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“ill-conditioned” Problems

Some linear problems are solvable but solutions 
become inaccurate due to:

 Approximate empirical data

 Floating point numbers approximation of real 

numbers

 Small rounding errors

 Small changes in coefficients

Small change in data  large change in solution
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“ill-conditioned” Problems

Ex:  

Small changes in coefficients  large changes in solution
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“ill-conditioned” Problems

Ex: Two lines (functions) are 

nearly parallel

If the intercepts with the vertical 

axis vary just a little, then the 

intersection will vary a lot

Hence, the solution of the 

corresponding 2D system will 

vary a lot

Ref: http://www2.krellinst.org/UCES/archive/classes/CNA/dir1.7/uces1.7.html

AB
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“ill-conditioned” Problems
Ex: Function approximation

To determine the coefficients in an nth order polynomial:

 Set the polynomial at distinct points equal to the function evaluated at 
these points

Ex:  Set a quadratic polynomial near points x1, x2 and x3 , 

then find the three coefficients of 

P(x) = a0 + a1 x + a2 x2

Solve the system associated with P(xi ) = f(xi ) for i = 1,2,3. 

Then, the matrix form is 

 If two of the interpolation points are close, then the computed solution 
may have significant error
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“ill-conditioned” Problems

How can we reduce the errors?

Using Gauss elimination to solve the problem

1.  Increase the precision of the floating point numbers

2.  Avoid division by small numbers

Use row pivoting in the forward sweep of the Gaussian 
elimination algorithm

Check the “condition” of the coefficient matrix
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Ex: ill-conditioned system

Use Gaussian elimination algorithm to solve the 

following linear system 

1.  Use real numbers: Add (-10d)(row 1) to (row 2) to get 

for d=4, solve for x2 and x1: x2 = 3.9997/1.9999

x1 = (4 - 2(3.9997/1.9999))104

=2(2(1.9999) - 3.9997))/1.9999 

104 

= 2/1.9999

2.  Use floating point numbers with 3 digits

3.  Interchange rows of the system to avoid division by a small number

Ref:  http://www2.krellinst.org/UCES/archive/classes/CNA/dir1.7/uces1.7.html
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ill-conditioned system

If computing precision is high, ill-conditioned problems can be solved 

accurately

Check an ill-conditioned problem, if

 det(A)det((A-1)) deviates from 1

 (A-1)-1 is different from A

 AA-1 deviates from the identity matrix

 A-1(A-1)-1) deviates from the identity matrix more significantly than AA-1

Double-precision solves the problems in mildly ill-conditioned problems, so 

above problems may disappear with double-precision
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Ex: Hilbert matrices

Very difficult to invert numerically, 
very ill-conditioned !

Defined by A = [ai,i]  where ai,i = 
1/(i+j-1),  i,j = 1,2,…n 

4x4 Hilbert Matrix

% Hilbert.m Compute the condition 
number  and det(A)det(inv(A)) for 
the 5x5 and 14x14

% Hilbert matrices

clear

for n=5:14

for i=1:n,

for j=1:n,

a(i,j)=1/(i+j-1);

end

end

c=cond(a);

d=det(a)*det(a^(-1));

fprintf('n=%3.0f   cond(a)=%e  
det*det=%e  \n', n,c,d)

end

1 1 1
1

2 3 4

1 1 1 1

2 3 4 5

1 1 1 1

3 4 5 6

1 1 1 1

4 5 6 7

A
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Ex: Hilbert matrices
n=  5   cond(a)=4.766073e+005  det*det=1.000000e+000  

n=  6   cond(a)=1.495106e+007  det*det=1.000000e+000  

n=  7   cond(a)=4.753674e+008  det*det=1.000000e+000  

n=  8   cond(a)=1.525758e+010  det*det=1.000000e+000  

n=  9   cond(a)=4.931538e+011  det*det=1.000000e+000  

n= 10   cond(a)=1.602501e+013  det*det=1.000013e+000  

n= 11   cond(a)=5.223947e+014  det*det=1.000118e+000  

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 2.570030e-017.

> In Hilbert at 11 n= 12   cond(a)=1.632619e+016  det*det=1.019081e+000  

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.342113e-018.

> In Hilbert at 11 n= 13   cond(a)=1.316877e+018  det*det=1.211551e+000  

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 5.393028e-019.

> In Hilbert at 11 n= 14   cond(a)=2.376739e+017  det*det=2.039773e-001 
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How to find if a matrix is ill-conditioned

Condition number of matrix A

An ill-conditioned problem generates large errors in 

the computed solution

Let the exact solution be x where Ax = d 

Let X be the computed solution where 

AX - d = -r  nonzero residual

Relative error is given by the ratio of the "size" of x -

X and the "size" of x 

In ill-conditioned problem this ratio is large!
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How to find if a matrix is ill-conditioned

Condition number of matrix A

In order to be more precise about the "size" we define the 

max norm of a vector, and it is analogous to the absolute 

value of a single real number

Cond(A) = ||A|| ||A-1||,  where ||A|| = Norm of matrix A

Euclidean norm
1/ 2

2

,

,

2 2

1 2Euclidean Norm is the Length of a vector x :    ...

i j

i j

A A

x x x
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How to find if a matrix is ill-conditioned

Basic Properties.

