Solving Systems of

Homogeneous Linear Equations (Algebraic and Differential)

$$
A x=y=0
$$

ill-conditioned problems Eigenvalues and Eigenvectors

Selis Önel, PhD

"ill-conditioned" Problems

Some linear problems are solvable but solutions become inaccurate due to:

- Approximate empirical data
- Floating point numbers approximation of real numbers
- Small rounding errors
- Small changes in coefficients

Small change in data \rightarrow large change in solution

"ill-conditioned" Problems

Ex:
Small changes in coefficients \rightarrow large changes in solution

$$
\begin{aligned}
& \left(\begin{array}{ll}
0.12065 & 0.98775 \\
0.12032 & 0.98755
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{2.01045}{2.00555} \rightarrow x_{1}=14.7403, \quad x_{2}=0.23942 \\
& \left(\begin{array}{ll}
0.12065 & 0.98775 \\
0.12032 & 0.98755
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{2.0145}{2.00555} \rightarrow x_{1}=17.9756, \quad x_{2}=-0.15928
\end{aligned}
$$

"ill-conditioned" Problems

Ex: Two lines (functions) are nearly parallel

If the intercepts with the vertical axis vary just a little, then the intersection will vary a lot
Hence, the solution of the corresponding 2D system will vary a lot

Ref: http://www2.krellinst.org/UCES/archive/classes/CNA/dir1.7/uces1.7.html

"ill-conditioned" Problems

Ex: Function approximation

To determine the coefficients in an nth order polynomial:

- Set the polynomial at distinct points equal to the function evaluated at these points
Ex: Set a quadratic polynomial near points x_{1}, x_{2} and x_{3}, then find the three coefficients of

$$
P(x)=a_{0}+a_{1} x+a_{2} x^{2}
$$

Solve the system associated with $P\left(x_{i}\right)=f\left(x_{i}\right)$ for $i=1,2,3$.
Then, the matrix form is

\rightarrow If two of the interpolation points are close, then the computed solution may have significant error

"ill-conditioned" Problems

How can we reduce the errors?
Using Gauss elimination to solve the problem

1. Increase the precision of the floating point numbers
2. Avoid division by small numbers Use row pivoting in the forward sweep of the Gaussian elimination algorithm

Check the "condition" of the coefficient matrix

Ex: ill-conditioned system

Use Gaussian elimination algorithm to solve the following linear system

1. Use real numbers: Add (-10^{d})(row 1) to (row 2) to get for $\mathrm{d}=4$, solve for x_{2} and x_{1} : $\mathrm{x}_{2}=3.9997 / 1.9999$
$\left[\begin{array}{cc}10^{-4} & 2 \\ 0 & 1-2\left(10^{4}\right)\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}4 \\ 3-4\left(10^{d}\right)\end{array}\right]$.
$x_{1}=(4-2(3.9997 / 1.9999)) 10^{4}$
$=2(2(1.9999)-3.9997)) / 1.9999$
104
$=2 / 1.9999$
2. Use floating point numbers with 3 digits
$\left[\begin{array}{cc}{\left[\begin{array}{cc}1 \cdot 10^{-3} & .2 \cdot 10^{1} \\ 0 & n\left(1-2\left(10^{4}\right)\right.\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}4 \cdot 10^{1} \\ 2\left(3-4\left(10^{d}\right)\right.\end{array}\right]} \\ n\left(1-2\left(10^{4}\right)=n\left((-2+.0001) 10^{5}\right)=-2 \cdot 10^{5}\right. \\ n\left(3-4\left(10^{4}\right)=n\left(\left(-4+.000310^{5}\right)=-4 \cdot 10^{5}\right.\right.\end{array}\right.$
3. Interchange rows of the system to avoid division by a small number

ill-conditioned system

If computing precision is high, ill-conditioned problems can be solved accurately

Check an ill-conditioned problem, if

- $\operatorname{det}(A) \operatorname{det}\left(\left(A^{-1}\right)\right)$ deviates from 1
- $\left(A^{-1}\right)^{-1}$ is different from A
- $A A^{-1}$ deviates from the identity matrix
- $\left.A^{-1}\left(A^{-1}\right)^{-1}\right)$ deviates from the identity matrix more significantly than $A A^{-1}$

Double-precision solves the problems in mildly ill-conditioned problems, so above problems may disappear with double-precision

Ex: Hilbert matrices

Very difficult to invert numerically, very ill-conditioned !

