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Quotes of the DayQuotes of the Day

Trust has to be earned, and should 
come only after the passage of time. 
– Arthur Ashe

Trust cannot be commanded; and yet it is 
also correct that the only one who earns 
trust is the one who is prepared to grant 
trust.
- Gustav Heinemann
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Numerical IntegrationNumerical Integration

 We know We know 
•• Definite integrals arise in many different areas, andDefinite integrals arise in many different areas, and

•• Fundamental Theorem of Calculus is a powerful tool for Fundamental Theorem of Calculus is a powerful tool for 
evaluating definite integralsevaluating definite integrals

 However However  it cannot always be appliedit cannot always be applied
•• There are some functions which do not have an antiThere are some functions which do not have an anti--

derivative, which can be expressed in terms of familiar derivative, which can be expressed in terms of familiar 
functions such as polynomials, exponentials and trigonometric functions such as polynomials, exponentials and trigonometric 
functions. functions. 

 Ex: Ex: exp(exp(--xx22)   )   is an important function since it is the is an important function since it is the 
probability density function for the normal distribution probability density function for the normal distribution 
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Numerical IntegrationNumerical Integration

 Allows approximate integration of functions that are analytically Allows approximate integration of functions that are analytically 
defined or given in tabulated formdefined or given in tabulated form

 Idea is to fit a polynomial to functional data points and integrate Idea is to fit a polynomial to functional data points and integrate 
itit

 The most straightforward numerical integration technique uses The most straightforward numerical integration technique uses 
the the NewtonNewton--CotesCotes rules (also called quadrature formulas), rules (also called quadrature formulas), 
which approximate a function at evenly spaced data points by which approximate a function at evenly spaced data points by 
various degree polynomialsvarious degree polynomials

 If the endpoints are tabulated, then the 2If the endpoints are tabulated, then the 2--point formula is called point formula is called 
the the Trapezoidal ruleTrapezoidal rule and the 3and the 3--point formula is called the point formula is called the 
Simpson’s ruleSimpson’s rule
•• Trapezoidal rule (linear)Trapezoidal rule (linear)
•• Simpson’s rule (parabolic)Simpson’s rule (parabolic)

 The 5The 5--point formula is called point formula is called Boole's ruleBoole's rule
 A generalization of the trapezoidal rule is A generalization of the trapezoidal rule is Romberg Romberg 

integrationintegration, which can yield accurate results for many fewer , which can yield accurate results for many fewer 
function evaluationsfunction evaluations

http://mathworld.wolfram.com/BoolesRule.html
http://mathworld.wolfram.com/RombergIntegration.html
http://mathworld.wolfram.com/RombergIntegration.html
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Trapezoidal RuleTrapezoidal Rule
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 Numerical integration method based on integrating Numerical integration method based on integrating 
the linear interpolation formulathe linear interpolation formula
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Trapezoidal RuleTrapezoidal Rule

 Numerical integration method based on Numerical integration method based on 
approximating the area under the graph y=f(x) by approximating the area under the graph y=f(x) by 
the trapezoid formed below:the trapezoid formed below:

This alone is not a good approximation, therefore …This alone is not a good approximation, therefore …
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Extended Trapezoidal RuleExtended Trapezoidal Rule

… break the region [a,b] into n equal smaller pieces … break the region [a,b] into n equal smaller pieces 
and apply the approximation on each piece. On the and apply the approximation on each piece. On the 
smaller pieces, the graph looks more and more like smaller pieces, the graph looks more and more like 
a straight line so the approximation should improve: a straight line so the approximation should improve: 
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Extended Trapezoidal RuleExtended Trapezoidal Rule

… the error E becomes… the error E becomes

ff’’’’ is the second derivative of f(x) is the second derivative of f(x) 
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Extended Trapezoidal Rule in MATLAB® Extended Trapezoidal Rule in MATLAB® 

… the extended trapezoidal rule can be written in … the extended trapezoidal rule can be written in 
MATLAB® as:MATLAB® as:

I=h*(sum(f)I=h*(sum(f)--0.5*(f(1)+f(length(f)))) 0.5*(f(1)+f(length(f)))) 

where where 

f is an array of ff is an array of fii for equispacedfor equispaced

abscissa points with abscissa points with 

interval size h interval size h 

f(a)

f(b)

a b

y

x

(xn,yn)

(x0,y0)
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Ex: Extended Trapezoidal Rule in MATLAB® Ex: Extended Trapezoidal Rule in MATLAB® 

I=h*(sum(f)I=h*(sum(f)--0.5*(f(1)+f(length(f))))0.5*(f(1)+f(length(f))))

An automobile of mass M=2000 kg is cruising at a speed of 30 An automobile of mass M=2000 kg is cruising at a speed of 30 
m/s. The engine is suddenly disengaged at t=0 s. How far does m/s. The engine is suddenly disengaged at t=0 s. How far does 
the car travel before the speed reduces to 15 m/s?the car travel before the speed reduces to 15 m/s?

