(A,B) convolves vectors A and B 

The resulting vector is length: length(A)+length(B)-1

If A and B are vectors of polynomial coefficients, convolving 
them is equivalent to multiplying the two polynomials

1

1 2 1

Product of two polynomials of order m and order n 

gives a polynomial of order d=m+n

...d d

c a b d dy y y c x c x c x c
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Ex: Convolution of Polynomials

>> PA=[3 5 -1 0]; PB=[4 -7 21];

>> A=poly2sym(PA)

A = 3*x^3+5*x^2-x

>> B=poly2sym(PB)

B = 4*x^2-7*x+21

>> PC=conv(PA,PB)

PC =    12    -1    24   112   -21     0

>> C=poly2sym(PC)

C = 12*x^5-x^4+24*x^3+112*x^2-21*x
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Division of Polynomials

deconv: Deconvolution and polynomial division
[Q,R] = deconv(A,B) deconvolves vector B out of vector A.  The result

is returned in vector Q and the remainder in vector R such that
A = conv(B,Q) + R

If A and B are vectors of polynomial coefficients, deconvolution
is equivalent to polynomial division.  The result of dividing A by
B is quotient Q and remainder R

a bDivision of a polynomial y  by polynomial y  satisfies 

:  quotient

:  remainder upon division

a q b r

q

r

y y y y

y

y

 

ry

ry
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Ex: Deconvolution of Polynomials

>> PA=[3 5 -1 0]; PB=[4 -7 21];

>> A=poly2sym(PA)

A = 3*x^3+5*x^2-x

>> B=poly2sym(PB)

B = 4*x^2-7*x+21

>> PC=deconv(PA,PB)

PC =   0.75000000000000   2.56250000000000

>> C=poly2sym(PC)

C = 3/4*x+41/16
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Linear Interpolation

 It is a line fitted to two data points

 Basis for many numerical schemes:

– Integral of the linear interpolation: Trapezoidal Rule

– Gradient of the linear interpolation: An approximation 
for the first derivative of the function  

Lagrange form

( ) ( ) ( ),    or 

Newton form  

( ) ( )
( ) ( ) ( )

b x x a
g x f a f b

b a b a

f b f a
g x x a f a

b a

 
 

 


  



y

y=g(x)

f(b)

x

y=f(x)

f(a)

ba
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Interpolation in MATLAB®: interp1
 x need to be monotonic
 Cubic interpolation requires that x 

be equispaced

%interp1 does 1-D interpolation
x=[0 1 2 3 4 5]; y=[3 5 6 4  2 1];
xi=0:.1:8;
g=interp1(x,y,xi,'linear');
g1=interp1(x,y,xi,'cubic');
g2=interp1(x,y,xi,'spline');
plot(x,y,'*:r',xi,g,'b',xi,g1,'g',xi,g2,'m');
xlabel('x'); ylabel('y');
legend('y(x)','linear','cubic','spline',2);
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Interpolation in MATLAB®: interp1
%Calculate material properties of Carbon
%Values adapted from S. Nakamura, 2nd ed., p.169

T=[300 400 500 600]';
beta=[3330 2500 2000 1670]';
alpha=10^4*[.2128 .3605 .5324 .7190]';
Ti=[321 440 571]';
PropertyC=interp1(T,[beta,alpha],Ti,'linear');
[Ti PropertyC]
plot(T,alpha,'*-',T,beta,'*-',Ti,PropertyC(:,1),'o',Ti,PropertyC(:,2),'o')
legend('\alpha','\beta','New \beta','New \alpha',2);
xlabel('Temperature, T');
ylabel('Thermal expansion \beta and diffusivity \alpha');

ans =
1.0e+003 *

0.3210    3.1557    2.4382
0.4400    2.3000    4.2926
0.5710    1.7657    6.6489
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Polynomial Interpolation with Power Series