Defined by $\mathrm{A}=\left[\mathrm{a}_{\mathrm{i}, \mathrm{i}}\right]$ where $\mathrm{a}_{\mathrm{i}, \mathrm{i}}=$ $1 /(i+j-1), i, j=1,2, \ldots n$
4×4 Hilbert Matrix

\% Hilbert.m Compute the condition number and $\operatorname{det}(A) \operatorname{det}(\operatorname{inv}(A))$ for the 5×5 and 14×14
\% Hilbert matrices
clear
for $\mathrm{n}=5: 14$
for $\mathrm{i}=1 \mathrm{n}$, for $\mathrm{j}=1 \mathrm{n}$, $a(i, j)=1 /(i+j-1)$; end
end
c=cond(a);
$\mathrm{d}=\operatorname{det}(\mathrm{a})^{*} \operatorname{det}\left(\mathrm{a}^{\wedge}(-1)\right)$;
fprintf(' $\mathrm{n}=\% 3.0 \mathrm{O}$ cond(a)=\%e det**et=\%e \ln ', n,c, d)
end

Ex: Hilbert matrices

$n=5$ cond $(a)=4.766073 \mathrm{e}+005$ det*det=1.000000e +000
$n=6$ cond $(a)=1.495106 e+007$ det*det $=1.000000 e+000$
$\mathrm{n}=7$ cond $(\mathrm{a})=4.753674 \mathrm{e}+008$ det*det $=1.000000 \mathrm{e}+000$
$\mathrm{n}=8$ cond $(\mathrm{a})=1.525758 \mathrm{e}+010$ det ${ }^{*}$ det $=1.000000 e+000$
$\mathrm{n}=9$ cond $(\mathrm{a})=4.931538 \mathrm{e}+011$ det*det $=1.000000 \mathrm{e}+000$
$n=10$ cond $(a)=1.602501 e+013$ det*det $=1.000013 \mathrm{e}+000$
$n=11$ cond $(a)=5.223947 e+014$ det*det=1.000118e +000
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND $=2.570030 \mathrm{e}-017$.
$>$ In Hilbert at $11 \mathrm{n}=12$ cond $(\mathrm{a})=1.632619 \mathrm{e}+016$ det* det $=1.019081 \mathrm{e}+000$ Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. $\mathrm{RCOND}=1.342113 \mathrm{e}-018$.
$>$ In Hilbert at $11 \mathrm{n}=13$ cond $(\mathrm{a})=1.316877 \mathrm{e}+018$ det * det $=1.211551 \mathrm{e}+000$ Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND $=5.393028 e-019$.
$>$ In Hilbert at $11 \mathrm{n}=14$ cond(a)=2.376739e+017 det*det=2.039773e-001

How to find if a matrix is ill-conditioned

Condition number of matrix A
An ill-conditioned problem generates large errors in the computed solution
Let the exact solution be x where $A x=d$
Let X be the computed solution where
$A X-d=-r \rightarrow$ nonzero residual
Relative error is given by the ratio of the "size" of x X and the "size" of x
In ill-conditioned problem this ratio is large!

How to find if a matrix is ill-conditioned

Condition number of matrix A

In order to be more precise about the "size" we define the max norm of a vector, and it is analogous to the absolute value of a single real number
$\operatorname{Cond}(A)=\|A\|\left\|A^{-1}\right\|$, where $\|A\|=$ Norm of matrix A

Euclidean norm

$$
|A| \mid=\left(\sum_{, ~ \mid A, ~}^{A}| |^{1)^{12}}\right.
$$

Euclidean Norm is the Length of a vector $\mathrm{x}: \quad\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots}$

How to find if a matrix is ill-conditioned

Basic Properties.