The force equation for cruising after t=0 is given by:The force equation for cruising after t=0 is given by:

Acceleration force = Aerodynamic resistance + Rolling resistanceAcceleration force = Aerodynamic resistance + Rolling resistance

2000u(du/dx)=2000u(du/dx)=--8.1u8.1u22--12001200

where where 

u: velocity of car,  u: velocity of car,  

x: linear distance travelled after t=0x: linear distance travelled after t=0

(Ref: Nakamura, 2nd ed., pg.208)(Ref: Nakamura, 2nd ed., pg.208)
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Ex: Extended Trapezoidal Rule in MATLAB® Ex: Extended Trapezoidal Rule in MATLAB® 

Acceleration force = Aerodynamic resistance + Rolling resistanceAcceleration force = Aerodynamic resistance + Rolling resistance

2000u(du/dx)=2000u(du/dx)=--8.1u8.1u22--12001200

Rewriting this equation gives: Rewriting this equation gives: 
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Ex: Extended Trapezoidal Rule in MATLAB® Ex: Extended Trapezoidal Rule in MATLAB® 

Acceleration force = Aerodynamic resistance + Rolling resistanceAcceleration force = Aerodynamic resistance + Rolling resistance

2000u(du/dx)=2000u(du/dx)=--8.1u8.1u22--12001200

%Adopted from Nakamura, 2nd ed., pg.209

clear,

npoints=16;   i=1:npoints;

h=(30-15)/(npoints-1);

u=15+(i-1)*h;

f=2000*u./(8.1*u.^2+1200);

I=h*(sum(f)-0.5*(f(1)+f(length(f))))

I =    1.275040414919126e+002
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Trapezoidal RuleTrapezoidal Rule

Trapezoidal Rule provides a reasonable Trapezoidal Rule provides a reasonable 
approximation to a definite integral if large approximation to a definite integral if large 
number of steps are takennumber of steps are taken

The error in the approximation originates in the fact The error in the approximation originates in the fact 
that general graphs are curved and Trapezoidal that general graphs are curved and Trapezoidal 
rule approximates them by straight linesrule approximates them by straight lines

An approximation, which takes into account the An approximation, which takes into account the 
curvature of the graph, can also be formed: the curvature of the graph, can also be formed: the 
result is a more efficient approximation called result is a more efficient approximation called 
Simpson's Rule.Simpson's Rule.
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Simpson’s RuleSimpson’s Rule

 Simpson's Rule is formed by approximating a Simpson's Rule is formed by approximating a 
general curve by a parabolageneral curve by a parabola

 In this picture, the red graph is a parabola which In this picture, the red graph is a parabola which 
approximates the yellow graphapproximates the yellow graph

 Remember: A parabola is the graph of a Remember: A parabola is the graph of a 
quadratic functionquadratic function

y=axy=ax22+bx+c +bx+c 

To find a, b and cTo find a, b and c

Three points on the functionThree points on the function

(x(x00,y,y00), (x), (x11,y,y11), (x), (x22,y,y22) ) 

need to be used to fix the need to be used to fix the 

parabolaparabola
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f(b)

a b

y

x

(x2,y2)

(x0,y0)

(x1,y1)
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Simpson’s RuleSimpson’s Rule

Approximating the function to be integrated by a Approximating the function to be integrated by a 
quadratic polynomial gives the Basic Simpson’s rulequadratic polynomial gives the Basic Simpson’s rule

For y=axFor y=ax22+bx+c and (x+bx+c and (x00,y,y00), (x), (x11,y,y11), (x), (x22,y,y22) ) 
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Composite Simpson’s RuleComposite Simpson’s Rule

Apply the idea of subdivision of intervals into n Apply the idea of subdivision of intervals into n 
even number of intervalseven number of intervals
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Ex: Approximating Pi/4Ex: Approximating Pi/4
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The exact solution for Pi/4 gives 0.78539816339745
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Ex: Approximating Pi/4, TrapezoidEx: Approximating Pi/4, Trapezoid
>> I=funtrapezoid(inline('(1+x^2)^-1'),0,1,4)

I =   0.78279411764706

function I=funtrapezoid(f,a,b,n)

%Finds integral of a function f on the interval [a,b]

%with n subintervals

%Adopted from Fausett 2nd Ed., pg.418

h=(b-a)/n;       S=f(a);

for i=1:n-1,

x(i)=a+h*i;  S=S+2*f(x(i));

end

S=S+f(b);        I=h*S/2;
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Ex: Approximating Pi/4, Composite SimpsonEx: Approximating Pi/4, Composite Simpson

>> I=funsimpson(inline('(1+x^2)^-1'),0,1,4)
I =   0.78539215686274

function I=funsimpson(f,a,b,n)
%Finds integral of a function f on the interval [a,b]
%with n subintervals (n must be even)
%Adopted from Fausett 2nd Ed., pg.418
h=(b-a)/n;         S=feval(f,a);
for i=1:2:n-1,     x(i)=a+h*i;  S=S+4*feval(f,x(i));
end
for i=2:2:n-2,    x(i)=a+h*i;   S=S+2*feval(f,x(i));
end
S=S+feval(f,b);  I=h*S/3;
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NewtonNewton--Cotes Open FormulasCotes Open Formulas