1. ||x|| ≥ 0 and  ||x|| = 0 if and only if x = 0. 

2.    ||x+y|| ≤ ||x|| + ||y||

3. ||α x|| ≤ |α| ||x||  where α is real

4. ||Ax|| ≤ ||A|| ||x||   where ||A|| ≡ max ∑i|ai,j|  (Natural matrix norm)

Matrix Norm:
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Matrix Eigenvalues and Eigenvectors

Eigenvalues are important in:

 Analysis of convergence characteristics of iterative 
methods for solving linear systems

 Determining the condition of a matrix → Ratio of the 
largest to the smallest eigenvalue of a matrix (if 
condition is large, matrix is ill-conditioned)

 Solving sets of linear differential equations

 Finding physical characteristics of a structure (principal 
stress, moments of inertia, …)
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Eigenvalue (Characteristic-Value) Problems

Given: A X = C A is a n by n matrix of coefficients

If C ≠ 0 and det(A) ≠ 0
This is a necessary condition for a unique

solution

If C ≠ 0 and det(A) = 0

Either there is a family of solutions 

(rank(A)<n) or there is no solution (rank(A)>n) 

due to inconsistency (or incompatibility)

If C = 0 and det(A) ≠ 0
Trivial solution, i.e., X = 0

If C = 0 and det(A) = 0
There is a family of solutions
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Eigenvalue (Characteristic-Value) Problems

Given: A X = λ X  or

(A – λ I) X = 0

A is a n by n matrix of coefficients

I is the identity matrix

Set B = (A – λ I) 
The problem becomes B X = 0

This is the same as the A X = C = 0 case 

Remember for 

A X = C = 0 

Either, there is a family of solutions if 

det (A – λ I) = 0

or there is only the trivial solution X = 0

det (A – λ I) = 0
Gives the non-trivial solution, i.e., X ≠ 0

Nontrivial solution: Eigenvalues λi

Every eigenvalue λi

Gives a solution vector, Xi called the 

eigenvector
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Nonhomogeneous Set of Equations

 A x = y : Nonhomogeneous set of n equations 

If the n equations are linearly independent, i.e., 

det(A)≠0 → unique solution

(one set of x values that makes the equations balance)

 To solve a non-homogeneous set of linear equations, use 

 Elimination methods such  as Gauss or Gauss-Jordan

 Matrix inverse 

 Cramer‟s rule

 Iterative methods such as Jacobi, Gauss-Siedel, … 
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Homogeneous Set of Equations
 A x = 0 : Homogeneous set of n equations

 Nontrivial solutions (solutions other than all x=0) are 

possible but generally not unique

 Simultaneous equations establish relationships among x‟s 

that can be satisfied by various combinations of values. 

Eigenvalue problems are typically of the general form:

where λ is an unknown parameter (eigenvalue or 

characteristic value)

A solution x or [x] for such a system is the set of eigenvectors

11 1 12 2 1

21 1 22 2 2

1 1 2 2

( ) ... 0

( ) ... 0

 ....          ....       ....       ....        ....

... ( ) 0

n n

n n

n n nn n

A x A x A x

A x A x A x

A x A x A x







    

    

    

     

    

0

det 0

A I x

where

A I
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Homogeneous Set of Equations r<n

 Ax=0 : Homogeneous set of n equations 

If det(A)≠0, the unique solution is the trivial solution x=0. 

If det(A)=0, there exists nontrivial solutions (solutions other than x=0),

i.e.,  r=rank (A) where r<n

This means there are:

 r independent equations 

 r unknowns that can be evaluated independently

 (n-r) unknowns that must be chosen arbitrarily

If nonzero values are chosen for (n-r) unknowns:

Homogeneous set → Nonhomogeneous set of order n

 Use Gauss or Gauss-Jordan elimination to:

 Solve non-homogeneous set

 Solve homogeneous set first to determine number of independent 
equations r (rank of A) , then solve set of r nonhomogeneous 
independent equations to evaluate r unknowns
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Homogeneous Set of Equations r<n
(A - λIn)x= 0 is a homogeneous linear system with coefficient matrix A - λIn
 Eigenvector x≠0, so find a nontrivial solution to the linear system 

(A - λIn)x = 0

 After Gauss elimination (A - λIn) must contain a zero row 

i.e. matrix A - λIn must be singular, so 
1. det(A - λIn) = 0 → characteristic equation of matrix A and solving it for λ 

gives the eigenvalues of A

2. c(λ) = det(A - λIn) → the characteristic polynomial of matrix A roots of the 
characteristic polynomial are the eigenvalues 

 n eigenvalues of A are λ1, λ2, ..., λn : the corresponding eigenvectors are 
nontrivial solutions of the homogeneous linear system

(A - λiIn)x = 0 for i = 1,2, ..., n

Summary of computational approach for determining eigen-pairs (λ,x) as a 
two-step procedure:

1. To find the eigenvalues of A compute the roots of the characteristic 
equation det(A - λIn) = 0

2. To find an eigenvector corresponding to an eigenvalue λi, compute a 
nontrivial solution to the homogeneous linear system (A - λiIn)x = 0
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Homogeneous Set of Equations r<n

