Polynomials and
Interpolation

Selis Onel, PhD

Effort quotes

Success is a ladder you cannot climb with your hands in your
pockets. ~American Proverb

Be not afraid of going slowly; be afraid only of standing
still. ~Chinese Proverb

When I was young, I observed that nine out of ten things I
did were failures. So I did ten times more work. ~George
Bernard Shaw, Irish playwright, 1856-1950

Opportunity is missed by most people because it is dressed in
overalls and looks like work. ~7homas Edison, American
inventor and businessman, 184/-1931

All the so-called "secrets of success" will not work unless you
do. ~Author Unknown

SelisOnel©

http://en.wikipedia.org/wiki/File:GeorgeBernardShaw-Nobel.jpg
http://en.wikipedia.org/wiki/File:Thomas_Edison.jpg

When do we need data/function interpolation?

m Need to obtain estimates of function
values at other points

m Need to use the closed form
representation of the function as the basis
for other numerical techniques

SelisOnel© 3

Goals

m Fit a polynomial to values of a function at
discrete points to estimate the functional values
between the data points

m Derive numerical integration schemes by
integrating interpolation polynomials
— Power series
— Lagrange interpolation forms

m Differentiation and integration of interpolation
polynomials

m Interpolation polynomials using nonequispaced points —
Chebyshev nodes (roots of the Chebyshev polynomial of
the 1st kind)

SelisOnel© 4

Polynomials

m Power series form:
y=C,X"+C,X"14+...+C X+C .,
n : order of polynomial
C; . coefficients
m Cluster form:
y=((...((C;X+C,)X+C3)X...+C)X+C . 1)
m Factorized form:
y=Cy(X-r1)(X-1)...(X-1p)
.= roots of polynomial

SelisOnel©

Ex: Polynomials

m Power series form:
y=X*+2x3-7x2-8x+12

m Cluster form:
V=((((Xx+2)x-7)x-8)x+12)

m Factorized form:
y= (X-1)(X-2)(x+2)(x+3)

SelisOnel©

Polynomials

m A polynomial of order n has n roots:
— Multiple roots
— Complex roots
— Real roots

m If all ¢, are real, all the complex roots are
found in complex conjugate pairs

SelisOnel©

Polynomials in MATLAB®

% y=4x*+2x3-7x2+x+7=0
% p=1[42-717]
% roots: Finds the roots of a polynomial
>>p=[42-717]
p=4 2 -7 1 7
>> x=roots(p)
X =
0.93158276438947 + 0.60071610876714i
0.93158276438947 - 0.60071610876714i
-1.18158276438947 + 0.16770340687492i
-1.18158276438947 - 0.16770340687492i

SelisOnel©

Polynomials in MATLAB®

% y=4x*+2x3-7x2+x+7
% poly: Determines the coefficients of the original polynomial knowing

the roots.
%

>> r=[0.93158276438947 + 0.60071610876714i
0.93158276438947 - 0.60071610876714i
-1.18158276438947 + 0.1677034068/492i
-1.18158276438947 - 0.16770340687492i];

>> p=poly(r); p’

ans =
1.00000000000000 4
0.50000000000000 p)
-1.75000000000000 -7
0.25000000000000 1
1.74999999999999 7

SelisOnel© 9

Accuracy of Conversions

Conversions may not be accurate due to rounding errors in computations
— Roots
Roots —

« Multiple roots: Less accurate conversion

“Computing a highly multiple root is one of the most difficult problems for
numerical methods™

EX:

y=(x-5)° (This equation can be expanded symbolically using simple(y) or

>> expand(y)

y=X"5-25*x"44+250*x"3-1250*x~2+3125*x-3125

>> p=sym2poly(y)

p= 1 -25 250 -1250 3125 -3125
>> roots(p)
ans =

5.00482653710827 + 0.00350935026218i
5.00482653710827 - 0.00350935026218i
4.99815389493583 + 0.00567044756022i
4.99815389493583 - 0.00567044756022i
4.99403913591176

SelisOnel© 10

Accuracy of Conversions

Use the round and realfunctions to get integer
results in taking the roots of polynomials:

>>round(real(5.0048+0.0035i))
ans= 5

>>p= |[1 -25 250 -1250 3125 -3125]
>> r=round(real(roots(p))); '

dns =
5 5 5 5 5

SelisOnel©

11

Symbolic Calculations

>> SYms XYy zZ
>> sym2poly(4*xN4+2*xXN3-7* XN 2+x+7)
ans = 4 2 -7 1 7

>> poly2sym([4 2 -7 1 7])
ans = 4*¥XNG+2*¥XN3-7*¥XN2+X+7

>> fl=poly2sym([4 2 -7 1 7],sym('t))
fl = 4t 4+ 2%t 3-7*t N 2+t+7

>> horner(fl)
ans = (((4*t+2)*t-7)*t+1)*t+7

>> f2=x"5-25*x"N4+250*xN3-1250*xM2+3125*x-3125
>> factor(f2)
ans = (x-5)5

SelisOnel©

12

Symbolic Calculations to Numbers

Symbolic substitution:

subs(f): replaces all the variables in the symbolic expression f with
values obtained from the calling function, or the MATLAB
workspace

Ex:

>> f = (X-5)5;
>> X=6;

>> subs(f)
ans= 1

>> subs(f,7)
ans = 32

subs(f,old,new) replaces old with new in the symbolic expression f
>> Syms a

>> subs(a*x,a,5)

ans = 5*x

SelisOnel© 13

Polynomial Calculations in MATLAB®

Eolyval: Evaluates polynomials
X:

