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“1ll-conditioned” Problems

Some linear problems are solvable but solutions
become inaccurate due to:

= Approximate empirical data

= Foating point numbers approximation of real
numbers

= Small rounding errors
= Small changes in coefficients
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“1ll-conditioned” Problems

=¢
Small changes in coefficients >
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= — x, =17.9756, X, =-0.15928
0.12032 0.98755)\ x, ) | 2.00555,
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lI-conditioned” Problems

Ex: Two lines (functions) are
nearly parallel

If the intercepts with the vertical -imercept
axis vary just a little, then the
Intersection will vary a lot

Hence, the solution of the
corresponding 2D system will
vary a lot

Ref: http:/imww2.krellinst.org/lUCES/archive/classes/CNA/dirl.7/ucesl.7.html
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“1ll-conditioned” Problems

EX: Function approximation

To determine the coefficients in an nth order polynomial:

= Set the polynomial at distinct points equal to the function evaluated at
these points

Ex: Set a quadratic polynomial near points x;, X, and X; ,
then find the three coefficients of
P(x)=a,+a,; x +a, x?
Solve the system associated with P(x; ) = f(x; ) for 1= 1,2,3.
Then, the matrix form is

= i twoe el the Interpolation peints are clese, then the computed selution
may have significant ernror,
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“1ll-conditioned” Problems

How can we reduce the errors?

Using Gauss elimination to solve the problem
1. Increase the precision of the floating point numbers
2. Avoid division by small numbers

Use row pivoting Iin the forward sweep of the Gaussian
elimination algorithm

Check the “condition” of the coefficient matrix
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EX: ill-conditioned system

Use Gaussian elimination algorithm to solve the
following linear system

1. Use real numbers: Add (-10%)(row 1) to (row 2) to get |f - i][ ]=[ 4 ,]
for d=4, solve for x, and X, x, =3.9997/1.9999 1 1-20000 %] 3 -4

X, =(4-2(3.9997/1.9999))10
=2(2(1.9999) - 3.9997))/1.9999

104
1-1077 210 [-‘fl]_ 410
0 fAl-200tn ] [ A0 -400%)

= 2/1.9999

2. Use floating point numbers with 3 digits

F=2010" = - 2+.000010%) = -2 - 10°

Fii3 — 401079 = fii{—4+.0005)10%) = 4 -10%,

3. Interchange rows of the system to avoid division by a small number
April.16,2009 SelisOnel© 7

Ref: http://Mmww2.krellinst.org/lUCES/archive/classes/CNA/dirl.7/ucesl.7.html



lll-conditioned system

If computing precision is high, ill-conditioned problems can be solved
accurately

Check an ill-conditioned problem, if

= det(A)det((A1)) deviates from 1

= (AY)1lis different from A

= AA-ldeviates from the identity matrix

= Al(AD1) deviates from the identity matrix more significantly than AA*

Double-precision solves the problems in mildly ill-conditioned problems, so
above problems may disappear with double-precision
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Ex: Hilbert matrices

Very difficult to invert numerically, % Hilbert.m Compute the condition
very ill-conditioned ! number and det(A)det(inv(A)) for
the 5x5 and 14x14

% Hilbert matrices

Defined by A = [a..] where a.: =
(i+-1), ij=12,..n fc')f";‘]rz&m
_ _ for i=1:n,
4x4 Hilbert Matrix for j=1:n
a(l,))=1/(i+-1);
end
end
c=cond(a);

d=det(a)*det(a”*(-1));
fprintf('n=%3.0f cond(a)=%e
det*det=%e \n', n,c,d)

end

Ok Ok NP |
NP O|R Ok AP

AR MNP Wk N|F

1
1
2
1
3
1
a
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Ex: Hilbert matrices

n= 5 cond(a)=4.766073e+005 det*det=1.000000e+000
n= 6 cond(a)=1.495106e+007 det*det=1.000000e+000
n= 7 cond(a)=4.753674e+008 det*det=1.000000e+000
n= 8 cond(a)=1.525758e+010 det*det=1.000000e+000
n= 9 cond(a)=4.931538e+011 det*det=1.000000e+000
n=10 cond(a)=1.602501e+013 det*det=1.000013e+000
n=11 cond(a)=5.223947e+014 det*det=1.000118e+000
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.570030e-017.
> |n Hilbert at 11 n=12 cond(a)=1.632619e+016 det*det=1.019081e+000
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 1.342113e-018.
> |n Hilbert at 11 n= 13 cond(a)=1.31687/e+018 det*det=1.211551e+000
Warning: Matrix Is close to singular or badly scaled.
Results may be inaccurate. RCOND = 5.393028e-0109.
> |n Hilbert at 11 n= 14 cond(a)=2.37/67/39e+017 det*det=2.039/73e-001
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How to find 1If a matrix Is 1ll-conditioned

An Iill-conditioned problem generates large errors in
the computed solution

et the exact solution be x where Ax = d
Let X be the computed solution where
AX - d = -r > nonzero residual

Relative error Is given by the ratio of the "size" of X -
X and the “"size™ of x

In ill-conditioned problem this ratio Is large!
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How to find If a matrix IS ill-conditioned

Condition-Aumber of:matrix A

In order to be more precise about the "size" we define the
max norm of a vector, and it is analogous to the absolute
value of a single real number

Cond(A) = ||All [[AZ]], where ||A|| = Norm of matrix A

Euclidean norm

Euclidean Norm is the Length of a vector x :  [[x]|= 32 +x2 +...
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How to find If a matrix Is 1ll-conditioned

Basic Properties.