 Ax=0 : Homogeneous set of linear algebraic equations 

Special case of Ax=0 for:

 Vibrating systems

 Structure analysis

 Electric circuit system analysis

 Solution and stability analysis of ordinary differential 

equations 

System of equations has the form:  A x = λ x

λ: Eigenvalue (characteristic value) of matrix A

x: Eigenvector (characteristic vector) corresponding to λ
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Linear Differential Equations x‟ = Ax

A :  coefficient matrix with n distinct real eigenvalues

x  : column vector of unknown functions of time 

x‟ : dx/dt

x‟ = Ax+f ,   x‟ = Ax+f(t)

Applications: Time dependent mixing, heat 
conduction

There should be n linearly independent 
homogeneous solutions formed by the 
eigenvectors xj and eigenvalues λj
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Matrix Eigenvalues and Eigenvectors

 If (A- λ)x=0 then let Ax = λ x, where

A : n-by-n square matrix

x  : column vector of size n

λ : a number

Then both the LHS and RHS of Ax = λx  is a 

column vector of size n.

 Let Ax = λ x = 0 for  A≠0

 Which x would satisfy Ax = 0 for λ≠0 ? 
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Matrix Eigenvalues and Eigenvectors

 Let Ax = λ x = 0 for  A≠0 and λ≠0

Eigenvalues and  Eigenvectors of A

 Rearranging Ax = λ x = 0 gives:

(A- λ I )x = 0

where I is an n-by-n identity matrix and λ·I 

makes a matrix the same size as A.

 (A- λ I )x = 0 is a system of homogeneous 

equations where

det(A- λ I )= 0 for λ≠0
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Characteristic Matrix and Characteristic Equation

For a linearly independent system

The nonsingular characteristic matrix A can be represented as

11 1 12 2 1

21 1 22 2 2

1 1 2 2

( ) ... 0

( ) ... 0

 ....          ....       ....       ....        ....

... ( ) 0

n n

n n

n n nn n

A x A x A x

A x A x A x

A x A x A x







    

    

    

     

    

0

det 0

A I x

where

A I





   

   

11 12 1

21 22 2

1 2
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1 2

1 2

...

...
det 0

... ... ... ...

...

The determiant can be expanded to yield a polynomial of n  degree

... 0 ,       where ( )

n

n

n n nn

n n n

n i ij

A A A

A A A
A I

A A A

f A
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Characteristic Equation (Polynomial)

 f(λ) = det(A- I ) →Characteristic polynomial of matrix A

f(λ) : polynomial of λ of order n

 Has n roots → eigenvalues of A

 Roots may be real distinct, real repeated, or complex 

depending on A

 A nonsingular real symmetric matrix of order n has n real 

nonzero eigen-values and n linearly independent  

eigenvectors

 Eigenvectors of a real symmetric matrix are orthogonal to 

each other

1 2

1 2( ) ... 0 ,  where ( )n n n

n i ijf f A              
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Ex: Singular real symmetric matrix

2

1 2

1

2 1
Find the eigenvalues and eigenvectors for Ax=0, where 

1 2

2 1
Calculating eigenvalues: det( ) 0 det = 4 3,    where 1  and  3

1 2

Inserting 1  in det( ) gives:

2 1 1

1 2 1

A

A I

A I


    



 

 
  
 

 
       

 

 

 




1

1 2 1 2

2

2

0
  which can be written as 1 1 0,   . .,    

0

5 0.1
Infinite number of eigenvectors would satisfy this condition, such as  , ,...

5 0.1

Inserting 3  in det(

x
x x i e x x

x

A I 

   
         

   

   
   
    

 

1

1 2 1 2 1 2

2

) gives: 

2 3 1 0
  which can be written as -1 1 0 and 1 -1 0,    . .,    

1 2 3 0

5 0.1
Infinite number of eigenvectors would satisfy this condition, such as  ,

5 0.1

x
x x x x i e x x

x

     
            

    

  
 
 

,...
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Ex Contd.: Orthogonal Eigenvectors

-1

1 2 1 1

1 2 2 2

For eigenvectors to have the orthonormal property, they must satisfy QQ'=I

Remember: An orthogonal matrix is whose transpose is its inverse, i.e., Q'=Q

For example:

 QQ'
c c c c

c c c c

  
   

  

2 2 2 2

1 2 1 2

2 2 2 2

1 2 1 2

2 2 2 2 2 2

1 2 1 2 1 2

1 1 2 2

1 0

0 1

=1  and  - = 0   gives    =0.5

1 1 1 1
Accordingly,  or   and     or  

2 2 2 2

Consequently, for this problem, various Q's can 

c c c c
I

c c c c

c c c c c c

c c c c

     
    

     

  

     

be obtained, such as

1 1

2 2
Q=

1 1

2 2
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Ex: Eigenvalues in MATLAB® 

>> A=[2 1; 1 2]

A =

2     1

1     2

>> det(A)

ans =     3

>> eig(A)

ans =

1

3

>> [Q,d]=eig(A)

Q =

-0.70710678118655   0.70710678118655

0.70710678118655   0.70710678118655

d =

1     0

0     3

eig(A) : Gives the eigenvalues    
of matrix A in vector 

[Q,d]=eig(A): Gives Q and d

Q : Square matrix of the 
eigenvectors of A

d  : Square diagonal matrix 
whose diagonal has 
the eigenvalues of A   
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Ex: Electric circuit system analysis 

>> A=[1 0; -1 -2]

A =

1     0

-1    -2

>> eig(A)

ans =

-2

1

% This circuit is not stable.