>> syms X

>> f=4* XN N4+ 2*¥XN3-7* XN 2+X+7;
>> p=sym2poly(f)

p= 4 2 -7 1 7

>> x=1;

>> fx=polyval(p,x)

fx= 7

>> fx=polyval(p,10)

fx = 41317

SelisOnel© 14

Polynomial Calculations in MATLAB®

polyvalm(p,x): Evaluates polynomial with matrix argument
- X must be a square matrix
X:

>> syms X; f=4*XN442*¥XNA3-7* XN 2+X+7;
>> p=sym2poly(f)
p= 4 2 -7 1 7

>> x=[110; 10 1];
>> fx=polyvalm(p,x)
fx = 42307 18090
18090 42307
>> fx=polyval(p,x)
fx= 7 41317
41317 7/

SelisOnel© 15

Polynomial Calculations in MATLAB®

polyfit: Fits polynomial to data
p= polyfit(x,y,n): Finds the coefficients of a polynomial p(x)
best in a least-squares sense
n: degree of polynomial
y: data
p: row vector of length n+1 (polynomial
coefficients In descending powers)

A polynomial of order n is determined uniquely if n+1 data
points (x,Y:), i=1,2,...,n+1 are given

SelisOnel© 16

Ex: Polynomial Calculations in MATLAB®

%Example for using the Polyfit function

x=[-2.4 -0.8 0.7 1.5 3.6];

y=[10 8 5 3 1.5];

figure(1)

plot(x,y,'*-"); grid on, xlabel('x"); ylabel('y");
n=length(x)-1;

an=polyfit(x,y,n); an,

a3=polyfit(x,y,3); a3,

a2=polyfit(x,y,2); a2,

fitn=poly2sym(an); fitn,

fit3=poly2sym(a3); fit3,

fit2=poly2sym(a2); fit2,

figure(2)

x1=-3:0.1:4;
plot(x,y,"*',x1,subs(fitn,x1),x1,subs(fit3,x1),x1,subs(fit2,x1));
xlabel('x"); ylabel('y"); grid on,

legend('data points’,'n=length(x)-1','n=3','n=2");

SelisOnel© 17

Ex: Polynomial Calculations in MATLAB®

Results of the Polyfit example in the command window:

an = 3.0510e-002 3.6803e-002 -3.5038e-001 -2.0526e+000 6.5885e+000
a3 = 9.2996e-002 -8.9465e-002 -2.2459e+000 6.3930e+000

a2 = 8.5356e-002 -1.6096e+000 5.9597e+000

HE
8793908579215767/288230376151711744*x~4+5303925840414337/144
115188075855872*x”"3-1577961026311739/4503599627370496*x/\ 2-
4621972395784683/2251799813685248*x+7418029510271909/11258999

06842624
fit3 =
6701046569015015/72057594037927936*x" 3-

6446656677519129/72057594037927936*x " 2-
5057276482062349/2251799813685248*x+3598950055733773/56294995

3421312
fit2 =

6150542143648561/72057594037927936*x" 2-
3624406419963885/2251799813685248*x+6710023340029315/11258999

06842624

SelisOnel© 18

Ex: Polynomial Calculations in MATLAB®

SelisOnel© 19

Integration of Polynomials

y=C;X"+C, X" 14+ +C X+C .4

C C C
LX™ 4+ 22X "+ +2 X +C
n+1 n 2

where ¢, IS an integration constant

X+C .,

jydx:

If the coefficients of the polynomial are given in a row
vector p:

m polyint: Integrates the polynomial analytically

m polyint(p,K) returns a polynomial representing the

integral of polynomial p, using a scalar constant of
integration K

m polyint(p) assumes a constant of integration K=0

SelisOnel©

20

Differentiation of Polynomials

y=C;X"+C,X" 14+ +C X+C .,

dy

~Z —nex"t+(n=Dc, X" +
I) (n-J)c,

If the coefficients of the polynomial are given in a row
vector p:

m polyder: Differentiates the polynomial

m polyder(p) returns the derivative of the polynomial whose
coefficients are the elements of vector p

m polyder(A,B) returns the derivative of polynomial A*B
'Q,D]=polyder(B,A) returns the numerator Q and

denominator D of the derivative of the
polynomial quotient B/A

SelisOnel© 21

Remember: Quotient Rule

Quotient rule, in calculus, is a method of finding the derivative of a
function f(x) that is the quotient of two other functions g(x) and h(x),
i.e., f{(x)=g(x)/h(x) where h(x)+0, for which derivatives exist

I f (x) = % then—f(x)_f() 9N =9GN) _ Q

[h(x)] o

Ex: Let f(x)=(x2-5)/(2x3+4x+8)

(%) = (2x)(2x% + 4x +8) — (x* —5)(6X° + 4)
- (2x° + 4x +8)°

- (x> =5) i
fo0= (2x% +4x+8)° e dx Fx)=

>> B=[10-5]; A=[2 04 8];

>> [q,d]=polyder(B,A)

q= -2 0 34 16 20

d= 4 0 16 32 16 64 64

SelisOnel© 22

http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Quotient

Ex: Differentiation of Polynomials

>> syms X; A=X"2+4+3*x+2; B=4*X"N44+2*¥XN3-xN2+3*X+5;
>> A=sym2poly(A), B=sym2poly(B)