1. ||x|[[=z0and [[x|]| =0 if and only if x = 0.

2. |Ix+yll = 1] + Iyl

3. Jlax|| £|a]||x|]] where a is real

4. [IAX[| = [|A[] [IX]] where [|A][ = max ;|a;;| (Natural matrix norm)

Matrix Norm:

|%]| = tnaxd{l & 9% =9 and ||4] = max45 5,5} =5.
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Matrix Eigenvalues and Eigenvectors

Eigenvalues are important in:

= Analysis of convergence characteristics of iterative
methods for solving linear systems

= Determining the condition of a matrix — Ratio of the
largest to the smallest eigenvalue of a matrix (if
condition Is large, matrix Is ill-conditioned)

= Solving sets of linear differential equations

* Finding physical characteristics of a structure (principal
stress, moments of inertia, ...)
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Eigenvalue (Characteristic-Value) Problems

Given: AX=C A s a n by n matrix of coefficients

This Is a necessary condition for a unigue

If C # 0 and det(A) # 0 :
solution

Either there Is a family of solutions
If C # 0 and det(A) =0 (rank(A)<n) or there is no solution (rank(A)>n)
due to inconsistency (or incompatibility)

If C = 0 and det(A) # 0 . e
Trivial solution, 1.e., X=0

If C =0 and det(A) =0
(A) There is a family of solutions
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Eigenvalue (Characteristic-Value) Problems

Given: AX =A X or Ais a n by n matrix of coefficients
(A=Al X=0 | IS the identity matrix

The problem becomes B X =0
SetB=(A—-AI) "

This is the same as the A X = C = 0 case

Either, there is a family of solutions if
Remember for

det(A—AI)=0
AX=C=0 . R :

or there Is only the trivial solution X =0

Gives the non-trivial solution, 1.e., X # 0
det(A—A)=0

Nontrivial solution: Eigenvalues A;

Gives a solution vector, X; called the

Every eigenvalue A eigenvector
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Nonhomogeneous Set of Equations

= A X =Yy :Nonhomogeneous set of n eguations
If the n equations are linearly independent, I.e.,
det(A)#0 — unigue solution
(one set of x values that makes the equations balance)

" To solve a non-nomogeneous set of linear equations, use
= Elimination methods such as Gauss or Gauss-Jordan
= Matrix inverse
= Cramer's rule
= |terative methods such as Jacobi, Gauss-Siedel, ...
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Homogeneous Set of Equations

= A Xx=0:Homogeneous set of n equations

= Nontrivial solutions (solutions other than all x=0) are
possible but generally not unique

= Simultaneous equations establish relationships among x’'s
that can be satisfied by various combinations of values.

Eigenvalue problems are typically of the general form:
(All _ﬂ‘)xi + A12X2 Tt A.lan =0
Ay X + (Azz _i)xz +..+ Ay X, =0

A\11X1+Ahzx T "‘('A\m /1))( =0
where A Is an unknown parameter (eigenvalue or
characteristic value)

A solution x or [x] for such a system Is the set of elgenvectors
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Homogeneous Set of Equations r<n

= Ax=0 : Homogeneous set of n equations
If det(A)#0, the unique solution is the trivial solution x=0.
If det(A)=0, there exists nontrivial solutions (solutions other than x=0),
l.e., r=rank (A) where r<n
This means there are:
" 1 independent equations
= 1 unknowns that can be evaluated independently
= (n-r) unknowns that must be chosen arbitrarily
If nonzero values are chosen for (n-r) unknowns:
Homogeneous set — Nonhomogeneous set of order n
= Use Gauss or Gauss-Jordan elimination to:
= Solve non-homogeneous set

= Solve homogeneous set first to determine number of independent
equations r (rank of A) , then solve set of r nonhomogeneous
Independent equations to evaluate r unknowns
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Homogeneous Set of Equations r<n

(A - Al )x= 0 is a homogeneous linear system with coefficient matrix A - Al

= Eigenvector x#0, so find a nontrivial solution to the linear system
(A-Al)x=0

= After Gauss elimination (A - Al) must contain a zero row

l.e. matrix A - Al, must be singular, so

1. det(A - Aln) = 0 — characteristic equation of matrix A and solving it for A
gives the eigenvalues of A