Use eig(A) in MATLAB® to determine the stability of electric circuits. 

For the stability of an electric circuit, the necessary and sufficient 

condition is: eigenvalues of the system should be on the left hand side 

of the complex number axis and, if an imaginary axis exists, then the 

eigenvalues on the imaginary axis should not have any multiplicates.  

1 1

2 2

Determine the stability of an electric 

circuit with the following equation:

( ) ( )1 0 1
( )

( ) ( )1 2 0

V t V td
U t

i t i tdt
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Ex: Vibrating Spring-Mass System

m1

m2

k1

k2

 

 

2
2 1 21

1 1 1 2 2 12
1 1 1 1

2
2 22 22

2 2 2 12
2 2

1 2

wt

1 1

Governing equations:

m
m m ( ) ''

( ) ''
m

m m

What is ( ) and ( ) ?

Assume a solution of the form: ( ) e

k k kd y
k y k y y

y t ydt

y t yk kd y
k y y

dt

y t y t

y t x

                  
           

 wt

2 2

1 2

2 1 2

1 1 1 12

2 22 2

2 2

 and ( ) e ,                     

where  and  are independent of t.

Then the governing quations become:

m m

m m

Note that this is in the same form

y t x

x x

k k k

x x
w

x xk k



 
 

        
     
 

2 as   , where Ax x w  
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Ex: Vibrating Spring-Mass System

m1

m2

k1

k2

1 2 1 2

1 1 1

2 2 2

2

Let m =m =1 and =3,  =2. Then the matrix becomes:

5 2 5 2
   or   0

2 2 2 2

For a nontrivial solution  det( ) 0

det( ) ( 5 )( 2 ) 4 7 6 0

This

k k

x x x

x x x

A I

A I








    

          
         

          

  

          

1 2

1

1 1 2 1 1

2

1 1
2 1 2 2 22

2

1 2

 gives two solutions: 6  and  1                     

5 6 2 2
For 6 0 2

2 2 6 1

5 1 2 1
For 1 0

2 2 1 2

where  and  are

x
x x X C

x

x
x x X C

x

X X

 





   

      
            

     

      
           

     

1 2

6  6  

1 1 1 1

6  6  

2 1 1

1 

2 1 2 2

 eigenvectors and  and  are arbitrary numbers.      

General solutions:

For 6 ( ) 2 2

                        ( )

For 1 ( )

                 

t i t

t i t

t it

C C

y t C e C e

y t C e C e

y t C e C e











      

 

    

1 

2 2 2       ( ) 2 2t ity t C e C e 
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Ex: Vibrating Spring-Mass System

m1

m2

k1

k2

 1

2

Converting the general solution to matrix notation:

Using Euler's equation, i.e., cos( ) sin( )

2 1
cos( 6 ) sin( 6 ) + cos( ) sin( )

1 2

There are four unknown constants a, 

ize z i z

y
a t b t c t d t

y

 

     
         

    

1

b, c and d, which are complex numbers   

Therefore, we need four conditions (initial or boundary conditions).

Suppose the following initial conditions are given:

Displacements        Velocities

(0) 1   y 

 

1

2 2

1

2

              '(0) 2 6

(0) 2                '(0) 6           

The solution in matrix notation is given as:

2 1
 sin( 6 ) + cos( )         

1 2

The solution in open form is given a

y

y y

y
t t

y

 

 

     
       

    

1 2

s: 

( ) 2sin( 6  ) cos( )  and   ( ) sin( 6  ) 2cos( ) y t t t y t t t    
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Ex: Vibrating Spring-Mass System

m1

m2

k1

k2

1 2

Note the following:

5 2
The coefficient matrix    is a symmetrical matrix

2 2

2 1
Eigenvectors    and   are othogonal to each other,   

1 2

                                          

A

X X

 
  

 

   
    
   

1 2

1 2

                       i.e., 0

Eigenvalues   -6  and  -1  are real

Trace of  is    ( )  ,  i.e., the sum of eigenvalues 

T

ii i

X X

A tr A a
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Roots of Characteristic Polynomial-Eigenvalues

Matrix Eigenvalue

Singular, det(A)=0 At least one zero eigenvalue

Nonsingular, det(A)≠0 No zero eigenvalues

Symmetric, A=A‟ All real eigenvalues

Hermitian (see next slide) All real eigenvalues

Zero matrix, A=0 All zero eigenvalues

Identity, A= I All unity eigenvalues

Diagonal, A=D Equal to diagonal elements of A

Inverse, A-1 Inverse eigenvalues of A

Transformed, B=Q-1AQ Eigenvalues of B = eigenvalues of A

Ref: A. Constantinides and N. Moustoufi, Numerical Methods for Chemical Engineers with MATLAB® Applications, 1999, Prentice Hall PTR, p.123
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What is a Hermitian (Self-Adjoint) Matrix

A square matrix with complex entries which is equal to its own conjugate 
transpose

This means the element in the ith row and jth column is equal to the 
complex conjugate of the element in the jth row and ith column, for all 
indices i and j

Ex:

Every Hermitian matrix is normal. 