1. $\|x\| \geq 0$ and $\|x\|=0$ if and only if $x=0$.
2. $\|x+y\| \leq\|x\|+\|y\|$
3. $\|\alpha x||\leq|\alpha||| x\|$ where α is real
4. $\|\mathrm{Ax}\| \leq\|\mathrm{A}\|\|\mathrm{x}\|$ where $\|\mathrm{A}\| \equiv \max \sum_{i} \mid \mathrm{a}_{\mathrm{i}, \mathrm{j}} \mathrm{J}$ (Natural matrix norm)

Matrix Norm:

$$
\begin{aligned}
& \text { Let } x=\left[\begin{array}{c}
-1 \\
6 \\
-9
\end{array}\right] \operatorname{and} A=\left[\begin{array}{ccc}
1 & 3 & -4 \\
1 & 3 & 1 \\
3 & 0 & 5
\end{array}\right] . \\
& |x\|=\max \{16,9\}=9 \operatorname{ard}\| A|=\max \{6,5\}=8 .
\end{aligned}
$$

Matrix Eigenvalues and Eigenvectors

Eigenvalues are important in:

- Analysis of convergence characteristics of iterative methods for solving linear systems
- Determining the condition of a matrix \rightarrow Ratio of the largest to the smallest eigenvalue of a matrix (if condition is large, matrix is ill-conditioned)
- Solving sets of linear differential equations
- Finding physical characteristics of a structure (principal stress, moments of inertia, ...)

Eigenvalue (Characteristic-Value) Problems

Given: $A X=C$	A is a n by n matrix of coefficients
If $C \neq 0$ and $\operatorname{det}(A) \neq 0$	This is a necessary condition for a unique solution
If $C \neq 0$ and $\operatorname{det}(A)=0$	Either there is a family of solutions (rank $(A)<n)$ or there is no solution (rank(A ($)>n)$ due to inconsistency (or incompatibility)
If $C=0$ and $\operatorname{det}(A) \neq 0$	Trivial solution, i.e., $X=0$
If $C=0$ and $\operatorname{det}(A)=0$	There is a family of solutions

Eigenvalue (Characteristic-Value) Problems

Given: $A X=\lambda X$ or $(A-\lambda I) X=0$	A is a n by n matrix of coefficients I is the identity matrix
Set $B=(A-\lambda I)$	The problem becomes $B X=0$ This is the same as the $A X=C=0$ case
Remember for $A X=C=0$	Either, there is a family of solutions if det $(A-\lambda I)=0$ or there is only the trivial solution $X=0$
det $(A-\lambda I)=0$	Gives the non-trivial solution, i.e., $X \neq 0$ Nontrivial solution: Eigenvalues λ_{i}
Every eigenvalue λ_{i}	Gives a solution vector, X_{i} called the eigenvector

Nonhomogeneous Set of Equations

- $A x=y$: Nonhomogeneous set of n equations If the n equations are linearly independent, i.e., $\operatorname{det}(\mathrm{A}) \neq 0 \rightarrow$ unique solution
(one set of x values that makes the equations balance)
- To solve a non-homogeneous set of linear equations, use
- Elimination methods such as Gauss or Gauss-Jordan
- Matrix inverse
- Cramer's rule
- Iterative methods such as Jacobi, Gauss-Siedel, ...