2. c(A) =det(A - Al)) — the characteristic polynomial of matrix A roots of the
characteristic polynomial are the eigenvalues

" neigenvalues of A are A, A,, ..., A, : the corresponding eigenvectors are
nontrivial solutions of the homogeneous linear system

(A-ANl)x=0fori=1,2,..,n

Summary of computational approach for determining eigen-pairs (A,x) as a
two-step procedure:

1. To find the eigenvalues of A compute the roots of the characteristic
equation det(A -Al))=0

2. To find an eigenvector corresponding to an eigenvalue A, compute a
nontrivial solution to the homogeneous linear system (A - Al )x =0
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Homogeneous Set of Equations r<n

= Ax=0 : Homogeneous set of linear algebraic equations
Special case of Ax=0 for:

= Vibrating systems

= Structure analysis

= Electric circuit system analysis

= Solution and stability analysis of ordinary differential
eguations

System of eguations has the form: A X = A X
A: Eigenvalue (characteristic value) of matrix A
X: Elgenvector (characteristic vector) corresponding to A
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Linear Differential Equations x* = Ax

A . coefficient matrix with n distinct real eigenvalues
X : column vector of unknown functions of time
X' : dx/dt

X = Ax+H , X = Ax+i(t)

Applications: Time dependent mixing, heat
conduction

fhere shouldbe nilineary independent
NGMGQENEQUS selutions fermedby the
EIJENVECIONS X and eigenvalues A
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Matrix Eigenvalues and Eigenvectors

= |f (A- A)x=0 then let Ax = A X, where
A . n-by-n sguare matrix

X : column vector of size n

A . anumber

Then both the LHS and RHS of Ax = AX IS a
column vector of size n.

= | et for
= Which x would satisfy Ax = 0 for ?
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Matrix Eigenvalues and Eigenvectors

= |et /)\ x\ for and

Eigenvalues and Eigenvectors of A

= Rearranging Ax = A X = 0 gives:
(A-Al)x=0
where | IS an n-by-n identity matrix and A’l
makes a matrix the same size as A.

= (A- Al ))x =0 Is a system of homogeneous
eguations where

for A0
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Characteristic Matrix and Characteristic Equation

For a linearly independent system

(A, A+ A% +...+A X =0
A X+ (A, —A)X +...+A X =0 .

[[Al-2[1]][x]=0

where

AuXy + ApX, +...+ (Am _/I)Xn =0
The nonsingular characteristic matrix A can be represented as

An_/1 A12 Aln
Ay Ap—4 o Ay

det([[A]-[1]])=0

|A— 21| =det =0

Ahl Ahz Ann —A
The determiant can be expanded to yield a polynomial of n™ degree
A" —a A" o, A" - —a, =0,  where o; = (A))
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Characteristic Equation (Polynomial)

f(A)=4" @™ ~a,A" —..~a, =0 , where &, = f(A))

= —Characteristic polynomial of matrix A
. polynomial of A of order n
= Has n roots — eigenvalues of A

= Roots may be real distinct, real repeated, or complex
depending on A

= A nonsingular real symmetric matrix of order n has n real
nonzero eigen-values and n linearly independent
eIgenvectors

= Eigenvectors of a real symmetric matrix are orthogonal to
each other
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EX: Singular real symmetric matrix

2 1
Find the eigenvalues and eigenvectors for Ax=0, where A = (1 2}

1

2—1
Calculating eigenvalues: det(A—ﬂI)zOzdet( T aa

j=12—4/1+3, where 4, =1 and 4, =3

Inserting A4, =1 in det(A—Al) gives:

2-1 1 0
( j[xlj = (Oj which can be written as 1 x, +1%x, =0, ie, X =-X,

1 2-1)(x,

5 0.1
Infinite number of eigenvectors would satisfy this condition, such as ( ]( 0 J e

Inserting 4, =3 in det(A—Al) gives:

2-3 1 X, 0 : :
= which can be written as -1+ X, +1% X, =0 and 1% x -1+ X, =0,
1 2-3)\x 0

5) (0.1
Infinite number of eigenvectors would satisfy this condition, such as {5)(0 J
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Ex Contd.: Orthogonal Eigenvectors

For eigenvectors to have the orthonormal property, they must satisfy QQ'=I
Remember: An orthogonal matrix is whose transpose is its inverse, i.e., Q'=Q*

For example:

00 — ¢, G)¢ -G (c’+c’ —¢’+¢)’
-, ¢, )lc, ¢, —c’+c¢,° ¢’+c)’

¢’ +c,’=1 and -¢®+c,’=0 gives c¢°=c,°=0.5

: 1 1
Accordingly,c,=——= or ¢,=——— and c¢,=—
V2

NA

Consequently, for this problem, various Q's can be obtained, such as

1 1
J2. 2
_ 4L
J2 2
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Ex: Eigenvalues in MATLAB®