1 2 n+1

1 2 n+1

Suppose n+1 data points are given as:

x    x    ...  x

y    y    ...  y

where 

- x are abscissas of data points in increasing order

- the increment between x's is arbitrary

Polynomial of order n passi

1

1 2 1

i i

ng through n+1 data points may be written in power series form as 

( ) ...

where c are coefficients

Setting g(x )=y  for n+1 data points gives n+1 linear equations, i.e.,

Ac=y

To find c:

-

n n

ng x c x c x c

   

 Solve Ac=y, i.e. c=A\y,   OR

- Use polyfit(x,y,n)
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Ex: Polynomial Interpolation with Power Series
Unique solution

Determine the polynomial that passes 
through 3 data points: 

(0,2), (1,1.5), (2,0.2)

Write the 2nd order polynomial as:

g(x)= c1x
2+c2x+c3

Setting the polynomial at each data 
point gives:

C1(0)2+c2(0)+c3=2

C1(1)2+c2(1)+c3=1.5

C1(2)2+c2(2)+c3=0.2

Solving the above gives:

c3=2, c2=-0.1, c1=-0.4

i.e.

g(x)=-0.4x2-0.2x+2

>> A=[0 0 1;1 1 1; 4 2 1]; y=[2;1.5;0.2];

>> c=A\y; c’

ans =    -0.4000    -0.1000    2.0000

>> a=[0;1;2];  C=polyfit(a,y,2)

C =   -0.4000   -0.1000    2.0000

>>C=poly2sym(C); xi=0:.1:2;

>> Y=subs(C,xi);

>> plot(a,y,'*',xi,Y)
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Lagrange Polynomial Interpolation

 The Lagrange form of the equation of a straight 
line passing through two points

p(x)=(x-x2)y1+(x-x1)y2

(x1-x2) (x2-x1)

 The Lagrange form of the parabola passing 
through three points

p(x)=(x-x2)(x-x3)y1+(x-x1)(x-x3)y2+(x-x1)(x-x2)y3

(x1-x2)(x1-x3)   (x2-x1)(x2-x3)   (x3-x1)(x3-x2)
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Ex: Lagrange Interpolation Parabola
 The quadratic (2nd order) polynomial for three 

given data points 

 Substituting into the Lagrange formula gives:

p(x)=(x-0)(x-2)4+(x-(-2))(x-2)2+(x-(-2))(x-0)8

(-2-0)(-2-2)   (0-(-2))(0-2)    (2-(-2))(2-0)

Which simplifies to:

p(x)=x(x-2)4 + (x+2)(x-2)2 + x(x+2)8

8                -4                8

= x2+x+2

Ex. Adopted from L. V. Fausett, 2nd ed., p.279

xi yi (i=1:3)
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Newton Polynomial Interpolation

The Newton form of the equation of a straight line passing 
through two points

p(x)=a1+a2(x-x1)

 The Newton form of the equation of a parabola passing 
through three points 

p(x)=a1+a2(x-x1)+a3(x-x1)(x-x2)

a1=y1 a2=(y2-y1)/(x2-x1) a3=(y3-y2)/(x3-x2)-(y2-y1)/(x2-x1)

(x3-x1)
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Ex: Newton Interpolation Parabola

 The quadratic (2nd order) polynomial for three 
given data points 

 Substituting into the Newton formula gives:

p(x)=a1+a2(x-(-2))+a3(x-(-2))(x-0)

Where the coefficients are:
a1=y1=4   a2=(y2-y1)/(x2-x1)=(2-4)/(0-(-2))=-1
a3=[(y3-y2)/(x3-x2)-(y2-y1)/(x2-x1)]

=[(8-2)/(2-0)-(2-4)/(0-(-2))]/(2-(-2))=1

p(x)=4-(x+2)+x(x+2)
= x2+x+2

Ex. Adopted from L. V. Fausett, 2nd ed., p.285
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Advantages & Disadvantages

In many types of problems polynomial interpolation through moderate 
number of data points works very poorly

 Lagrange form:

– Convenient when the values of x (independent variable) may be 
the same for different values of the corresponding y

– Less convenient than the Newton form when 

 additional data points may be added to the problem 

 The appropriate degree of the interpolating polynomial is not known

 Newton form:

– Convenient when the spacing between the x data values is 
constant

– More data points can be incorporated and a higher degree 
polynomial can be generated by making use of the calculations for 
the lower order polynomial
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Difficulties of Polynomial Interpolation

Humped and flat data if
 number of data points is 

moderately large 

 the curve changes shape 
significantly over the interval 

Then, there is difficulty with 
high-order polynomial 
interpolation
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%Shows difficulty with high-order
%polynomial fit to humped and flat data
xi=[-2 -1.5 -1 -.5 0 .5 1 1.5 2];
yi=[0 0 0 .87 1 .87 0 0 0];
p=poly2sym(polyfit(xi,yi,8));
x=-2:0.01:2;
plot(xi,yi,'*r',x,subs(p,x));
xlabel('x'); ylabel('y'); grid on
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Difficulties of Polynomial Interpolation

Noisy Straight Line if
 number of data points is 

moderately large 

 Distance between x-values is 
not even    

Then, there is difficulty with 
high-order polynomial 
interpolation

%Shows difficulty with high-order
%polynomial fit to noisy straight line data
xi=[0 .2 .8 1 1.2 1.9 2 2.1 2.95 3];
yi=[.01 .22 .76 1.03 1.18 1.94 2.01 2.08 2.9 2.95];
p=poly2sym(polyfit(xi,yi,9));
x=-0:0.01:3;
plot(xi,yi,'*r',x,subs(p,x));
xlabel('x'); ylabel('y'); grid on
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Difficulties of Polynomial Interpolation

Runge function 

f(x)=(1+25x2)-1

Using five equally spaced x values:

 Polynomial interpolation does 
not give a good approximation

 Using more function values at 
evenly spaced x-values is of no 
use

There is difficulty with high-order 
polynomial interpolation

%Shows difficulty with high-order
%polynomial fit to the Runge function
xi=[-1 -.5 0 .5 1];
yi=[.0385 .1379 1 .1379 .0385];
p=poly2sym(polyfit(xi,yi,4));
x=-1:0.01:1;
f=(1+25*x.^2).^(-1);
plot(xi,yi,'*r',x,subs(p,x),x,f,'m');
xlabel('x'); ylabel('y'); grid on
legend('Data points','Polynomial fit','Runge');
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Difficulties of Polynomial Interpolation

Runge function 

f(x)=(1+25x2)-1

Using nine equally spaced x values:

 Interpolation polynomial (of 
order 8) gives a relatively better 
approximation compared to 
polynomial for order 4, but still 
overshoots the true function

 Using more function values at 
evenly spaced x-values is of no 
use

There is difficulty with high-order 
polynomial interpolation

%Shows difficulty with high-order
%polynomial fit to the Runge function
xi=[-1 -.75 -.5 -.25 0 .25 .5 .75 1];
yi=[.039 .066 .138 .39 1 .39 .138 .066 .039];
p=poly2sym(polyfit(xi,yi,8));
x=-1:0.01:1;
f=(1+25*x.^2).^(-1);
plot(xi,yi,'*r',x,subs(p,x),x,f,'m');
xlabel('x'); ylabel('y'); grid on
legend('Data points','Polynomial fit','Runge');
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Difficulties of Polynomial Interpolation

Runge function 

f(x)=(1+25x2)-1

Using better distribution of the 
data points, with more points 
towards the ends of the interval 
and fewer in the center:

 Gives better results

 Optimum interpolation 
(minimizing maximum deviation 
between the function and the 
interpolating polynomial) is 
achieved using zeros of the 
Chebyshev polynomial as the 
nodes