Homogeneous Set of Equations

- $A x=0$: Homogeneous set of n equations
- Nontrivial solutions (solutions other than all $x=0$) are possible but generally not unique
- Simultaneous equations establish relationships among x's that can be satisfied by various combinations of values.
Eigenvalue problems are typically of the general form:

$$
\begin{aligned}
& \left(A_{11}-\lambda\right) x_{1}+A_{12} x_{2}+\ldots+A_{1 n} x_{n}=0 \\
& A_{21} x_{1}+\left(A_{22}-\lambda\right) x_{2}+\ldots+A_{2 n} x_{n}=0 \\
& \ldots . \quad \ldots . \quad \ldots . \quad \ldots . \quad \ldots \\
& A_{n 1} x_{1}+A_{n 2} x_{2}+\ldots+\left(A_{n n}-\lambda\right) x_{n}=0
\end{aligned}
$$

$$
\begin{aligned}
& {[[A]-\lambda[I]][x]=0} \\
& \text { where } \\
& \operatorname{det}([[A]-\lambda[I]])=0
\end{aligned}
$$

where λ is an unknown parameter (eigenvalue or characteristic value)
A solution x or $[x]$ for such a system is the set of eigenvectors

Homogeneous Set of Equations r<n

- $A x=0$: Homogeneous set of n equations

If $\operatorname{det}(A) \neq 0$, the unique solution is the trivial solution $x=0$.
If $\operatorname{det}(A)=0$, there exists nontrivial solutions (solutions other than $x=0$),
i.e., $r=r a n k(A)$ where $r<n$

This means there are:

- r independent equations
- r unknowns that can be evaluated independently
- (n-r) unknowns that must be chosen arbitrarily

If nonzero values are chosen for ($n-r$) unknowns:
Homogeneous set \rightarrow Nonhomogeneous set of order n

- Use Gauss or Gauss-Jordan elimination to:
- Solve non-homogeneous set
- Solve homogeneous set first to determine number of independent equations r (rank of A), then solve set of r nonhomogeneous independent equations to evaluate r unknowns

Homogeneous Set of Equations $r<n$

$\left(A-\lambda I_{n}\right) \mathbf{x}=0$ is a homogeneous linear system with coefficient matrix $\mathbf{A}-\lambda_{n}$

- Eigenvector $\mathbf{x} \neq 0$, so find a nontrivial solution to the linear system
$\left(\mathrm{A}-\mathrm{N}_{\mathrm{n}}\right) \mathrm{x}=0$
- After Gauss elimination $\left(\mathbf{A}-\boldsymbol{\lambda} \mathbf{I}_{\mathrm{n}}\right)$ must contain a zero row
i.e. matrix $\mathbf{A}-\lambda \boldsymbol{I}_{n}$ must be singular, so

1. $\operatorname{det}(\mathbf{A}-\lambda \mathrm{n})=0 \rightarrow$ characteristic equation of matrix \mathbf{A} and solving it for λ gives the eigenvalues of A
2. $\mathbf{c}(\lambda)=\operatorname{det}\left(\mathbf{A}-\lambda l_{n}\right) \rightarrow$ the characteristic polynomial of matrix \mathbf{A} roots of the characteristic polynomial are the eigenvalues

- n eigenvalues of \mathbf{A} are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$: the corresponding eigenvectors are nontrivial solutions of the homogeneous linear system
$\left(A-\lambda_{i} I_{n}\right) x=0$ for $i=1,2, \ldots, n$
Summary of computational approach for determining eigen-pairs (λ, \mathbf{x}) as a two-step procedure:

1. To find the eigenvalues of \mathbf{A} compute the roots of the characteristic equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$
2. To find an eigenvector corresponding to an eigenvalue λ_{i}, compute a nontrivial solution to the homogeneous linear system $\left(\mathbf{A}-\lambda_{i} \mathrm{I}_{n}\right) \mathrm{x}=\mathbf{0}$

Homogeneous Set of Equations r<n

- $A x=0$: Homogeneous set of linear algebraic equations Special case of $A x=0$ for:
- Vibrating systems
- Structure analysis
- Electric circuit system analysis
- Solution and stability analysis of ordinary differential equations

System of equations has the form: $A x=\lambda x$
λ : Eigenvalue (characteristic value) of matrix A
x : Eigenvector (characteristic vector) corresponding to λ

Linear Differential Equations $x^{\prime}=A x$

A : coefficient matrix with n distinct real eigenvalues
x : column vector of unknown functions of time
$x^{\prime}: d x / d t$
$x^{\prime}=A x+f, \quad x^{\prime}=A x+f(t)$
Applications: Time dependent mixing, heat conduction

There should be n linearly independent homogeneous solutions formed by the eigenvectors x_{i} and eigenvalues λ_{i}

Matrix Eigenvalues and Eigenvectors

- If $(A-\lambda) x=0$ then let $A x=\lambda x$, where

A : n-by-n square matrix
$x:$ column vector of size n
λ : a number

Then both the LHS and RHS of $A x=\lambda x$ is a column vector of size n.