It can be diagonalized by a unitary matrix, and the resulting diagonal 
matrix has only real entries. This means that all eigenvalues of a 
Hermitian matrix are real, and, moreover, eigenvectors with distinct 
eigenvalues are orthogonal

If the conjugate transpose of a matrix A is shown by A', then A=A'

3 2

2 1

i
A

i

 
  

 

http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Complex_conjugate
http://en.wikipedia.org/wiki/Normal_matrix
http://en.wikipedia.org/wiki/Diagonalizable_matrix
http://en.wikipedia.org/wiki/Unitary_matrix
http://en.wikipedia.org/wiki/Eigenvectors
http://en.wikipedia.org/wiki/Eigenvector
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Methods for Finding Eigenvalues

 Power Method: Iterative procedure for 

finding a specific eigenvalue and its 

associated eigenvector for a given matrix A

The basic power method finds the dominant 

(largest magnitude) eigenvalue

The inverse power method finds the smallest 

eigenvalue



April.16,2009 SelisÖnel© 38

Methods for Finding Eigenvalues

 QR Method: Uses QR factorization to find all 

the eigenvalues for a given matrix A

 Produces a sequence of matrices that converge to 

a similar matrix for which eigenvalues are easy to 

find 

 Does not directly find the eigenvectors, therefore 

inverse iteration can be used to find the 

eigenvector associated with any specified 

eigenvalue  
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Power Method
If x is an eigenvector of A: 

Convert λx=Ax into a sequence of 
approximations of λ and x

 Start with an initial guess z for the 
eigenvector x: w=Az

 If z is an eigenvector, for any 
component of z: λzk=wk

 If z is not an eigenvector, normalize 
w and use it as the next 
approximation:

(1) (1) (1)

(2) (1) (2) (2)

(1)

(3) (2) (3) (3)

(2)

[1,1,...,1]',    

1
,    

1
,    ,...

k

k

z w Az

z w w Az
w

z w w Az
w

 

 

 

(1) (1) (1)

(2) (1) (1)

(1) (1)

(2) (2) (1) 2 (1)

(1) (1)

(3) (2) 2 (1)

(2) (2) (1)

(3) (3) 2 (1)

(2) (1)

3 (1)

(2) (1)

[1,1,...,1]',    

1 1
   

1 1

1 1 1
=

1 1

1 1
                  

k k

k k

k k k

k k

k k

z w Az

z w Az
w w

w Az A Az A z
w w

z w A z
w w w

w Az A A z
w w

A z
w w

 

 

  



 



With each iteration, the original 

estimate for z is multiplied with 

powers of A → Power method
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Ex: Basic Power Method
Find the largest eigenvalue and the associated eigenvector of

>> A=[23 9 -3; 11 10 2; 5 -4 16];

>> z=[1;1;1]; %Start with the initial x vector

>> w=A*z; w„ %Compute w=A*z

ans =    29    23    17

>> z=w/w(1); z„ %Normalize w using the largest value and use as a guess

ans = 1.00000000000000   0.79310344827586   0.58620689655172

>> w=A*z; w'

ans = 28.37931034482759  20.10344827586207  11.20689655172414

>> z=w/w(1); z'

ans = 1.00000000000000   0.70838396111786   0.39489671931956

>> w=A*z; w'

ans =  28.19076549210207  18.87363304981774   8.48481166464155

>> z=w/w(1); z'

ans =   1.00000000000000   0.66949700443946   0.30097840610319

>> w=A*z; w'

ans = 28.12253782164562  18.29692685660101   7.13766647989311

…

ans =  28.06845698567594  17.72557765083737   5.75573908993695

23 9 3

11 10 2

5 4 16

A
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Ex: Basic Power Method
Find the largest eigenvalue and the associated eigenvector of

>> A=[23 9 -3; 11 10 2; 5 -4 16];

>> z=[1;1;1]; %Start with the initial vector

>> w=A*z; w„ %Compute w=A*z

ans =    29    23    17

>> z=w/w(1); z„ %Normalize w using the largest value and use as a guess

ans = 1.00000000000000   0.79310344827586   0.58620689655172

…

After 15 iterations the estimate of the 

largest eigenvalue: λ ≈ 28.06845698567594

eigenvector z‟:  ≈ 1.00000000000000   0.63153431091383   0.20511727084952

error : A*z-w(1)*z = 0    -0.00061599002606    -0.00158620392198

max norm of the error:  ||Az- λz||∞ = 0.00158620392198

In MATLAB® :

>> [eig(A)]‟

ans = 28.06839976386356     6.58643222669528    14.34516800944117

The largest eigenvalue is 28.06839976 and successive approximations of the power 
method converge towards this value

23 9 3

11 10 2

5 4 16

A
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Ex: Basic Power Method

function [z,wmax]=BasicPower(A,imax,tol)