A= 1 3 2

B= 4 2 -1 3 5

>> polyder(A,B)

ans= 24 /0 52 12 24 21

>> poly2sym(polyder(A,B))

ans = 24*xA54+70*xXN44+52F XN 3+12*%xN2+24*x+21

>[Q,D]=polyder(B,A)
8 38 4 6 -14 -9
1 6 13 12 4

>
Q
D

SelisOnel©

23

Product (Convolution) of Polynomials

Product of two polynomials of order m and order n
gives a polynomial of order d=m+n

V. = V.Y, =CX* +C,X .4+ C X +Cy

m conv: Convolution and polynomial multiplication
C = conv(A,B) convolves vectors A and B

The resulting vector is length: length(A)+length(B)-1

If A and B are vectors of polynomial coefficients, convolving
them is equivalent to multiplying the two polynomials

SelisOnel© 24

Ex: Convolution of Polynomials

>> PA=[3 5 -1 0]; PB=[4 -7 21];

>> A=poly2sym(PA)

A = 3*¥XN3+5*xN2-x

>> B=poly2sym(PB)

B = 4*xN2-7*x+21

>> PC=conv(PA,PB)

PC= 12 -1 24 112 -21 O

>> C=poly2sym(PC)

C = 12%XA5-XN44+24* XN 3+112*xN2-21*X

SelisOnel©

25

Division of Polynomials
Division of a polynomial y, by polynomial y, satisfies
ya = yq yb + yr

y, . quotient

y. : remainder upon division

deconv: Deconvolution and polynomial division
[Q,R] = deconv(A,B) deconvolves vector B out of vector A. The result

is returned in vector Q and the remainder in vector R such that
A = conv(B,Q) + R

If A and B are vectors of polynomial coefficients, deconvolution
is equivalent to polynomial division. The result of dividing A by
B is quotient Q and remainder R

SelisOnel© 26

Ex: Deconvolution of Polynomials

>> PA=[3 5 -1 0]; PB=[4 -7 21];

>> A=poly2sym(PA)

A = 3*¥XN3+5*xN2-x

>> B=poly2sym(PB)

B = 4*xN2-7*x+21

>> PC=deconv(PA,PB)

PC = 0.75000000000000 2.56250000000000
>> C=poly2sym(PC)

C = 3/4*x+41/16

SelisOnel©

27

Linear Interpolation

m It is a line fitted to two data points

m Basis for many numerical schemes:
— Integral of the linear interpolation: Trapezoidal Rule

— Gradient of the linear interpolation: An approximation
for the first derivative of the function

y, f(a)

Lagrange form

000 = 2= f @)+ =2 t (), or
b—a

b—a
Newton form

g(x)=w(x—a>+f<a>

SelisOnel© 28

Interpolation in MATLAB®): interpl

m X need to be monotonic

m Cubic interpolation requires that x
be equispaced

%interpl does 1-D interpolation
x=[012345];y=[3564 21];
xi=0:.1:8;

g=interp1(x,y,Xi,'linear');
gl=interp1(x,y,xi,'cubic');
g2=interp1(x,y,Xi,'spline');
plot(x,y,*:r',xi,g,'b",xi,g1,'g’,xi,g2,'m’);
xlabel('x"); ylabel('y");
legend('y(x)','linear’,'cubic’,'spline’,2);

SelisOnel© 29

Interpolation in MATLAB®): interpl

%Calculate material properties of Carbon
%Values adapted from S. Nakamura, 2nd ed., p.169

T=[300 400 500 600]’;

beta=[3330 2500 2000 1670]';
alpha=1074*[.2128 .3605 .5324 .7190]’;
Ti=[321 440 5717';
PropertyC=interp1(T,[beta,alpha], Ti,'linear");
[Ti PropertyC]

plot(T,alpha,"*-', T,beta,"*-', Ti,PropertyC(:,1),'0',Ti,PropertyC(:,2),'0")
legend('\alpha',"\beta','New \beta','New \alpha',2);
xlabel("Temperature, T');

ylabel('Thermal expansion \beta and diffusivity \alpha");

ans =
1.0e+003 *
0.3210 3.1557 2.4382
0.4400 2.3000 4.2926
0.5710 1.7657 6.6489

SelisOnel© 30

Polynomial Interpolation with Power Series

Suppose n+1 data points are given as:
X, X, .. X

n+1

Yi Yo - You
where

- X are abscissas of data points in increasing order

- the increment between X's is arbitrary

Polynomial of order n passing through n+1 data points may be written in power series form as
g(x)=cX"+c, X" +...+C

where c are coefficients

Setting g(x;)=y, for n+1 data points gives n+1 linear equations, i.e.,

Ac=y

To find c:

- Solve Ac=y, i.e. c=Aly, OR

- Use polyfit(x,y,n)

SelisOnel©

Ex: Polynomial Interpolation with Power Series
Unigue solution

Determine the polynomial that passes
through 3 data points:

(0,2), (1,1.5), (2,0.2)

Write the 2nd order polynomial as:
g(x)= C;x>+C,X+C5

Setting the polynomial at each data
point gives:

C,(0)2+c,(0)+c5=2
C,(1)*+c,(1)+c3=1.5
C,(2)?+c,(2)+c5=0.2

Solving the above gives:

c;=2, ¢,=-0.1, c;,=-0.4

l.e.

g(x)=-0.4x2-0.2x+2

SelisOnel©

>>A=[001;111;421]; y=[2;1.5;0.2];
>> c=Aly; C’
ans = -0.4000 -0.1000 2.0000
>> a=[0;1;2]; C=polyfit(a,y,2)