- Let $A X=\lambda X=0$ for $A \neq 0$
- Which x would satisfy $A x=0$ for $\lambda \neq 0$?

Matrix Eigenvalues and Eigenvectors

Let $A X=\lambda X=0$ for $A \neq 0$ and $\lambda \neq 0$
Eigenvalues and Eigenvectors of A

- Rearranging $\mathrm{Ax}=\lambda \mathrm{x}=0$ gives:
$(A-\lambda I) x=0$
where I is an n-by-n identity matrix and $\lambda \cdot I$ makes a matrix the same size as A.
- $(A-\lambda I) x=0$ is a system of homogeneous equations where

$$
\operatorname{det}(A-\lambda I)=0 \text { for } \lambda \neq 0
$$

Characteristic Matrix and Characteristic Equation

For a linearly independent system

$\left(A_{11}-\lambda\right) x_{1}+A_{12} x_{2}+\ldots+A_{1 n} x_{n}=0$
$A_{21} x_{1}+\left(A_{22}-\lambda\right) x_{2}+\ldots+A_{2 n} x_{n}=0$
$\ldots \ldots \quad \ldots \ldots \quad \ldots . \quad \ldots . \quad \ldots$
$A_{n 1} x_{1}+A_{n 2} x_{2}+\ldots+\left(A_{n n}-\lambda\right) x_{n}=0$

$$
\begin{aligned}
& {[[A]-\lambda[I]][x]=0} \\
& \text { where } \\
& \operatorname{det}([[A]-\lambda[I]])=0
\end{aligned}
$$

The nonsingular characteristic matrix A can be represented as

$$
|A-\lambda I|=\operatorname{det}\left(\begin{array}{cccc}
A_{11}-\lambda & A_{12} & \ldots & A_{1 n} \\
A_{21} & A_{22}-\lambda & \ldots & A_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
A_{n 1} & A_{n 2} & \ldots & A_{n n}-\lambda
\end{array}\right)=0
$$

The determiant can be expanded to yield a polynomial of $\mathrm{n}^{\text {th }}$ degree $\lambda^{n}-\alpha_{1} \lambda^{n-1}-\alpha_{2} \lambda^{n-2}-\ldots-\alpha_{n}=0, \quad$ where $\alpha_{i}=f\left(A_{i j}\right)$

Characteristic Equation (Polynomial)

$$
f(\lambda)=\lambda^{n}-\alpha_{1} \lambda^{n-1}-\alpha_{2} \lambda^{n-2}-\ldots-\alpha_{n}=0, \text { where } \alpha_{i}=f\left(A_{i j}\right)
$$

- $f(\lambda)=\operatorname{det}(A-I) \rightarrow$ Characteristic polynomial of matrix A
$f(\lambda)$: polynomial of λ of order n
- Has n roots \rightarrow eigenvalues of A
- Roots may be real distinct, real repeated, or complex depending on A
- A nonsingular real symmetric matrix of order n has n real nonzero eigen-values and n linearly independent eigenvectors
- Eigenvectors of a real symmetric matrix are orthogonal to each other