%Shows difficulty with high-order
%polynomial fit to the Runge function
xi=[-1 -.9 -.8 -.5 0 .5 .8 .9 1];
yi=[.039 .047 .059 .138 1 .138 .059 .047 .039];
p=poly2sym(polyfit(xi,yi,8));
x=-1:0.01:1;
f=(1+25*x.^2).^(-1);
plot(xi,yi,'*r',x,subs(p,x),x,f,'m');
xlabel('x'); ylabel('y'); grid on
legend('Data points','Polynomial fit','Runge');
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Chebyshev Polynomials ?
 Sturm-Liouville Boundary Value Problem 

[p(x)y’]’+[q(x)+λr(x)]y=0,  BC.1 a1y(a)+a2y’(a)=0, BC.2 b1y(b)+b2y’(b)=0

has  a special case where

a=-1, b=1, p(x)=(1-x2)1/2, q(x)=0, r(x )=(1-x2)-1/2 , λ=n2

is called Chebyshev's Differential Equation defined as:  

(1-x2)y’’-xy’+n2y=0 where n is a real number. 

The solutions of this equation are called Chebyshev Functions of degree n 

 If n is a non-negative integer, i.e., n=0,1,2,…, the Chebyshev Functions are often 
referred to as Chebyshev Polynomials Tn(x)

 Tn(x) form a complete orthogonal set on the interval -1≤x≤1 w.r.t. r(x)

 Using Rodrigues’ Formula:

For more information, http://www.efunda.com/math/chebyshev/index.cfm
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( ) (1 ) ,   where n=0,1,2,3,...
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T x x
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http://www.efunda.com/math/chebyshev/index.cfm
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Chebyshev Polynomials ?

T0(x)=1

T1(x)=x-1

T2(x)=2x2-1

T3(x)=4x3-3x

…

Tk(x)=2xTk-1(x)-Tk-2(x)

Ref: http://www.efunda.com/math/chebyshev/index.cfm
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http://www.efunda.com/math/chebyshev/index.cfm
http://www.efunda.com/webM/plotting/plot2D.cfm?expr=ChebyshevT%5B5%2F2%2C%20x%5D&indvar=x&num1=-1&num2=1
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Hermite Interpolation

 Allows to find a polynomial that matches both 
the function values and some of the derivative 
values at specified values of the independent 
variable

 Simplest case: function values and first-
derivative values are given at each point

Ex: Data for the position and velocity of a vehicle 
at several different times, i.e.

t (time), X (Position), v=dX/dt (Velocity)   
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Hermite Interpolation

 The cubic Hermite 
polynomial p(x) has the 
interpolative properties:
p(x0)=y0 p(x1)=y1

p’(x0)=d0 p’(x1)=d1

 Both the function values and their 
derivatives are known at the 
endpoints of the interval [x0,x1] .

 Hermite polynomials were studied by 
the French Mathematician Charles 
Hermite (1822-1901), and are 
referred to as a "clamped cubic," 
where "clamped" refers to the slope 
at the endpoints being fixed (see 
figure)

Ref:http://math.fullerton.edu/mathews/n2003/HermitePolyMod.html

 If f[x] is continuous on [x0,x1], there 
exists a unique cubic polynomial 
p[x]=ax3+bx2+cx+d such that
p[x0]=f[x0]  
p[x1]=f[x1]  
p’[x0]=f’[x0] 

p’[x1]=f’[x1]
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Hermite Interpolation
 Summary

– Finds a polynomial that agrees with function values and their 
derivatives at the node points

– Uses the Newton form and repeats it for the data points 
– For cubic Hermite polynomial on [0,1] the basis functions are:

 ya=-0.5t3+t2-0.5t if given: f(0)=fb       define:   fa=fc-2sa

 yb=1.5t3-2.5t2+1 f(1)=fc fd=2sb+fb
 yc=-1.5t3+2t2+0.5t f’(0)=sa

 yd=0.5t3-0.5t2 f’(1)=sb

Then the required interpolating function on [0,1] is y=faya+fbyb+fcyc+fdyd

 Additional Information
– The cubic Hermite polynomial is a generalization of both the Taylor 

polynomial and Lagrange polynomial, and it is referred to as an 
"osculating polynomial."