>>A=[2 1; 1 2]
A=

2 1

1 2
>> det(A)
ans= 3
>> eig(A)
ans =

1

3

>> [Q,d]=eig(A)
Q =

-0.70710678118655 0.70710678118655
0.7071067/8118655 0.70710678118655

o =
1 O
0O 3

April.16,2009
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eig(A) : Gives the eigenvalues
of matrix A in vector

[Q.,d]=eig(A): Gives Q and d

Q : Square matrix of the
eigenvectors of A

d : Square diagonal matrix
whose diagonal has
the eigenvalues of A

A



EX: Electric circuit system analysis

Use eig(A) in MATLAB® to determine the stability of electric circuits.
For the stability of an electric circuit, the necessary and sufficient
condition is: eigenvalues of the system should be on the left hand side
of the complex number axis and, if an imaginary axis exists, then the
eigenvalues on the imaginary axis should not have any multiplicates.

Determine the stability of an electric >>A=[10; -1 -2]
L. : : A=
circuit with the following equation: 1 0
1 -2
>> eig(A)

1(\.’1@}:(1 Oj(\_’l(t)){ljua) ans =
dt\ i, (t) -1 -2 ){i,(t) 0 1
%% This circuit Is not stable.
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EXx: Vibrating Spring-Mass System

d2Y2

(yl(t)] :(yl )
_ Yz (t) Y,
dt2 - _kz (Y2 - Y1)
What is 'y, (t) and y, (t) ?

Assume a solution of the form: y, (t) = x,e" and y, (t) = x,e"",
where X, and X, are independent of t.

Then the governing quations become:

k

AR

Note that this is in the same form as Ax = Ax , where 1 = w?

April.16,2009 SelisOnel©
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EXx: Vibrating Spring-Mass System

April.16,2009

Let m;=m,=1 and k, =3, k,=2. Then the matrix becomes:

2 o) e 5 )
2 X, X, 2 —2— A )\ X,
For a nontrivial solution — det(A—A11)=0

det(A— A1) =(-5-A)(-2-1)-4=2°+721+6=0
This gives two solutions: 4, =—6 and A4, =-1

—5+6 2 j(le (—2}
For 4, =—6— =0—->x =-2X, > X, =C,

2 —2+6)\ %, 1

For 4, =1 27t 2 (Mo 1y > X, =C, [
=—1—> = —> = = e
2 —2+1)\ x, n=2% S

where X, and X, are eigenvectors and C, and C, are arbitrary numbers.
General solutions:

For 4, =—6 — y,(t) =—2C,e"°* ' = —2C,e'*"
y,(t) =Ce’*t =Ce!

For 4, =—1—> y, (1) =C,e¥" ' =Cpe"
y,(t) =2C,e" "t = 2C,e"

SelisOnel©




EXx: Vibrating Spring-Mass System

April.16,2009

Converting the general solution to matrix notation:

Using Euler's equation, i.e., €” = cos(z) +isin(z)

Y2
There are four unknown constants a, b, ¢ and d, which are complex numbers
Therefore, we need four conditions (initial or boundary conditions).
Suppose the following initial conditions are given:
Displacements Velocities

y:(0) =1 Y,'(0) =26
y,(0) =2 y,'(0) =/6

The solution in matrix notation is given as:

(;/j = (_12}[9”(«/50] + [;) [cos(t)]

The solution in open form is given as:
y,(t) =—2sin(\/6 t)+cos(t) and vy, (t) =sin(\/6 t)+2cos(t)

SelisOnel©

( ylj = (lzj[a cos(+/6t) + bsin(«/gt)] +@j [ccos(t) +d sin(t)]




EXx: Vibrating Spring-Mass System

Note the following:

-5 2

The coefficient matrix A :( ; j IS @ symmetrical matrix

—2 1
Eigenvectors X =[ ] j and X, = (Zj are othogonal to each other,

e, X,/ X, =0
Eigenvalues 4 =-6 and A, =-1 are real
Traceof Ais tr(A)=) a, =) 4 , i.e, the sum of eigenvalues
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Roots of Characteristic Polynomial-Eigenvalues

Matrix Eigenvalue

Singular, det(A)=0 At least one zero eigenvalue
Nonsingular, det(A)#0 No zero eigenvalues

Symmetric, A=A All real eigenvalues

Hermitian (see next slide) All real eigenvalues

Zero matrix, A=0 All zero eigenvalues

|dentity, A= | All unity eigenvalues

Diagonal, A=D Equal to diagonal elements of A
Inverse, At Inverse eigenvalues of A
Transformed, B=Q*AQ Eigenvalues of B = eigenvalues of A

Ref: A. Constantinides and N. Moustoufi, Numerical Methods for Chemical Engineers with MATLAB® Applications, 1999, Prentice Hall PTR, p.123
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What Is a Hermitian (Self-Adjoint) Matrix