[m,n]=size(A);              % Get the dimensions of A

w=ones(m,1);              % Start with initial guess eigenvalues

disp('iter    wmax    r      z(1)      z(2)      z(3)       z(4)')

for i=1:imax

[kk,k]=max(abs(w)); % Returns the indices of the maximum w values in vector k

z=w/w(k);                  % Normalize w with respect to maxw=w(k)

w=A*z;                      % Calculate w again

wmax=w(k);              % z(k)=1

r=norm(wmax*z-w);  % Use Euclidean form (norm(w,p) = sum(abs(w).^p)^(1/p))

final=[i,wmax,r,z'];

disp(final)

if r<tol, disp('Power method has converged'), break

end

end
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Ex: Basic Power Method in MATLAB®
>> A=[23 9 -3; 11 10 2; 5 -4 16]; [z,wmax]=BasicPower(A,20,.001);

iter wmax r z(1) z(2)   z(3) z(4)

1.0000    29.0000   13.4164    1.0000    1.0000    1.0000

2.0000    28.3793    5.9378    1.0000    0.7931    0.5862

3.0000    28.1908    2.8656    1.0000    0.7084    0.3949

4.0000    28.1225    1.4289    1.0000    0.6695    0.3010

5.0000    28.0941    0.7223    1.0000    0.6506    0.2538

6.0000    28.0811    0.3672    1.0000    0.6412    0.2299

7.0000    28.0748    0.1872    1.0000    0.6364    0.2177

8.0000    28.0716    0.0956    1.0000    0.6340    0.2115

9.0000    28.0700    0.0488    1.0000    0.6328    0.2083

10.0000   28.0692    0.0249    1.0000    0.6321    0.2067

11.0000   28.0688    0.0127    1.0000    0.6318    0.2059

12.0000   28.0686    0.0065    1.0000    0.6317    0.2054

13.0000   28.0685    0.0033    1.0000    0.6316    0.2052

14.0000   28.0685    0.0017    1.0000    0.6315    0.2051

15.0000   28.0684    0.0009    1.0000    0.6315    0.2051

Power method has converged

max

23 9 3

11 10 2

5 4 16

Maximum eigenvalue

28.0684

Associated eigenvector

[1.0000 0.6315  0.2051]'

A

z
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Inverse Power Method

Gives the smallest eigenvalue of A and is 

based on the fact that:

Eigenvalues of B=A-1 are the reciprocals of 

the eigenvalues of A

To find the smallest λ of A (by avoiding 

computation of A-1) first find wmax (dominant 

λ of B):

Apply the power method to B=A-1 to find wmax
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Ex: Inverse Power Method in MATLAB® 
function [z,wmin]=PowerInverse(A,imax,tol)

[m,n]=size(A);              % Get the dimensions of A

L=eye(m);                     % Create an identity matrix

U=A;                            % Set U equal to A o start with

for j=1:m

for i=j+1:m,            L(i,j)=U(i,j)/U(j,j);

U(i,:)=U(i,:)-L(i,j)*U(j,:);

end

end,  A,U,L,

w=ones(m,1);  

disp('iter  wmax  r   z(1)    z(2)    z(3)    z(4)')

for i=1:imax

z=w/norm(w);    w=LUsolve(L,U,z);  %Uses LU decomposition  

wmax=z'*w;     r=norm(wmax*z-w);

final=[i, wmax, r, z']; disp(final)

if r<tol, disp('Inverse Power Method has converged'), break, end

end

wmin=1/wmax, % Smallest eigenvalue is the reciprocal of wmax of 
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Ex: Inverse Power Method in MATLAB® 

>> [z,wmin]=PowerInverse(A,20,0.001)

A =

23     9    -3

11    10     2

5    -4    16

U =

23.0000    9.0000   -3.0000

0         5.6957    3.4348

0              0      20.2443

L =

1.0000         0             0

0.4783    1.0000         0

0.2174   -1.0458    1.0000
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Ex: Inverse Power Method in MATLAB® 

iter wmax r z(1) z(2) z(3)    z(4)

1.0000    0.0498    0.0139    0.5774    0.5774    0.5774

2.0000    0.0650    0.0175    0.3538    0.5812    0.7328

3.0000    0.0854    0.0181    0.1003    0.5941    0.7981

4.0000    0.1075    0.0172   -0.1005    0.6388    0.7627

5.0000    0.1267    0.0134   -0.2237    0.6965    0.6818

6.0000    0.1392    0.0084   -0.2864    0.7398    0.6088

7.0000    0.1459    0.0045   -0.3151    0.7645    0.5624

8.0000    0.1491    0.0022   -0.3278    0.7769    0.5375

9.0000    0.1506    0.0010   -0.3334    0.7829    0.5253

10.0000   0.1512    0.0005   -0.3360    0.7857    0.5195

Inverse Power Method has converged

wmin =    6.6120

z = 

-0.3360

0.7857

0.5195
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QR Method

To find eigenvalues of a real matrix A:

 Generate a sequence of matrices A(m) that 

are orthogonally similar to A, i.e., have the 

same eigenvalues as A

 Find the eigenvalues from the matrix to which 

the A(m) sequence converges
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QR Factorization Using Householder Transformations

 Suppose that A is a real symmetric matrix.