– Hermite polynomials can be generalized to higher degrees by using 
more nodes {x0, x1,…,xn} and extending the agreement at higher 
derivatives    

p(k)[xi]=f(k)[xi] for i=1,2,…,n and k=1,2,..mi

Ref:http://math.fullerton.edu/mathews/n2003/HermitePolyMod.html
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Piecewise Polynomial Interpolation

If there are large number of data points:

 Use piecewise polynomials instead of using a single 
polynomial (of high degree) to interpolate these 
points

 A spline of degree m is a piecewise polynomial (of 
degree m) with the maximum possible smoothness 
at each of the points where the polynomials join

 A linear spline is continuous

 A quadratic spline has continuous first derivatives

 A cubic spline has continuous second derivatives
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Piecewise Linear Interpolation

Simplest form of piecewise polynomial interpolation:

 Consider set of four data points: 

(x1,y1), (x2,y2), (x3,y3), (x4,y4) with x1<x2<x3<x4

 Defining three subintervals of the x-axis gives:

I1=[x1,x2], I2=[x2,x3], I3=[x3,x4]

Subintervals join at the knots, which are nodes
where the data values are given
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Piecewise Linear Interpolation
Using a straight line on each subinterval, the data can be 
interpolated using a piecewise linear function

A piecewise linear interpolating function is continuous, but 
not smooth at the nodes.
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Ex: Piecewise Linear Interpolation

%Shows linear piecewise interpolation
xi=[ 0 1 2 3]; yi=[0 1 4 3];
p=poly2sym(polyfit(xi,yi,3));
x=-1:0.01:3;
yp=subs(p,x);
ylin=interp1(xi,yi,x);
plot(xi,yi,'*r',x,yp,':',x,ylin,'m');
xlabel('x'); ylabel('y'); grid on
legend('Data points','Polynomial 
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Piecewise Quadratic Interpolation

 Using a quadratic equation on each subinterval, the 
functions and their derivatives can be made to agree at the 
nodes

 For n+1 data points, there are 2n+n-1 equations:
– n intervals and 3 unknown constant coefficients for each quadratic 

polynomial → 3*n unknowns

– 2 equations for each interval (quadratic equations written for each 
of the end points of the intervals), i.e. (x1,y1) and (x2,y2) must satisfy 
the quadratic equation on the first interval 

– n-1 points at which the intervals meet where the derivatives of the 
parabolas on the adjacent intervals are required to be continuous

 As a result, there are 3n unknowns and 3n-1 equations

 There are possible approaches for defining one additional 
condition
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Piecewise Quadratic Interpolation

I.  “Knots”=“Nodes” Approach
Define quadratic functions as 

21
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Ex: Piecewise Quadratic Interpolation 
(knots=nodes)

Data points:   x=[0, 1, 2, 3]    and   y=[0, 1, 4, 3]

Set m1=0

m2=2(y2-y1)/(x2-x1)-m1=2(1-0)/(1-0)-0=2

m3=2(y3-y2)/(x3-x2)-m2=2(4-1)/(2-1)-2=4

m4=2(y4-y3)/(x4-x3)-m3=2(3-4)/(3-2)-4=-6          So,

In this “knots”=“nodes” approach, the choice of slope at x1 (m1=0) influences the 
overall shape of the curve! 
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Piecewise Quadratic Interpolation

II.  Alternative scheme to the knots=nodes approach

Take the knots as the midpoints between the nodes 

(function values are given at the nodes)

For four data points: (x1,y1),    (x2,y2),     (x3,y3),     (x4,y4)

Define the knots as:   z1=x1,   z2=(x1+x2)/2,   z3=(x2+x3)/2,   z4=(x3+x4)/2,    z5=x4