A square matrix with complex entries which is equal to its own conjugate
transpose

This means the element in the ith row and jth column is equal to the

complex conjugate of the element in the jth row and ith column, for all
iIndices i and |

2 If the conjugate transpose of a matrix A is shown by A', then A=A'

3  2+i
- 1
Every Hermitian matrix IS normal.
It can be diagonalized by a unitary. matrix, and the resulting diagonal

matrix has only real entries. This means that all eigenvalues of a
Hermitian matrix are real, and, moreover, eigenvectors with distinct
eigenvalues are orthogonal
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Methods for Finding Eigenvalues

= Power Method: Iterative procedure for
finding a specific eigenvalue and Its
assoclated eigenvector for a given matrix A

The basic power method finds the dominant
(largest magnitude) eigenvalue

The inverse power method finds the smallest
eigenvalue

April.16,2009 SelisOnel© 37



Methods for Finding Eigenvalues

" OR Method: Uses QR factorization to find all
the eigenvalues for a given matrix A

* Produces a seqguence of matrices that converge to
a similar matrix for which eigenvalues are easy to
find

= Does not directly find the eigenvectors, therefore
Inverse iteration can be used to find the
eigenvector associated with any specified
eigenvalue
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Power Method

If X is an eigenvector of A: zW=111...1", w®=Az"

Convert Ax=Ax into a sequence of 1 1
b : ) (2) _ 1 _ A 1)
pproximations of A and x Z vl — W =@ Z
= Start with an initial guess z for the K K
eigenvector x: W=Az 1 1
S o w® = AZ® = A Az = - AT
= |f z IS an eigenvector, for any W, W,

component of z: Az, =W,

= |fzIs not an eigenvector, normalize
w and use it as the next
approximation:

1 1

2(3) _ 1
(2) w2 @D
Wk Wk Wk
1 1
W(3) AZ(3) AT — AZZ(l)
Wk Wk
1 1

)
Wk Wk

YW =[11,..1", w®=Az"

1 — A*z%

1 With each iteration, the original
2% =—mw?, o w = AZ9 estimate for z is multiplied with
Wy powers of A — Power method
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Ex: Basic Power Method

Find the largest eigenvalue and the associated eigenvector of 23 9 3
>> A=[23 9 -3; 11 10 2; 5 -4 16]; A=11 10 2
>> 7=[1;1;1]; OpStart with the initial x vector 5 —4 16
>> W=A*z; W' % Compute wW=A*z

ans= 29 23 17

>> z=w/w(1); z %Normalize w using the largest value and use as a guess

ans = 1.00000000000000 0.79310344827586 0.58620689655172
>> W=A*Z; W'

ans = 28.37931034482759 20.10344827586207 11.20689655172414
>> z=w/w(1); z'

ans= 1.00000000000000 0.70838396111/86 0.394896/1931956
>> W=A*Z; W'

ans = 28.19076549210207 18.87363304981/7/74 8.48481166464155
>> z=w/w(1); z'

ans = 1.00000000000000 0.669497/00443946 0.30097840610319
>> W=A*Z; W'

ans = 28.12253782164562 18.29692685660101 7.1376664/989311

ans = 28.06845698567594 17.72557765083737 5.75573908993695
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Ex: Basic Power Method

Find the largest eigenvalue and the associated eigenvector of 23 9 3
>> A=[23 9 -3; 11 10 2; 5 -4 16]; A=11 10 2
>> 7=[1;1;1]; O%0Start with the initial vector 5 -4 16
>> W=A*z; W' % Compute wW=A*z

ans= 29 23 17

>> z=w/w(1); z %Normalize w using the largest value and use as a guess

ans = 1.00000000000000 0.79310344827586 0.58620689655172

After 15 iterations the estimate of the

largest eigenvalue: A = 28.0684569856 7594

eigenvector z: = 1.00000000000000 0.63153431091383 0.20511727084952
error : A*z-w(1)*z =0 -0.00061599002606 -0.00158620392198

max norm of the error: ||Az- Az||.. = 0.00158620392198

In MATLAB®::
>> [eig(A)]
ans = 28.06839976386356  6.58643222669528 14.34516800944117.

The largest eigenvalue is 28.06839976 and successive approximations of the power
method converge towards this value
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Ex: Basic Power Method

function [z,wmax]=BasicPower(A,imax,tol)

[m,n]=size(A); % Get the dimensions of A
w=ones(m,1); % Start with initial guess eigenvalues
disp(iter wmax r z(1) z(2) z(3) z(4)")
for i=1:imax
[kk,k]=max(abs(w)); % Returns the indices of the maximum w values in vector k
z=wiw(k); % Normalize w with respect to maxw=w(k)
w=A*z, % Calculate w again
wmax=w(k); % z(k)=1

r=norm(wmax*z-w); % Use Euclidean form (norm(w,p) = sum(abs(w).*p)(1/p))
final=[i,wmax,r,z1;
disp(final)
if r<tol, disp(‘Power method has converged'), break
end
end
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Ex: Basic Power Method in MATLAB®