Simplest examples of Newton-Cotes closed formulas 
Trapezoid and Simpson rules: Use function evaluations at 
the end points of the interval of integration

The Midpoint Rule

If we use function evaluations at points within the interval, 
say xm=(a+b)/2, then we get the midpoint rule:

3
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Ex: The Midpoint ruleEx: The Midpoint rule

0

0

sin( )
Using the midpoint rule to to approximate the integral:   

sin( ) sin( / 2) 1
gives:               2

/ 2 / 2
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DerivativesDerivatives
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Numerical differentiation: Finding estimates for the derivative 
(slope) of a function by evaluating the function at only a set of 
discrete points

Simplest difference formulas to approximate the derivative of a 
function are based on using a straight line to interpolate the 
given data (i.e. using two data-points) 
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Numerical DifferentiationNumerical Differentiation

Numerical differentiation is more difficult than numerical 
integration: Why?
 Small changes in a function can create large changes in its 
slope

If data to be differentiated are obtained experimentally, the 
best approach is to:

- Find a least-squares fit to the data Use MATLAB®’s 
function polyfit(x,y,n) to find the coefficients of the 
polynomial of degree n that best fits the data in the least-
squares sense

- Then differentiate the approximating function  
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MATLAB® Commands: DifferentiationMATLAB® Commands: Differentiation

P=polyfit(x,y,n)  

%Finds the coefficients of the polynomial of degree n 
that best fits the data in the least squares sense

polyval(P,x)

%evaluates the polynomial P at x

polyder(P)

%differentiates polynomial P

diff(x)

%forward or backward difference approximation to 
dy/dx
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MATLAB® Commands: IntegrationMATLAB® Commands: Integration

trapz(x,y)

%uses composite trapezoid rule for the data points 
given in vectors x and y (with unit spacing)

To compute the integral for spacing other than one, 
multiply Z by the spacing increment 

Input Y can be complex

 If Y is a vector, trapz(Y) is the integral of Y. 

 If Y is a matrix,trapz(Y) is a row vector with the 
integral over each column. 

 If Y is a multidimensional array, trapz(Y) works 
across the first nonsingleton dimension.
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Ex: trapzEx: trapz

On a uniformly spaced grid:

>> X1 = 0:pi/100:pi; Y1 = sin(X1); 

>> Z1=trapz(X1,Y1), Z2= pi/100*trapz(Y1) 

Z1 =   1.99983550388744

Z2 =   1.99983550388744

Creating a nonuniformly spaced grid:

>> X = sort(rand(1,101)*pi); Y = sin(X);

>> Z = trapz(X,Y);

Z =   1.99806848802083

The result is not as accurate as the uniformly 
spaced grid
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MATLAB® Commands: IntegrationMATLAB® Commands: Integration

quad Use adaptive Simpson quadrature

quadl Use adaptive Lobatto quadrature

quadv Vectorized quadrature

dblquad Numerically evaluate double integral

triplequad Numerically evaluate triple integral
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MATLAB® Commands: IntegrationMATLAB® Commands: Integration

Q=quad(‘f’,xmin,xmax)

Q=quadl(‘f’,xmin,xmax)

%evaluate function f at whatever points are 
necessary to achieve accurate results

‘f’ is a string containing the name of the function
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Ex: QuadEx: Quad
% using quad or quadl to 

% compute the length of a curve

t = 0:0.1:3*pi;

% plot of the parameterizing 

% equations gives:

plot3(sin(2*t),cos(t),t)

% The arc length formula says the 

% length of the curve is the integral 

% of the norm of the derivatives of 

% the parameterized equations

f = inline('sqrt(4*cos(2*t).^2+sin(t).^2+1)');

% Integrating this function with 

% a call to quad 

len = quad(f,0,3*pi)

len =  17.22203188956838
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MATLAB® Commands: Double IntegrationMATLAB® Commands: Double Integration

q = dblquad(fun,xmin,xmax,ymin,ymax)

q = dblquad(fun,xmin,xmax,ymin,ymax,tol)

q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method)

 calls the quad function to evaluate the double 
integral fun(x,y) over the rectangle xmin <= x <= 
xmax, ymin <= y <= ymax

 fun is a function handle

 method specifies the quadrature function, instead of 
the default quad. Valid values for method are 
@quadl or the function handle of a user-defined 
quadrature method that has the same calling 
sequence as quad and quadl
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MATLAB® Commands: Double IntegrationMATLAB® Commands: Double Integration

>>dblquad(@(x,y)sqrt(1-
(x.^2+y.^2)).*(x.^2+y.^2<=1),-1,1,-1,1)

ans =    2.0944

>> F = @(x,y)y*sin(x)+x*cos(y);

>>Q = dblquad(F,pi,2*pi,0,pi)

Q =   -9.8696