Spacing between consecutive data points:  

h1=x2-x1,    h2=x3-x2,     h3=x4-x3  

Then

z2-x1=h1/2,     z3-x2=h2/2,     z4-x3=h3/2,   z2-x2=-h1/2,    z3-x3=-h2/2,     z4-x4=-h3/2 
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Piecewise Quadratic Interpolation
II.  Alternative scheme to the knots=nodes approach (continued)

 Define the quadratic polynomials for each interval as:

P1(x)=a1(x-x1)
2+b1(x-x1)+c1,             x Є [z1,z2]

P2(x)=a2(x-x2)
2+b2(x-x2)+c2,             x Є [z2,z3]

P3(x)=a3(x-x3)
2+b3(x-x3)+c3,             x Є [z3,z4]

P4(x)=a4(x-x4)
2+b4(x-x4)+c4,             x Є [z4,z5]

 For x=xk → Pk(xk)=ck an additional interpolation condition Pk(xk)=yk may be imposed, then

ck = yk for k=1,2,3,4 

 Imposing continuity conditions on the polynomials at the interior nodes gives 3 equations:

P1(z2)=P2(z2):     h1
2a1-h1

2a2+2h1b1+2h1b2=4(y2-y1)

P2(z3)=P3(z3):     h2
2a2-h2

2a3+2h2b2+2h2b3=4(y3-y2)

P3(z4)=P4(z4):     h3
2a3-h3

2a4+2h3b3+2h3b4=4(y4-y3)
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Piecewise Quadratic Interpolation

II.  Alternative scheme to the knots=nodes approach (continued)

 Imposing continuity conditions on the derivative of the polynomials 

Pi’(x)=2ai(x-xi)+bi at the interior nodes gives 3 more equations:

P1’(z2)=P2’(z2):     h1a1+h1a2+b1-b2=0

P2’(z3)=P3’(z3):     h2a2+h2a3+b2-b3=0

P3’(z4)=P4’(z4):     h3a3+h3a4+b3-b4=0

 6 equations and 8 unknown coefficients (a1, a2, a3, a4, b1, b2, b3, b4)

 For Pk’(x)=2ak(x-xk)+bk → b1 and b4 can be found by imposing 

conditions on the derivative values at the interval endpoints, x1 and x4:

Setting P1’(x1)=0 gives b1=0, and setting P4’(x4)=0 gives b4=0
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Piecewise Quadratic Interpolation

II.  Alternative scheme to the knots=nodes approach (continued)

 By setting the zero-slope conditions at the interval endpoints, for b1=0 

and b4=0, the 3 quadratic and 3 derivative equations for the coefficients 

become:

a1h1
2 - a2h1

2 +   0   +   0    + 0 + 2b2h1 + 0     + 0 = 4(y2-y1)

0    + a2h2
2 - a3h2

2 +   0   + 0 + 2b2h2 + 2b3h2 + 0 = 4(y3-y2)

0    +   0   + a3h3
2 - a4h3

2 + 0 +   0    + b32h3 + 0 = 4(y4-y3)

a1h1   + a2h1 +   0    +   0    + 0 - b2 +    0   + 0 = 0

0    + a2h2 + a3h2 +   0    + 0 +   b2 - b3 + 0 = 0

0    +   0   + a3h3 + a4h3 + 0 +   0   +     b3 - 0 = 0
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Ex: Piecewise Quadratic Interpolation

 Consider data points (0,0), (1,1), (2,4), (3,3).  Set up the linear system of 
equations using piecewise quadratic interpolation with the knots placed at the 
midpoints of the data intervals. Determine the coefficients of the linear 
system. Write the interpolating piecewise polynomial for each data interval.
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Ex: Piecewise Quadratic (Spline) Interpolation