Ex: Singular real symmetric matrix

Find the eigenvalues and eigenvectors for $\mathrm{Ax}=0$, where $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$
Calculating eigenvalues: $\operatorname{det}(A-\lambda I)=0=\operatorname{det}\left(\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right)=\lambda^{2}-4 \lambda+3$, where $\lambda_{1}=1$ and $\lambda_{2}=3$ Inserting $\lambda_{1}=1$ in $\operatorname{det}(A-\lambda I)$ gives:
$\left(\begin{array}{cc}2-1 & 1 \\ 1 & 2-1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}$ which can be written as $1 * x_{1}+1 * x_{2}=0$, i.e., $\quad x_{1}=-x_{2}$
Infinite number of eigenvectors would satisfy this condition, such as $\binom{5}{-5},\binom{0.1}{-0.1}, \ldots$
Inserting $\lambda_{2}=3$ in $\operatorname{det}(A-\lambda I)$ gives:
$\left(\begin{array}{cc}2-3 & 1 \\ 1 & 2-3\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}$ which can be written as $-1 * x_{1}+1 * x_{2}=0$ and $1 * x_{1}-1 * x_{2}=0$, i.e., $\quad x_{1}=x_{2}$
Infinite number of eigenvectors would satisfy this condition, such as $\binom{5}{5},\binom{0.1}{0.1}, \ldots$

Ex Contd.: Orthogonal Eigenvectors

For eigenvectors to have the orthonormal property, they must satisfy $\mathrm{QQ}^{\prime}=\mathrm{I}$ Remember: An orthogonal matrix is whose transpose is its inverse, i.e., $\mathrm{Q}^{\prime}=\mathrm{Q}^{-1}$

For example:

$$
\mathrm{QQ}^{\prime}=\left(\begin{array}{cc}
c_{1} & c_{2} \\
-c_{1} & c_{2}
\end{array}\right)\left(\begin{array}{cc}
c_{1} & -c_{1} \\
c_{2} & c_{2}
\end{array}\right)=\left(\begin{array}{cc}
c_{1}^{2}+c_{2}^{2} & -c_{1}^{2}+c_{2}^{2} \\
-c_{1}^{2}+c_{2}^{2} & c_{1}^{2}+c_{2}{ }^{2}
\end{array}\right)=I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$c_{1}^{2}+c_{2}^{2}=1$ and $-c_{1}^{2}+c_{2}^{2}=0$ gives $c_{1}^{2}=c_{2}^{2}=0.5$
Accordingly, $c_{1}=\frac{1}{\sqrt{2}}$ or $c_{1}=-\frac{1}{\sqrt{2}}$ and $c_{2}=\frac{1}{\sqrt{2}}$ or $c_{2}=-\frac{1}{\sqrt{2}}$

Consequently, for this problem, various Q's can be obtained, such as

$$
\mathrm{Q}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Ex: Eigenvalues in MATLAB®

```
\(\gg A=[21 ; 12]\)
\(A=\)
    21
    12
>> \(\operatorname{det}(\mathrm{A})\)
ans = 3
>> eig(A)
ans =
    1
    3
\(\gg[Q, d]=\operatorname{eig}(A)\)
\(\mathrm{Q}=\)
    \(-0.707106781186550 .70710678118655\)
    \(0.70710678118655 \quad 0.70710678118655\)
\(d=\begin{array}{rr}1 & 0 \\ 0 & 3\end{array}\)
```


Ex: Electric circuit system analysis

Use eig(A) in MATLAB® to determine the stability of electric circuits. For the stability of an electric circuit, the necessary and sufficient condition is: eigenvalues of the system should be on the left hand side of the complex number axis and, if an imaginary axis exists, then the eigenvalues on the imaginary axis should not have any multiplicates.

\% This circuit is not stable.