C= -0.4000 -0.1000 2.0000
>>C=poly2sym(C); xi=0:.1:2;

>> Y=subs(C,xi);

>> plot(a,y,™',xi,Y)

32

Lagrange Polynomial Interpolation

m The Lagrange form of the equation of a straight
line passing through two points

P(X)=(X-X3)Y1+(X-X1)Y>
(X1%3) (X37Xy)
m The Lagrange form of the parabola passing
through three points

P(X)=(X-X3)(X-X3)Y 1 +(X-X1)(X-X3)Y2+ (X-X1)(X-X3)Y3
(X1=X2)(X17X3) (Xp=X1)(Xp=X3) (X3-X1)(X3-X;)

SelisOnel© 33

Ex: Lagrange Interpolation Parabola

m The quadratic (2" order) polynomial for three
given data points

X y, (i=1:3)
- 4

0 2
2 8

m Substituting into the Lagrange formula gives:

P(X)=(x-0)(x-2)4+(x=(-2))(x-2)2+(x-(-2))(x-0)8
(-2-0)(-2-2) (0-(-2))(0-2) (2-(-2))(2-0)

Which simplifies to:
p(X)=x(x-2)4 + (x+2)(x-2)2 + x(x+2)8
8 -4 8
= X2+x+2

Ex. Adopted from L. V. Fausett, 2nd ed., p.279

SelisOnel© 34

Newton Polynomial Interpolation

The Newton form of the equation of a straight line passing
through two points

p(x)=a;+a,(X-X;)
m The Newton form of the equation of a parabola passing
through three points

p(X)=a;+ay(x-X;)+az(X-x;)(X-X,)

a1=Y; @=(YoY1)/ (X7 X1) @3=(Y3-Y2)/ (X3-%2)-(Y2-Y1)/ (XX4)
(X3-X1)

SelisOnel© 35

Ex: Newton Interpolation Parabola

m The quadratic (2" order) polynomial for three
given data points

Xi y; (i=1:3)
-2 4
0 2
2 8

m Substituting into the Newton formula gives:

P(x)=a;+ay(x-(-2))+a3(x-(-2))(x-0)

Where the coefficients are:

a;=y;=4 a,=(Y,7y1)/(Xx-%1)=(2-4)/(0-(-2))=-1

a3=[(Y5-Y2)/(X3-X2)-(Y2-Y1)/ (X3-X;)]
=[(8-2)/(2-0)-(2-4)/(0-(-2))]/(2-(-2))=1

p(X)=4-(x+2)+x(x+2)
= X2+x+2

Ex. Adopted from L. V. Fausett, 2nd ed., p.285
SelisOnel© 36

Advantages & Disadvantages

In many types of problems polynomial interpolation through moderate
number of data points works very poorly

m Lagrange form:
— Convenient when the values of x (independent variable) may be
the same for different values of the corresponding y
— Less convenient than the Newton form when
= additional data points may be added to the problem
= The appropriate degree of the interpolating polynomial is not known

m Newton form:

— Convenient when the spacing between the x data values is
constant

— More data points can be incorporated and a higher degree

polynomial can be generated by making use of the calculations for
the lower order polynomial

SelisOnel© 37

Difficulties of Polynomial Interpolation

Humped and flat data i

m number of data points is
moderately large

m the curve changes shape
significantly over the interval

Then, there is difficulty with
high-order polynomial
interpolation

%Shows difficulty with high-order
%polynomial fit to humped and flat data
xi=[-2-1.5-1-50.511.52];
yi=[000.871.87000];
p=poly2sym(polyfit(xi,yi,8));
x=-2:0.01:2;

plot(xi,yi,”*r',x,subs(p,x));

xlabel('x"); ylabel('y"); grid on

SelisOnel© 38

Difficulties of Polynomial Interpolation

Noisy Straight Line if

m number of data points is
moderately large

m Distance between x-values is
not even

Then, there is difficulty with
high-order polynomial
interpolation

%Shows difficulty with high-order

%polynomial fit to noisy straight line data
xi=[0.2.811.21.922.12.953];

yi=[.01 .22 .76 1.03 1.18 1.94 2.01 2.08 2.9 2.95];
p=poly2sym(polyfit(xi,yi,9));

x=-0:0.01:3;

plot(xi,yi,*r',x,subs(p,x));

xlabel('x"); ylabel('y"); grid on

SelisOnel© 39

Runge function
f(x)=(1+25x2)1

Using five equally spaced x values:

m Polynomial interpolation does
not give a good approximation

m Using more function values at

evenly spaced x-values is of no %Shows difficulty with high-order
use %polynomial fit to the Runge function
. epee : _— xi=[-1-50.51];
There is dlff_lcu_lty with h_lgh order Vi=[.0385 .1379 1 .1379 .0385];
polynomial interpolation p=poly2sym(polyfit(xi,yi,4));
x=-1:0.01:1;

f=(14+25*x.22).M(-1);

plot(xi,yi,"*r',x,subs(p,x),x,f,'m");

xlabel('x"); ylabel('y"); grid on

legend('Data points','Polynomial fit','Runge');
SelisOnel© 40

Difficulties of Polynomial Interpolation

Runge function
f(x)=(1+25x2)1

Using nine equally spaced x values:

m Interpolation polynomial (of
order 8) gives a relatively better
approximation compared to

polynomial for order 4, but still %Shows difficulty with high-order

overshoots the true function %polynomial fit to the Runge function
m Using more function values at xi=[-1-75-5-250.25.5.751];
evenly spaced x-values is of no yi=[.039 .066 .138 .39 1 .39 .138 .066 .039];
p=poly2sym(polyfit(xi,yi,8));
use x=-1:0.01:1;