 Householder's method is used to construct a similar 
symmetric tridiagonal matrix. Then the QR Method can 
be used to find all eigenvalues of the tridiagonal matrix.
A=QR where Q is orthogonal and R is  upper triangular

A =(H1)(H1A)      =Q1R1

=(Q1H2)(H2R1) =Q2R2

=(Q2H3)(H3R2) =Q3R3

= . . .    

=(Qn-2Hn-1)(Hn-1Rn-2)  =QR

Hk : Householder matrix that zeros out the kth column, below 
the diagonal, of the matrix it multiplies
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QR Factorization Using Householder Transformations

%QR Factorization using Householder transformations

%Ref: L.V.Fausett, Applied Numerical Analysis Using Matlab, 2nd ed.,p.164

function [Q,R]=QRfactor(A)

[m,n]=size(A);  

R=A;                %Start with R=A

Q=eye(m);       %Set Q as the identity matrix

for k=1:m-1

x=zeros(m,1);   

x(k:m,1)=R(k:m,k);   

g=norm(x);

v=x; v(k)=x(k)+g;

%Orthogonal transformation matrix that eliminates one element

%below the diagonal of the matrix it is post-multiplying:

s=norm(v);             

if s~=0, w=v/s; u=2*R'*w;

R=R-w*u';          %Product HR

Q=Q-2*Q*w*w';  %Product QR

end

end
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QR Method

To see that A(m) (that are orthogonally similar to A)
in the sequence are similar:

1. A=QR → R=Q‟A

2. A(1)≡RQ → A(1)=Q‟AQ

Thus, A(1) is similar to A

Factor A(1)= Q(1)R(1) and form A(2)= Q(1)R(1)

R: Upper triangular matrix

Q: Unitary matrix

Ref: L. V. Fausett, Applied Numerical Analysis Using MATLAB, 2nd Ed, Pearson Prentice Hall 2008, Chap.5
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QR Method: Outline

To find all eigenvalues of matrix A:

Define A(1)=A

for k=1:kmax

Factor A(k)=Q(k)*R(k)

Define A(k+1)=R(k)*Q(k)

end 

Ref: L. V. Fausett, Applied Numerical Analysis Using MATLAB, 2nd Ed, Pearson Prentice Hall 2008, Chap.5
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Ex: QR Method in MATLAB® 

%QR method to find eigenvalues

%Using QRfactorization

%A=QR => R=Q'A where Q'=inv(Q)

function eigen=QReigen(A,imax)

for i=1:imax,

[Q,R]=QRfactor(A);    %Personally created function

A=R*Q;                      %Defining new A=RQ=Q'AQ

end

eigen=diag(A)
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Ex: Orthogonal-Triangular Decomposition in MATLAB® 

>> A=[-2 2 3; 1 3 5; -3 -1 2]

A =

-2     2     3

1     3     5

-3    -1     2

>> [Q,R]=qr(A)

Q =

-0.5345   -0.6172   -0.5774

0.2673   -0.7715    0.5774

-0.8018    0.1543    0.5774

R =

3.7417    0.5345   -1.8708

0       -3.7033   -5.4006

0             0        2.3094

>> Q*R

ans =

-2.0000    2.0000    3.0000

1.0000    3.0000    5.0000

-3.0000   -1.0000    2.0000

QR     Orthogonal-triangular decomposition

[Q,R] = QR(A), where A is m-by-n, produces an 

m-by-n upper triangular matrix R and 

an m-by-m unitary matrix Q so that A = 

Q*R.

[Q,R] = QR(A,0) produces the "economy size" 

decomposition. If m>n, only the first n 

columns of Q and the first n rows of R 

are computed. If m<=n, this is the same 

as [Q,R] = QR(A)

Example: The least squares approximate solution to A*x = b, 

i.e. min|A*x-b|,  can be found with the Q-less QR 

decomposition and one step of iterative refinement:

if issparse(A), R = qr(A); else R = triu(qr(A)); end

x = R\(R'\(A'*b));

r = b - A*x;

e = R\(R'\(A'*r));

x = x + e;
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Ex1: QR 

Decomposition

 This is a rank-deficient 
matrix; the middle column 
is the average of the other 
two columns. The rank 
deficiency is revealed by 
the factorization:

The triangular structure 
of R gives it zeros below 
the diagonal; the zero on 
the diagonal in R(3,3) 
implies that R, and 
consequently A, does not 
have full rank

>> A =  [ 1 2 3; 4 5 6; 7 8 9; 10 11 12 ]

A =

1     2     3

4     5     6

7     8     9

10    11    12

>> [Q,R]=qr(A)

Q =

-0.0776   -0.8331    0.5473   -0.0221

-0.3105   -0.4512   -0.7133    0.4373

-0.5433   -0.0694   -0.2153   -0.8085

-0.7762    0.3124    0.3813    0.3932

R =

-12.8841  -14.5916  -16.2992

0         -1.0413   -2.0826

0            0          -0.0000

0            0               0



April.16,2009 SelisÖnel© 56

Ex2: QR 

Decomposition
 The QR factorization is used to solve linear 
systems with more equations than unknowns

 Linear system Ax=y represents 4 equations 
in only 3 unknowns. The best solution in a 
least squares sense is computed by x=A\y

 The quantity tol is a tolerance used to 
decide if a diagonal element of R is negligible. 
If [Q,R,E] = qr(A), then      

tol=max(size(A))*eps*abs(R(1,1)) 

 [Q,R,E] = qr(A) for full matrix A, produces a 
permutation matrix E, an upper triangular 
matrix R with decreasing diagonal elements, 
and a unitary matrix Q so that A*E = Q*R. The 
column permutation E is chosen so that 
abs(diag(R)) is decreasing.