Ex: Vibrating Spring-Mass System

Note that this is in the same form as $A x=\lambda x$, where $\lambda=w^{2}$

Ex: Vibrating Spring-Mass System

m_{2}

Let $\mathrm{m}_{1}=\mathrm{m}_{2}=1$ and $k_{1}=3, k_{2}=2$. Then the matrix becomes:

$$
\left(\begin{array}{cc}
-5 & 2 \\
2 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}=\lambda\binom{x_{1}}{x_{2}} \quad \text { or }\left(\begin{array}{cc}
-5-\lambda & 2 \\
2 & -2-\lambda
\end{array}\right)\binom{x_{1}}{x_{2}}=0
$$

For a nontrivial solution $\rightarrow \operatorname{det}(A-\lambda I)=0$
$\operatorname{det}(A-\lambda I)=(-5-\lambda)(-2-\lambda)-4=\lambda^{2}+7 \lambda+6=0$
This gives two solutions: $\lambda_{1}=-6$ and $\lambda_{2}=-1$
For $\lambda_{1}=-6 \rightarrow\left(\begin{array}{cc}-5+6 & 2 \\ 2 & -2+6\end{array}\right)\binom{x_{1}}{x_{2}}=0 \rightarrow x_{1}=-2 x_{2} \rightarrow X_{1}=C_{1}\binom{-2}{1}$
For $\lambda_{2}=-1 \rightarrow\left(\begin{array}{cc}-5+1 & 2 \\ 2 & -2+1\end{array}\right)\binom{x_{1}}{x_{2}}=0 \rightarrow x_{1}=\frac{1}{2} x_{2} \rightarrow X_{2}=C_{2}\binom{1}{2}$
where X_{1} and X_{2} are eigenvectors and C_{1} and C_{2} are arbitrary numbers.
General solutions:
For $\lambda_{1}=-6 \rightarrow y_{1}(t)=-2 C_{1} e^{\sqrt{-6} t}=-2 C_{1} e^{i \sqrt{6} t}$

$$
y_{2}(t)=C_{1} e^{\sqrt{-6} t}=C_{1} e^{i \sqrt{6} t}
$$

For $\lambda_{2}=-1 \rightarrow y_{1}(t)=C_{2} e^{\sqrt{-1} t}=C_{2} e^{i t}$

$$
y_{2}(t)=2 C_{2} e^{\sqrt{-1} t}=2 C_{2} e^{i t}
$$

Ex: Vibrating Spring-Mass System

Converting the general solution to matrix notation:
Using Euler's equation, i.e., $e^{i z}=\cos (z)+i \sin (z)$
$\binom{y_{1}}{y_{2}}=\binom{-2}{1}[a \cos (\sqrt{6} t)+b \sin (\sqrt{6} t)]+\binom{1}{2}[c \cos (t)+d \sin (t)]$
There are four unknown constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d , which are complex numbers Therefore, we need four conditions (initial or boundary conditions).
Suppose the following initial conditions are given:
Displacements Velocities

$$
\begin{array}{ll}
y_{1}(0)=1 & y_{1}^{\prime}(0)=-2 \sqrt{6} \\
y_{2}(0)=2 & y_{2}{ }^{\prime}(0)=\sqrt{6}
\end{array}
$$

The solution in matrix notation is given as:

$$
\binom{y_{1}}{y_{2}}=\binom{-2}{1}[\sin (\sqrt{6} t)]+\binom{1}{2}[\cos (t)]
$$

The solution in open form is given as:

$$
y_{1}(t)=-2 \sin (\sqrt{6} t)+\cos (t) \text { and } y_{2}(t)=\sin (\sqrt{6} t)+2 \cos (t)
$$

Ex: Vibrating Spring-Mass System

Roots of Characteristic Polynomial-Eigenvalues

Matrix	Eigenvalue
Singular, $\operatorname{det}(\mathrm{A})=0$	At least one zero eigenvalue
Nonsingular, $\operatorname{det}(\mathrm{A}) \neq 0$	No zero eigenvalues
Symmetric, $\mathrm{A}=\mathrm{A}^{\prime}$	All real eigenvalues
Hermitian (see next slide)	All real eigenvalues
Zero matrix, $\mathrm{A}=0$	All zero eigenvalues
Identity, $\mathrm{A}=\mathrm{I}$	All unity eigenvalues
Diagonal, $\mathrm{A}=\mathrm{D}$	Equal to diagonal elements of A
Inverse, A^{-1}	Inverse eigenvalues of A
Transformed, $\mathrm{B}=\mathrm{Q}^{-1} \mathrm{AQ}$	Eigenvalues of $\mathrm{B}=$ eigenvalues of A