There is difficulty with high-order f=(1+25*x.72).7(-1);

PR - plot(xi,yi,"*r',x,subs(p,x),x,f,'m");
polynomial interpolation xlabel(": ylabel(y'): grid on

legend('Data points','Polynomial fit','Runge’);
SelisOnel© 41

Difficulties of Polynomial Interpolation

Runge function
f(x)=(1+25x2)1

Using better distribution of the
data points, with more points
towards the ends of the interval
and fewer in the center:

m Gives better results

m Optimum interpolation
(minimizing maximum deviation
between the function and the
interpolating polynomial) is
achieved using zeros of the
Chebyshev polynomial as the
nodes

| + Data points

Polynomial fit
unge I

%Shows difficulty with high-order

%polynomial fit to the Runge function
xi=[-1-9-8-50.5.8.91];

yi=[.039 .047 .059 .138 1 .138 .059 .047 .039];
p=poly2sym(polyfit(xi,yi,8));

x=-1:0.01:1;

f=(1+25*x.22).~(-1);
plot(xi,yi,*r',x,subs(p,x),x,f,'m’);

xlabel('x"); ylabel('y"); grid on

legend('Data points','Polynomial fit','Runge’);

SelisOnel© 42

Chebyshev Polynomials ?

m Sturm-Liouville Boundary Value Problem

[Py T+[a(x)+Ar(x)]y=0, BC.1 asy(a)+a,y’(a)=0, BC.2 b;y(b)+b,y'(b)=0
has a special case where

a=-1, b=1, p(xX)=(1-x2)¥/2, q(x)=0, r(x)=(1-x2)-1/2 , A=n?

is called Chebyshev's Differential Equation defined as:

(1-x2)y""-xy’+n2y=0 where n is a real number.

The solutions of this equation are called Chebyshev Functions of degree n

m If n is @ non-negative integer, i.e., n=0,1,2,..., the Chebyshev Functions are often
referred to as Chebyshev Polynomials T,(x)

m T.(x) form a complete orthogonal set on the interval -1<x<1 w.r.t. r(x)
m Using Rodrigues’ Formula:

J1— X2 d"

(—1)"(2n—1)(2n—3)...1 dx"

1
(1-x*) 2, wheren=0,1,2,3,...

Tn (X) =

mFor more information, http://www.efunda.com/math/chebyshev/index.cfm

SelisOnel© 43

http://www.efunda.com/math/chebyshev/index.cfm

Chebyshev Polynomials ?

]
T ()=2XT 3 (X)-Ty2(%) , ‘ NS Ap“!//

Ref: http://www.efunda.com/math/chebyshev/index.cfm

To(X)=1 v .
T:(xX)=x-1 »Y.Y X
T,(x)=2x°-1 " A
T5(x)=4x3-3x L/ \

SelisOnel© 44

http://www.efunda.com/math/chebyshev/index.cfm
http://www.efunda.com/webM/plotting/plot2D.cfm?expr=ChebyshevT%5B5%2F2%2C%20x%5D&indvar=x&num1=-1&num2=1

Hermite Interpolation

m Allows to find a polynomial that matches both
the function values and some of the derivative
values at specified values of the independent
variable

m Simplest case: function values and first-
derivative values are given at each point

Ex: Data for the position and velocity of a vehicle
at several different times, i.e.

t (time), X (Position), v=dX/dt (Velocity)

SelisOnel©

45

Hermite Interpolation

m The cubic Hermite
polynomial p(x) has the
Interpolative properties:

P(X0)=Yo P(X1)=Y;
p'(X)=dy P'(Xx1)=d;
m Both the function values and their

derivatives are known at the
endpoints of the interval [xy,X1] .

m Hermite polynomials were studied by
the French Mathematician Charles
Hermite (1822-1901), and are
referred to as a "clamped cubic,"
where "clamped" refers to the slope
at the endpoints being fixed (see

m If f[x] is continuous on [Xx,,X;], there
exists a unique cubic polynomial

p[x]=ax3+bx2+cx+d such that
figure) P[X]=f[X,]

p[x; 1=f[x]

P'[Xo]=F"TXq]

/4 /4
Ref:http://math.fullerton.edu/mathews/n2003/HermitePolyMod.html P [Xl] =f [Xl]

SelisOnel© 46

Hermite Interpolation

® Summary

— Finds a polynomial that agrees with function values and their
derivatives at the node points

— Uses the Newton form and repeats it for the data points
— For cubic Hermite polynomial on [0,1] the basis functions are:

= y,=-0.5t3+t2-0.5t if given: f(0)=f, define: f,=f-2s,
= yp=1.5t3-2.5t+1 f(1)=f fa=2*Ts
" y=-1.5t3+2t2+0.5t F(0)=s,

= y4=0.5t3-0.5t2 F(1)=s,

Then the required interpolating function on [0,1] is y=f,y,+f Yy, +fYy Y4

m Additional Information

— The cubic Hermite polynomial is a generalization of both the Taylor
Polynomial and Lagrange polynomial, and it is referred to as an
'osculating polynomial.™