>> A=[23 9 -3; 11 10 2; 5 -4 16]; [z,wmax]=BasicPower(A,20,.001);

iter
(0[0]0]0)
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
N0J0]0]0
10.0000
11.0000
12.0000
13.0000
14.0000
15.0000

Power method has converged

wmax

29.0000
28.3793
28.1908
28.1225
28.0941
28.0811
28.0748
28.0716
28.0700
28.0692
28.0688
28.0686
28.0685
28.0685
28.0684
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r

13.4164 1.0000 1.0000 1.0000

5.9378
2.8656
1.4289
0.7223
0.3672
0.1872
0.0956
0.0488
0.0249
0.0127
0.0065
0.0033
0.0017
0.0009

z(1)

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
10/0]0]0)
1.0000
1.0000
1I0/0]0]0)
1.0000
1I0/0]0]0)
1.0000

Z(2)

0.7931
0.7084
0.6695
0.6506
0.6412
0.6364
0.6340
0.6328
0.6321
0.6318
0.6317
0.6316
0.6315
0.6315

z(3)

0.5862
0.3949
0.3010
0.2538
0.2299
0.2177
0.2115
0.2083
0.2067
0.2059
0.2054
0.2052
0.2051
0.2051
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AC))

23 9 -3

11 10 2

5 -4 16
Maximum eigenvalue
A = 28.0684

Assoclated eigenvector
z =[1.0000 0.6315 0.2051]
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Inverse Power Method

Gives the smallest eigenvalue of A and Is
based on the fact that:

Eigenvalues of B=A* are the reciprocals of
the eigenvalues of A

To find the smallest A of A (by avoiding
computation of A%) first find w,.,., (dominant
A of B):

Apply the power method to B=A* to find w,..,
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Ex: Inverse Power Method in MATLAB®

function [z,wmin]=Powerinverse(A,imax,tol)

[m,n]=size(A); % Get the dimensions of A
L=eye(m); % Create an identity matrix
U=A, % Set U equal to A o start with
for j=1:m

for i=j+1:m, L(i,))=U(i,))/U(.));

U(i,:)=U00,:)-L(1)*UG,:);

end

end, AU L,

w=ones(m,1);
disp(iter wmax r z(1) z(2) z(3) z(4))
for i=1:.imax
z=w/norm(w); w=LUsolve(L,U,z); %Uses LU decomposition
wmax=z"*w; r=norm(wmax*z-w);
final=[i, wmax, r, z'; disp(final)
If r<tol, disp('Inverse Power Method has converged'), break, end
end
wmin=1/wmax, % Smallest eigenvalue is the reciprocal of wmax of
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Ex: Inverse Power Method in MATLAB®

>> [z,wmin]=Powerlnverse(A,20,0.001)

A =
23 9 -3
11 10 2
5 -4 16
U=

23.0000 9.0000 -3.0000
0) 5.6957 3.4348
0) 0 20.2443
L =
1.0000 o) 0)
0.4783 1.0000 0)
0.2174 -1.0458 1.0000
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Ex: Inverse Power Method in MATLAB®

iter
1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000

wmax
0.0498
0.0650
0.0854
0.1075
0.1267
0.1392
0.1459
0.1491
0.1506

10.0000 0.1512
Inverse Power Method has converged

wmin =

Z =
-0.3360
0.7857
0.5195

April.16,2009

6.6120

I
0.0139
0.0175
0.0181
0.0172
0.0134
0.0084
0.0045
0.0022
0.0010
0.0005

z(1)
0.5774
0.3538
0.1003

-0.1005
-0.2237
-0.2864
-0.3151
-0.3278
-0.3334
-0.3360

SelisOnel©

Z(2)
0.5774
0.5812
0.5941
0.6388
0.6965
0.7398
0.7645
0.7769
0.7829
0.7857

z(3)
0.5774
0.7328
0.7981
0.7627
0.6818
0.6088
0.5624
0.5375
0.5253
0.5195

AC)
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QR Method

To find eigenvalues of a real matrix A:

" Generate a sequence of matrices A™M) that
are orthogonally similar te A, I.€., have the
same eigenvalues as A

= Find the eigenvalues from the matrix to which
the AM sequence converges
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QR Factorization Using Householder Transformations

= Suppose that A Is a real symmetric matrix.