%plotting the quadratic piecewise polynomial solution
format short
syms x
xi=[0;1;2;3]; yi=[0;1;4;3];
A=[1 -1 0 0 2 0; 0 1 -1 0 2 2; 0 0 1 -1 0 2; 1 1 0 0 -1 0; 0 1 1 0 1 -1; 0 0 1 1 0 1];
r=[4;12;-4;0;0;0];
c=A\r;  %since b1=0 and b4=0:
c=[c(1); c(2); c(3); c(4); 0; c(5); c(6); 0];
n=length(xi);
for k=1:n,

if k<n, h(k)=(xi(k)+xi(k+1))/2;end
a(k)=c(k); b(k)=c(k+n); C(k)=yi(k);
P(k)=c(k)*(x-xi(k))^2+b(k)*(x-xi(k))+C(k);

end
h1=[xi(1):.01:h(1)];  h2=[h(1):.01:h(2)];
h3=[h(2):.01:h(3)];  h4=[h(3):.01:xi(4)];
plot(h1,subs(P(1),h1),h2,subs(P(2),h2),h3,…

subs(P(3),h3),h4,subs(P(4),h4),xi,yi,'*m')
legend('P1','P2','P3','P4','Data points',4);
xlabel('x'); ylabel('y');
grid on 0 0.5 1 1.5 2 2.5 3
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Disadvantages of Quadratic Spline Interpolation

Even though better than the “nodes=knots” approach,

 it requires more computational effort to solve the linear 
system as the number of data points increase

 the coefficient matrix does not have a nice structure 
(not tridiagonal or banded), which would have reduced 
the computational effort
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Ex: Piecewise Cubic Hermite Interpolation

This method can be used to preserve monotonicity of x-data
MATLAB® built-in function pchip
Define an interval xx, then the following commands provide in vector 
yy, the values of the interpolant at xx
yy = pchip(x,y,xx), or   yy = ppval(pchip(x,y),xx)

The pchip interpolating function, p(x), satisfies:
 On each subinterval,  x(k) <= x <= x(k+1),  p(x) is the cubic 
Hermite interpolant to the given values and certain slopes at the two 
endpoints
 Therefore, p(x) interpolates y, i.e., p(x(j)) = y(:,j), and the first 
derivative, p’(x), is continuous, but p’’(x) is probably not continuous; 
there may be jumps at x(j)
 The slopes at x(j) are chosen in such a way that p(x) is "shape 
preserving" and "respects monotonicity". This means that, on intervals 
where the data is monotonic, so is p(x); at points where the data have 
a local extremum, so does p(x)
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Ex: Piecewise Cubic Hermite Interpolation 
and Polyfit Interpolation

%Ex for piecewise cubic Hermite 
interpolation
xi=[-3 -2 -1 0 1 2 3];
yi=[-.8 -1 -.8 .3 .6 .65 .6];
x=[-3:.01:3];
hermitecoef=pchip(xi,yi);
yh=ppval(hermitecoef,x);
polynomialcoef=polyfit(xi,yi,(length(xi)-1));
yp=polyval(polynomialcoef,x);
plot(x,yh,x,yp,xi,yi,'*m')
legend('pchip','polyfit','Data points',4);
grid on
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Cubic Spline Interpolation 
(Piecewise Cubic Polynomial)

 Better than other methods

 Requires continuity of the function as well as its first and second 
derivatives at each of the “knots” (boundaries of the subintervals)

 For n knots, x1<x2<…<xi<…<xn, define n-1 subintervals

I1=[x1,x2], …,   Ii=[xi,xi+1], …, In-1=[xn-1,xn]

 Spacing between x values does not need to be uniform, so let

hi= xi+1-xi

 On Ii=[xi,xi+1], assume the cubic has the following form:

Pi(x) = ai(xi+1-x)3+ai+1(x-xi)
3+bi(xi+1-x)+ci(x-xi)

hi hi

 Continuity of the second derivative, Pi’’(x) is guaranteed by the form 
of this function
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Cubic Spline Interpolation 
(Piecewise Cubic Polynomial), continued