— Hermite polynomials can be generalized to higher degrees by using
gmre nodes {X,, Xy,..., Xt and extending the agreement at higher
SEINYES

p[x]=f®[x] for i=1,2,...,n and k=1,2,..m
Ref:http://math.fullerton.edu/mathews/n2003/HermitePolyMod.html

SelisOnel© 47

Piecewise Polynomial Interpolation

If there are large number of data points:

m Use piecewise polynomials instead of using a single
nolynomial (of high degree) to interpolate these
Doints

m A spline of degree m is a piecewise polynomial (of
degree m) with the maximum possible smoothness
at each of the points where the polynomials join

m A linear spline is continuous
m A quadratic spline has continuous first derivatives
m A cubic spline has continuous second derivatives

SelisOnel© 48

Piecewise Linear Interpolation

Simplest form of piecewise polynomial interpolation:

m Consider set of four data points:
(XIIYI)I (XZIYZ)I (X3IY3)I (X4IY4) with X1 <Xp<X3<X4

m Defining three subintervals of the x-axis gives:
I =[X1,%], L=[X5,X3], I3=[X3,X,]

Subintervals join at the knots, which are nodes
where the data values are given

SelisOnel© 49

Piecewise Linear Interpolation

Using a straight line on each subinterval, the data can be
interpolated using a piecewise linear function

A piecewise linear interpolating function is continuous, but
not smooth at the nodes.

SelisOnel© 50

Ex: Piecewise Linear Interpolation

%Shows linear piecewise interpolation

xi=[012 3]; yi=[014 3];

p=poly2sym(polyfit(xi,yi,3));

x=-1:0.01:3;

yp=subs(p,x);

ylin=interp1(xi,yi,x);

plot(xi,yi,”*r',x,yp, ", x,ylin,/m’);

xlabel('x"); ylabel('y'); grid on

legend('Data points’,'Polynomial
fit','Interp1 fit");

SelisOnel©

51

Piecewise Quadratic Interpolation

m Using a quadratic equation on each subinterval, the
functions and their derivatives can be made to agree at the

nodes

m For n+1 data points, there are 2n+n-1 equations:

— n intervals and 3 unknown constant coefficients for each quadratic
polynomial — 3*n unknowns

— 2 equations for each interval (quadratic equations written for each
of the end points of the intervals), i.e. (X;,y;) and (x,,y,) must satisfy
the quadratic equation on the first interval

— n-1 points at which the intervals meet where the derivatives of the
parabolas on the adjacent intervals are required to be continuous

m As a result, there are 3n unknowns and 3n-1 equations

= There are possible approaches for defining one additional
condition

SelisOnel© 52

Piecewise Quadratic Interpolation

I. "Knots"="Nodes” Approach

Define quadratic functions as

S(X)=Yy,+m(X—X) +u(x x.)° where m is the slope of the function at x,

2(X|+1 —X)

S, (X)=m. +(m. _, — ,)((X X)) S.(x.)=m., S.(x,)=m_ Thus, continuity is satisfied

We need to know continuity of functions at the nodes. In particular at X = x.., we need:

m
Si (X|+1) yl + M, (X|+1 =X) + (Xi+1 - Xi)2 = yi+1
2(i+1 i)

Simplifying gives: Thus, knowing ., other slopes can be found

SelisOnel© 53

Ex: Piecewise Quadratic Interpolation
(knots=nodes)

Data points: x=[0, 1, 2, 3] and y=[0, 1, 4, 3]
Set m;=0

M,=2(Y,Y1)/ (X%1)-m;=2(1-0)/(1-0)-0=2
M3=2(Y3-Y,)/(X3-%;)-m,=2(4-1)/(2-1)-2=4
M4=2(Y4Y3)/(X4%3)-M3=2(3-4)/(3-2)-4=-6 So,

SS(X)=y, +m.(X—x)+ Mg =M (x—x.)? for each interval gives:
2(Xi+1 - Xi)

S,(X)=0+0(x-0)+ ?1_0)(x—0)2:x2, 0<x<1

S, (X) =1+ 2(x~1) + ? (X=1)? =14+ 2(x—D)+ (x-1)2, 1<x<2

1)
S,(X) = 4+ 4(X—2)+ (2 4)(x 2) = 4+ 4(x—2)—5(x—2)°, 2<Xx<3

In this “knots”="nodes"” approach, the choice of slope at x; (m;=0) influences the
overall shape of the curve!

SelisOnel© 54

Piecewise Quadratic Interpolation

II. Alternative scheme to the knots=nodes approach

Take the knots as the midpoints between the nodes

(function values are given at the nodes)

For four data points: (xy,y1), (XuY2), (X3,¥3), (XaYa4)

Define the knots as: z;=X;, Z,=(X1+X%,)/2, Z5=(%+X3)/2, zZs,=(X3+X4)/2, Zs=X,
Spacing between consecutive data points:

hi=X>-X;, hy=X3%X,, h3=X4-%3

Then

Zz'X1=h1/2, Z3'X2=h2/2, Z4'X3=h3/2, 22'X2='h1/2, Z3'X3='h2/2, Z4'X4='h3/2

SelisOnel© 55

Piecewise Quadratic Interpolation

II. Alternative scheme to the knots=nodes approach (continued)

m Define the quadratic polynomials for each interval as:

P,(X)=a;(x-X,)?+b,(X-X,)+C;, X € [z1,2,]
P,(X)=a,(X-X,)?+b,(X-X,)+C,, X € [2,,25]
P3(X)=a3(x-X3)*+b5(x-X3)+C;, X € [z53,24]
Pi(X)=a4(X-X4)*+D4(x-X4)+C, X € [z42s]

m For x=x, — P, (x,)=C, an additional interpolation condition P (x,)=y, may be imposed, then
¢ =Yy fork=1,2,3,4

m Imposing continuity conditions on the polynomials at the interior nodes gives 3 equations:
P.(z,)=Py(z,): hy%a;-hy%a,+2hb,+2hb,=4(y,y;)

Py(z3)=Ps(z35): hy*ay-hy?az+2h;b,+2h,bs=4(ys-y,)

P3(z,)=P4(z4): hs%as-hs2a,+2hsbs+2hsb,=4(y,-y;)

SelisOnel© 56

Piecewise Quadratic Interpolation

II. Alternative scheme to the knots=nodes approach (continued)

m Imposing continuity conditions on the derivative of the polynomials
P.'(x)=2a,(x-x;)+b, at the interior nodes gives 3 more equations:
P,'(z,)=P,'(z,): hj;a;+h;a,+b,-b,=0

P,'(z3)=P5'(z5): h,a,+h,a;+b,-b;=0

P;'(z)=P,(z4): hsa;+h;a,+bs-b,=0

m 6 equations and 8 unknown coefficients (a;, a,, as, a4, by, b,, b3, b,)
m For P/ /(x)=2a,(x-x,)+b, — b; and b, can be found by imposing
conditions on the derivative values at the interval endpoints, x; and X,:

Setting P,'(x;)=0 gives b,;=0, and setting P,'(x,)=0 gives b,=0

SelisOnel©

57

Piecewise Quadratic Interpolation

II. Alternative scheme to the knots=nodes approach (continued)
m By setting the zero-slope conditions at the interval endpoints, for b,=0
and b,=0, the 3 quadratic and 3 derivative equations for the coefficients

become:

a;h?-ahy?+ 0 + 0 +0+2bh;+ 0+ 0 =4(y,-y,)
0 +ah2-ash,2+ 0 + 0+ 2b,h, + 2bsh, + 0 = 4(y5-y,)
0 + 0 +a3h2-ah2+0+ 0 + bg2h; + 0 = 4(y4-y5)

a;hy +ahy+ 0 + 0 +0- b, + 0 +0=0
0 +ah,+ash, + 0 +0+ b, - b; +0=0

0 + 0 +ash; +a,h; +0+ 0 + by - 0=0

SelisOnel©

58

Ex: Piecewise Quadratic Interpolation

m Consider data points (0,0), (1,1), (2,4), (3,3). Set up the linear system of
equations using piecewise quadratic interpolation with the knots placed at the
midpoints of the data intervals. Determine the coefficients of the linear
system. Write the interpolating piecewise polynomial for each data interval.

SelisOnel© 59

Ex: Piecewise Quadratic (Spline) Interpolation

%plotting the quadratic piecewise polynomial solution
format short
Syms X
xi=[0;1;2;3]; yi=[0;1;4;3];
A=[1-10020;01-1022;001-102;1100-10;01101-1;001101];
r=[4;12;-4;0;0;0];
c=A\r; %since b1=0 and b4=0:
c=[c(1); c(2); c(3); c(4); 0; c(5); c(6); O];
n=Ilength(xi);
for k=1:n,
if k<n, h(k)=(xi(k)+xi(k+1))/2;end
a(k)=c(k); b(k)=c(k+n); C(k)=yi(k);
P(K)=c(k)*(x-xi(k))2+b(k)*(x-xi(k))+C(k);
end
h1=[xi(1):.01:h(1)]; h2=[h(1):.01:h(2)];
h3=[h(2):.01:h(3)]; h4=[h(3):.01:xi(4)];
plot(h1,subs(P(1),h1),h2,subs(P(2),h2),h3,...

P1

subs(P(3),h3),h4,subs(P(4),h4),xi,yi,*m’") o
legend('P1','P2','P3','P4','Data points',4); P
xlabel('x'); ylabel('y"); * Datapoims

grid on

SelisOnel© 60

Disadvantages of Quadratic Spline Interpolation

Even though better than the “nodes=knots” approach,

m it requires more computational effort to solve the linear
system as the number of data points increase

m the coefficient matrix does not have a nice structure
(not tridiagonal or banded), which would have reduced

the computational effort

SelisOnel© 61

Ex: Piecewise Cubic Hermite Interpolation

mThis method can be used to preserve monotonicity of x-data
mMATLAB® built-in function pchip

Define an interval xx, then the following commands provide in vector
yy, the values of the interpolant at xx

yy = pchip(x,y,xx), or yy = ppval(pchip(x,y),xx)

The pchip interpolating function, p(x), satisfies:

= On each subinterval, x(k) <= x <= x(k+1), p(xP is the cubic
Hermite interpolant to the given values and certain slopes at the two
endpoints

m Therefore, p(x) interpolates y, i.e., p(x(j)) = m :,J), and the first
derivative, p (x), IS continuous, but p”(x IS probably not continuous;
there may be jumps at x(j)

m The slopes at X(j) are chosen in such a way that p(x) is "shape
preserving" and "respects monotonicity". This means that, on intervals
where the data is monotonic, so is p(x); at points where the data have
a local extremum, so does p(x)