- IS used to construct a similar
symmetric . Thenthe QR Method can
be used to find all eigenvalues of the tridiagonal matrix.
A=0R where Q Is orthogonal and R Is upper triangular

A =(Hy)(H;A) =Q1Ry
=(Q;Hy)(HR1) =Q5R;
f(Qsz)(Hst) =Q3R3

:(.Q.n.-ZHn-l)(Hn-an-Z) :QR

H, : Householder matrix that zeros out the k' column, below
the diagonal, of the matrix it multiplies
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QR Factorization Using Householder Transformations

%QR Factorization using Householder transformations

%Ref: L.V.Fausett, Applied Numerical Analysis Using Matlab, 2nd ed.,p.164
function [Q,R]=QRfactor(A)

[m,n]=size(A);

R=A; %%6Start with R=A
Q=eye(m); %Set Q as the identity matrix
for k=1:m-1

x=zeros(m,1);

X(k:m,1)=R(k:m,K);

g=norm(x);

v=x;  V(k)=x(k)+g;

%O0rthogonal transformation matrix that eliminates one element
%Dbelow the diagonal of the matrix it is post-multiplying:

s=norm(Vv);
If s~=0, w=V/s; u=2*R"*w;
R=R-w*u’; %Product HR
Q=0Q-2*Q*w*w'; %Product QR
end
end
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QR Method

To see that A™) (that are orthogonally similar to A)
In the sequence are similar:

1. A=QR — R=Q’A

2. AO=RQ — AD=Q’AQ

Thus, AW is similar to A

Factor A= QWRW and form A= QWRW

R: Upper triangular matrix
Q: Unitary matrix

Ref: L. V. Fausett, Applied Numerical Analysis Using MATLAB, 2nd Ed, Pearson Prentice Hall 2008, Chap.5
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QR Method: Outline

To find all eigenvalues of matrix A:
Define A(1)=A
for k=1:kmax
Factor A(k)=Q(k)*R(k)
Define A(k+1)=R(k)*Q(k)
end

Ref: L. V. Fausett, Applied Numerical Analysis Using MATLAB, 2nd Ed, Pearson Prentice Hall 2008, Chap.5
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Ex: QR Method in MATLAB®

% QR method to find eigenvalues
%Using QRfactorization

%A=0QR => R=Q'A where Q'=inv(Q)
function eigen=QReigen(A,imax)

for iI=1:Imax,
[Q,R]=QRfactor(A); %Personally created function
A=R*Q; %Defining new A=RQ=0Q'AQ
end

eigen=diag(A)
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EX: Orthogonal-Triangular Decomposition in MATLAB®

>> A=[-223;135;-3-12]

A =
-2 2
1 3
-3 -1

5
2

>>[Q,R]=ar(A)

Q =
-0.5345
0.2673
-0.8018
==
3.7417
0)
0
>> Q*R
ans =
-2.0000
1.0000
-3.0000
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-0.6172
-0.7715
0.1543

0.5345
-3.7033
0

ZA0]0/0]0)
3.0000
-1.0000

-0.5774
0.5774
0.5774

-1.8708
-5.4006
2.3094

3.0000
SH0/0/0]0)
Z0]0/0]0)

QR  Orthogonal-triangular decomposition

[Q,R] = QOR(A), where A is m-by-n, produces an
m-by-n upper triangular matrix R and
an m-by-m unitary matrix Q so that A =
Q*R.

[O,R] = OR(A,0) produces the "economy size"
decomposition. If m>n, only the first n
columns of Q and the first n rows of R
are computed. If m<=n, this is the same

as [Q,R] = QR(A)

Example: The least squares approximate solution to A*x = b,
I.e. min|A*x-b|, can be found with the Q-less QR
decomposition and one step of iterative refinement:

if issparse(A), R = gr(A); else R = triu(gr(A)); end
x = R\R\(A™b)):

r=Db - A*x;

e = R\(R\(A™D):

X=X+ e;
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>>A=[123;456; 789; 10 11 12 ]
A=

1 2 3
4 5 6
/7 8 9
10 11 12
>>[Q,RI=ar(A)
Q:
-0.0776 -0.8331 0.54/3 -0.0221
-0.3105 -0.4512 -0.7133 0.4373
-0.5433 -0.0694 -0.2153 -0.8085
-0.7762 0.3124 0.3813 0.3932
R =
-12.8841 -14.5916 -16.2992
0 -1.0413 -2.0826
0 0 -0.0000

0 0 0
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Ex1l: QR
Decomposition

® This IS a rank-deficient
matrix; the middle column
IS the average of the other
two columns. The rank
deficiency Is revealed by
the factorization:

="The triangular structure
of R gives it zeros below
the diagonal; the zero on
the diagonal in R(3,3)
Implies that R, and
consequently A, does not
have full rank
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>>A=[123;456;789;1011 12]; y=[2; 4; 6; 8];
>> x=Aly
Warning:Rank deficient, rank=2, tol=1.4594e-014.
X =[-0.0000; O; 0.6667]
>>[Q,R,E] = qr(A)
Q=
-0.1826 -0.8165 0.5465 0.0363
-0.3651 -0.4082 -0.7558 0.3589
-0.5477 -0.0000 -0.1280 -0.8268
-0.7303 0.4082 0.3373 0.4316