 The solution x is computed using the 
factorization and the two steps

z = Q'*b; x = R\z

 Ax equals y to within roundoff error, which 
indicates that even though the simultaneous 
equations Ax=y are overdetermined and rank 
deficient, they happen to be consistent. There 
are infinitely many solution vectors x; the QR 
factorization has found just one of them.

>> A =  [ 1 2 3; 4 5 6; 7 8 9; 10 11 12 ];   y=[2; 4; 6; 8];

>> x=A\y

Warning:Rank deficient, rank=2, tol=1.4594e-014.

x = [ -0.0000;  0;   0.6667]

>> [Q,R,E] = qr(A)

Q =

-0.1826   -0.8165    0.5465    0.0363

-0.3651   -0.4082   -0.7558    0.3589

-0.5477   -0.0000   -0.1280   -0.8268

-0.7303    0.4082    0.3373    0.4316

R =

-16.4317  -12.7802  -14.6059

0          1.6330     0.8165

0               0         0.0000

0               0             0

E =

0     1     0

0     0     1

1     0     0

>> tol = max(size(A))*eps*abs(R(1,1))

tol =  1.4594e-014

>> z=Q'*y;    x = R\z

Warning:Rank deficient,rank=2, tol=1.4594e-014.

x = [ -0.0000;  0;   0.6667]
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Ex: Eigenvalues in 

MATLAB® 

SVD    Singular value decomposition

[U,S,V] = SVD(X) produces a diagonal matrix 

S, of the same dimension as X and with 

nonnegative diagonal elements in decreasing 

order, and unitary matrices U and V so that X 

= U*S*V'.

S = SVD(X) returns a vector containing the 

singular values.

[U,S,V] = SVD(X,0) produces the “economy 

size” decomposition. If X is m-by-n with m > 

n, then only the first n columns of U are 

computed and S is n-by-n.

For m <= n, SVD(X,0) is equivalent to 

SVD(X).

>> [u,s,v]=svd(A)

u =

-0.5476    0.3027   -0.7800

-0.7997   -0.4636    0.3815

-0.2462    0.8327    0.4960

s =

7.0172         0         0

0 3.9254    0

0        0 1.1617

v =

0.1473   -0.9088    0.3904

-0.4629   -0.4122   -0.7847

-0.8741    0.0651    0.4814

>> u*s*v'

ans =

-2.0000    2.0000    3.0000

1.0000    3.0000    5.0000

-3.0000   -1.0000    2.0000
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When the eigenvalues (and eigenvectors) of a symmetric matrix 

are known, the following values are easily calculated:

 Condition number: For a nonsingular matrix A, it is defined as cond(A) = 
||A||2*||A−1||2. In case of a symmetric matrix, it is the absolute value of the quotient of 
the largest and smallest eigenvalue. Matrices with large condition numbers can 
cause numerically unstable results, i.e., small perturbation can result in large errors. 
Hilbert matrices are the most famous ill-conditioned matrices. For ex: Fourth order 
Hilbert matrix has a condition of 15514, while for order 8 it is 2.7 * 108. 

 Rank: A matrix A has rank r if it has r columns which are linearily independent while 
the remaining columns are linearly dependent on these. 

Equivalently, r is the dimension of the range of A. Furthermore it is the number of 
nonzero singular values. In case of a symmetric matrix r is the number of nonzero 
eigenvalues. Due to rounding errors, numerical approximations of zero eigenvalues 
may not be zero (it may also happen that a numerical approximation is zero while the 
true value is not). Thus, one can only calculate the numerical rank by making a 
decision which of the eigenvalues are close enough to zero. 

 Singular values: For a (square) matrix A, these are the square roots of the (non 
negative) eigenvalues of A’A. In case of a symmetric matrix S → S’S = S2, and the 
singular values of S are the absolute values of the eigenvalues of S

 2-Norm and spectral radius: For a matrix A, it is the norm based on the euclidian 
vectornorm, i.e. the largest value ||Ax|| 2 when x runs through all vectors with ||x||2=1. 
It is the largest singular value of A. In case of a symmetric matrix, it is the largest 
absolute value of its eigenvectors and thus equal to its spectral radius. 

Ref: http://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm
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For More Online Information

 http://www.sosmath.com/diffeq/system/linear/eigenvalue/eigenvalue.

html

 http://mathworld.wolfram.com/Eigenvalue.html

 http://www.miislita.com/information-retrieval-tutorial/matrix-tutorial-3-

eigenvalues-eigenvectors.html

 http://math.fullerton.edu/mathews/n2003/EigenvaluesMod.html

 http://math.fullerton.edu/mathews/n2003/HessenbergMod.html

 http://math.fullerton.edu/mathews/n2003/HouseholderMod.html
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