SelisOnel© 62

Ex: Piecewise Cubic Hermite Interpolation
and Polyfit Interpolation

%EXx for piecewise cubic Hermite
interpolation

xi=[-3-2-10123];

yi=[-.8 -1 -.8 .3 .6 .65 .6];

x=[-3:.01:3];

hermitecoef=pchip(xi,yi);
yh=ppval(hermitecoef,x);
polynomialcoef=polyfit(xi,yi,(length(xi)-1));
yp=polyval(polynomialcoef,x);
plot(x,yh,x,yp,xi,yi,”*m’)
legend('pchip’,'polyfit','Data points',4);

grid on

SelisOnel© 63

Cubic Spline Interpolation
(Piecewise Cubic Polynomial)

m Better than other methods

m Requires continuity of the function as well as its first and second
derivatives at each of the “knots” (boundaries of the subintervals)

m For n knots, x;<x,<...<x;<...<X,, define n-1 subintervals
L=[X1,%X], .., L=[XiXiiql, s T =[Xno1,%0]
m Spacing between x values does not need to be uniform, so let
hi= Xi417%
m On [.=[x;,X1], assume the cubic has the following form:
Pi(X) = ai(Xiy1-X) >+ 1(X-%)> +bi(Xi4 1 -X) +Ci(X-X;)
h; h;
m Continuity of the second derivative, P,"(x) is guaranteed by the form
of this function

SelisOnel© 64

Cubic Spline Interpolation
(Piecewise Cubic Polynomial), continued

Pi(X) = ai(Xi17X)> 481 (X%:)> +bi(X11-X) +Ci(X-X)

hy h;

m Knowing that at P,(x;))=y; and P,(xi,1)=Yi+1 , b; and ¢; can be expressed in
terms of a;:

bi=(yi/h)-aih; , ¢=(Yir1/hp)-aih;

m Using the condition for continuity of P(x) at the knots, obtain n-2 equations
for the n unknowns a;,...,a,

Fori=1,...,n-2
ha+2(hi+h1)ai 1 Hhiai=Yi Yie)i - Yie Y/

m There are several choices for the conditions on P”(x) at the endpoints,
which provide the additional conditions (equations) to determine all the
unknowns

— Simplest choice: Natural cubic spline assigns P"(x;)=0 and P”(x,)=0, which
makes a;=a,=0

SelisOnel© 65

Cubic Spline Interpolation
(Piecewise Cubic Polynomial), continued

Pi(x) = ai(Xi417X)+ai41(X-%;)> +b;(Xi 1-X) +Ci(x-X))
h; h;
m For n=6 the resulting equations are:

2(h;+h,)a, + h,a; = (Y3-Y2)/hy=(Yy-

y1)/hy
h,a, + 2(h,+h;)a; +hsa, = (Y4-Y3)/h3-(ys5-

Y2)/h;
h;a; + 2(h3+hy)as + hsas = (Ys-y4)/hs-(Ys

y3)/h;
h,a, + 2(h4+hs)as = (Ye-Ys)/hs-(Ys-

Ya)/hy

SelisOnel©

66

MATLAB® Ex: Spline

%Shows difficulty with high-order

%polynomial fit to the Runge function /TN T+ oatmpens
i i ‘ i Runge function
SymS a; i i 3 Polynomial fit

Spline fit
|

f=(1+25*%a.”2).~(-1);

Xi=[-3-2-10123];

yi=subs(f,xi);

yp=poly2sym(polyfit(xi,yi,6));

x=-3:0.01:3;

y=subs(f,x);

ys=spline(xi,yi,x);

plot(xi,yi,™*r',x,y,'m',x,subs(yp,x),'c',x,ys);

xlabel('x"); ylabel('y"); grid on

legend('Data points','Runge function','Polynomial
fit','Spline fit");

SelisOnel© 67

Comparing PCHIP with SPLINE

m The function s(x) supplied by SPLINE is constructed in
exactly the same way, except that the slopes at the x(j)
are chosen differently, namely to make even s"(x)
continuous. This has the following effects:

— SPLINE is smoother, i.e., s"(x) is continuous

— SPLINE is more accurate if the data are values of a
smooth function

— PCHIP has no overshoots and less oscillation if the
data are not smooth

— PCHIP is less expensive to set up
— The two are equally expensive to evaluate

SelisOnel© 68

Ex: Comparing PCHIP with SPLINE

X =-3:3;
y=[-1-1-10111];
t =-3:.01:3;

plot(x,y,'0',t,[pchip(X,y,t); spline(x,y,t)])
legend('data’,'pchip’,'spline’,4)

Ref: Example is adopted from MATLAB® Help

SelisOnel© 69

Symbolic Plot: ezplot

Ezplot (f) plots the function f(x) over the default
domain -2*PI < x < 2*PI

Ezplot(f) plots the implicitly defined function
X,Y)=0 over the default domain -
2*PI<x<2*PI and -2*PI<y<2*PI

ezplot(f,[A,B]) plots f(x) over A<x<B and
f(x,y)=0 over A<x<B and A<y<B

Using a string to express the function:
>> ezplot('x"2 - 2*x + 1)

Using a function handle (in case there are other
parameters, k, in the function)

%function for ezplot
function z = funplot(x,y,k)
z=X"k-y."k-1;

>> for k= 1:10,

ezplot(@(x,y)funplot(x,y,k))
end

SelisOnel©

70

Other Web Sources of Information

m http://planetmath.org/encyclopedia/LectureNotesOnPolynomiallnter
polation.html

SelisOnel© 71

http://planetmath.org/encyclopedia/LectureNotesOnPolynomialInterpolation.html
http://planetmath.org/encyclopedia/LectureNotesOnPolynomialInterpolation.html