Ri=
-16.4317 -12.7802 -14.6059
0] 1.6330 0.8165
0] 0] 00]0]0]0)
0] 0] 0]
E =
O 1 O
0O 0 1
1 0 O

>> tol = max(size(A))*eps*abs(R(1,1))

tol = 1.4594e-014

>>7=Q%y; x=R\z

Warning:Rank deficient,rank=2, tol=1.4594e-014.
X =[-0.0000; O; 0.6667]
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Ex2: OR
Decomposition

" The OR factorization is used to solve linear
systems with more equations than unknowns

" Linear system Ax=y represents 4 equations
in only 3 unknowns. The best solution in a
least squares sense is computed by x=Aly

® The quantity tol is a tolerance used to
decide if a diagonal element of R is negligible.
If [Q,R,E] = gr(A), then
tol=max(size(A))*eps*abs(R(1,1))
= [OQ,R,E] = gr(A) for full matrix A, produces a
permutation matrix E, an upper triangular
matrix R with decreasing diagonal elements,
and a unitary matrix Q so that A*E = Q*R. The
column permutation E is chosen so that
abs(diag(R)) is decreasing.
® The solution x is computed using the
factorization and the two steps
z=0Q"b; x=R\z
= Ax equals y to within roundoff error, which
indicates that even though the simultaneous
equations Ax=y are overdetermined and rank
deficient, they happen to be consistent. There
are infinitely many solution vectors x; the OR
factorization has found just one of them.
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>> [u,s,v]=svd(A)

U =
-0.5476
-0.7997
-0.2462

o=
7.0172

0)
0)

AV ==
0.1473
-0.4629
-0.8741

>> U*Ss*V'

ans =
2 010]0]0
1.0000
-3.0000
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0.3027 -0.7800
-0.4636 0.3815
0.8327 0.4960

0 0
3.9254 0
0 1.1617

-0.9088 0.3904
-0.4122 -0.7847
0.0651 0.4814

2.0000 3.0000
3.0000 5.0000
-1.0000 2.0000

EXx: Eigenvalues In
MATLAB®

SVD Singular value decompaosition

U,S,V] = SVD(X) produces a diagonal matrix
S, of the same dimension as X and with
nonnegative diagonal elements in decreasing
order, and unitary matrices U and V so that X
= U*S*V'.

S = SVD(X) returns a vector containing the
singular values.
U,S,V] = SVD(X,0) produces the “economy
size” decomposition. If X is m-by-n with m >
n, then only the first n columns of U are
computed and S is n-by-n.

For m <= n, SVD(X,0) is equivalent to
SVD(X).
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When the eigenvalues (and eigenvectors) of a symmetric matrix
are known, the following values are easily calculated:

Condition number: For a nonsingular matrix A, it is defined as cond(A) =
[|All>*]|A=1]],- In case of a symmetric matrix, it is the absolute value of the quotient of
the I2 argest and smallest eigenvalue. Matrices with large condition numbers can
cause numerically unstable results, I.e., small perturbation can result in large errors.
Hilbert matrices are the most famous ill-conditioned matrices. For ex: Fourth order
Hilbert matrix has a condition of 15514, while for order 8 it is 2.7 * 108.

Rank: A matrix A has rank r If it has r columns which are linearily independent while
the remaining columns are linearly dependent on these.

Equivalently, ris the dimension of the range of A. Furthermore it is the number: of
nonzero singular values. In case of a symmetric matrix r is the number of nonzero
eigenvalues. Due to rounding errors, numerical approximations of zero eigenvalues
may not be zero (it may also happen that a numerical approximation is zero while the
true value is not). Thus, one can only calculate the numerical rank by making a
decision which of the elgenvalues are close enough to zero.

Singularvalues: For a (square) matrix A, these are the sguare roots of the (non
negative) eigenvalues of AA. In case of a symmetric matrix S — S’S = S?, and the
singular values of S are the absolute values of the eigenvalues of S

2-Norm and spectral radius: For a matrix A, It IS the norm based on the euclidian
vectornorm, I.e. the largest value |[Ax]]| , when X runs through all vectors with' [|x||,=1
It Is the Iargest singular value of A. In case of a symmetric matrix, it Is the largest
absolute value of its eigenvectors and thus egual to its spectral radius.
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Ref: http://en.wikipedia.org/wiki/Jacobi eigenvalue algorithm



For More Online Information

= hitp://www.sosmath.com/diffeg/system/linear/eigenvalue/eigenvalue.
html

= hitp://mathworld.wolfram.com/Eigenvalue. html

= h[ttp://www.miislita.com/information-retrieval-tuterial/matrix-tutorial-3-
eigenvalues-eigenvectors.html

= http://math.fullerton.edu/mathews/n2003/EigenvaluesMod.html|
= http://math.fullerton.edu/mathews/n2003/HessenbergMod.html
= http://math.fullerton.edu/mathews/n2003/HouseholderMod.html
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