Pi(x) = ai(xi+1-x)3+ai+1(x-xi)
3+bi(xi+1-x)+ci(x-xi)

hi hi

 Knowing that at Pi(xi)=yi and Pi(xi+1)=yi+1 , bi and ci can be expressed in 
terms of ai: 

bi=(yi/hi)-aihi ,  ci=(yi+1/hi)-ai+1hi

 Using the condition for continuity of P’(x) at the knots, obtain n-2 equations 
for the n unknowns a1,…,an

For i=1,…,n-2

hiai+2(hi+hi+1)ai+1+hi+1ai+2=(yi+2-yi+1)/hi+1 - (yi+1-yi)/hi 

 There are several choices for the conditions on P’’(x) at the endpoints, 
which provide the additional conditions (equations) to determine all the 
unknowns
– Simplest choice: Natural cubic spline assigns P’’(x1)=0 and P’’(xn)=0, which 

makes a1=an=0
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Cubic Spline Interpolation 
(Piecewise Cubic Polynomial), continued

Pi(x) = ai(xi+1-x)3+ai+1(x-xi)
3+bi(xi+1-x)+ci(x-xi)

hi hi

 For n=6 the resulting equations are:

2(h1+h2)a2 + h2a3 = (y3-y2)/h2-(y2-
y1)/h1

h2a2 + 2(h2+h3)a3 +h3a4 = (y4-y3)/h3-(y3-
y2)/h2

h3a3 + 2(h3+h4)a4 + h5a5 = (y5-y4)/h4-(y4-
y3)/h3

h4a4 + 2(h4+h5)a5 = (y6-y5)/h5-(y5-
y4)/h4
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MATLAB® Ex: Spline

%Shows difficulty with high-order

%polynomial fit to the Runge function

syms a; 

f=(1+25*a.^2).^(-1);

xi=[-3 -2 -1 0 1 2 3];

yi=subs(f,xi);

yp=poly2sym(polyfit(xi,yi,6));

x=-3:0.01:3;

y=subs(f,x);

ys=spline(xi,yi,x);

plot(xi,yi,'*r',x,y,'m',x,subs(yp,x),'c',x,ys);

xlabel('x'); ylabel('y'); grid on

legend('Data points','Runge function','Polynomial 
fit','Spline fit');
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Comparing PCHIP with SPLINE

 The function s(x) supplied by SPLINE is constructed in 
exactly the same way, except that the slopes at the x(j) 
are chosen differently, namely to make even s’’(x) 
continuous. This has the following effects:
– SPLINE is smoother, i.e., s’’(x) is continuous
– SPLINE is more accurate if the data are values of a 

smooth function
– PCHIP has no overshoots and less oscillation if the 

data are not smooth
– PCHIP is less expensive to set up
– The two are equally expensive to evaluate
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Ex: Comparing PCHIP with SPLINE

x = -3:3;
y = [-1 -1 -1 0 1 1 1];
t = -3:.01:3;
plot(x,y,'o',t,[pchip(x,y,t); spline(x,y,t)])
legend('data','pchip','spline',4)

Ref: Example is adopted from MATLAB® Help
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Symbolic Plot: ezplot

Ezplot (f) plots the function f(x) over the default 
domain -2*PI < x < 2*PI

Ezplot(f) plots the implicitly defined function 
f(x,y)=0 over the default domain -
2*PI<x<2*PI and -2*PI<y<2*PI

ezplot(f,[A,B]) plots f(x) over A<x<B and 
f(x,y)=0 over A<x<B and A<y<B

Using a string to express the function:
>> ezplot('x^2 - 2*x + 1')

Using a function handle (in case there are other 
parameters, k,  in the function)

%function for ezplot
function  z = funplot(x,y,k)

z = x.^k - y.^k - 1;

>> for k= 1:10,
ezplot(@(x,y)funplot(x,y,k))
end
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Other Web Sources of Information

 http://planetmath.org/encyclopedia/LectureNotesOnPolynomialInter
polation.html

http://planetmath.org/encyclopedia/LectureNotesOnPolynomialInterpolation.html
http://planetmath.org/encyclopedia/LectureNotesOnPolynomialInterpolation.html