Ref: A. Constantinides and N. Moustoufi, Numerical Methods for Chemical Engineers with MATLAB® Applications, 1999, Prentice Hall PTR, p. 123

What is a Hermitian (Self-Adjoint) Matrix

A square matrix with complex entries which is equal to its own conjugate transpose

This means the element in the th row and jth column is equal to the complex coniugate of the element in the fh row and th column, for all indices i and j
Ex: If the conjugate transpose of a matrix A is shown by A^{\prime}, then $\mathrm{A}=\mathrm{A}^{\prime}$
$A=\left(\begin{array}{cc}3 & 2+i \\ 2-i & 1\end{array}\right)$

Every Hermitian matrix is normal.
It can be diagonalized by a unitary matrix, and the resulting diagonal matrix has only real entries. This means that all eigenvalues of a Hermitian matrix are real, and, moreover, eigenvectors with distinct eigenvalues are orthogonal

Methods for Finding Eigenvalues

- Power Method: Iterative procedure for finding a specific eigenvalue and its associated eigenvector for a given matrix A

The basic power method finds the dominant (largest magnitude) eigenvalue
The inverse power method finds the smallest eigenvalue

Methods for Finding Eigenvalues

- QR Method: Uses QR factorization to find all the eigenvalues for a given matrix A
- Produces a sequence of matrices that converge to a similar matrix for which eigenvalues are easy to find
- Does not directly find the eigenvectors, therefore inverse iteration can be used to find the eigenvector associated with any specified eigenvalue

Power Method

If x is an eigenvector of A :
Convert $\lambda x=A x$ into a sequence of approximations of λ and x

- Start with an initial guess z for the eigenvector x : $w=A z$
- If z is an eigenvector, for any component of $z: \lambda z_{k}=w_{k}$
- If z is not an eigenvector, normalize w and use it as the next approximation:

$$
\begin{array}{ll}
z^{(1)}=[1,1, \ldots, 1]^{\prime}, & w^{(1)}=A z^{(1)} \\
z^{(2)}=\frac{1}{w_{k}^{(1)}} w^{(1)}, & w^{(2)}=A z^{(2)} \\
z^{(3)}=\frac{1}{w_{k}^{(2)}} w^{(2)}, & w^{(3)}=A z^{(3)}, \ldots
\end{array}
$$

$$
\begin{aligned}
& z^{(1)}=[1,1, \ldots, 1]^{\prime}, \quad w^{(1)}=A z^{(1)} \\
& z^{(2)}=\frac{1}{w_{k}^{(1)}} w^{(1)}=\frac{1}{w_{k}^{(1)}} A z^{(1)} \\
& w^{(2)}=A z^{(2)}=A \frac{1}{w_{k}^{(1)}} A z^{(1)}=\frac{1}{w_{k}^{(1)}} A^{2} z^{(1)} \\
& z^{(3)}=\frac{1}{w_{k}^{(2)}} w^{(2)}=\frac{1}{w_{k}^{(2)}} \frac{1}{w_{k}^{(1)}} A^{2} z^{(1)} \\
& w^{(3)}=A z^{(3)}=A \frac{1}{w_{k}^{(2)}} \frac{1}{w_{k}^{(1)}} A^{2} z^{(1)} \\
& =\frac{1}{w_{k}^{(2)}} \frac{1}{w_{k}^{(1)}} A^{3} z^{(1)}
\end{aligned}
$$

With each iteration, the original estimate for z is multiplied with powers of $A \rightarrow$ Power method

Ex: Basic Power Method

Ex: Basic Power Method

Find the largest eigenvalue and the associated eigenvector of >> A=[23 9 -3; 11 10 2; 5-4 16];
$\gg \mathrm{z}=[1 ; 1 ; 1]$; \quad \%Start with the initial vector

$\gg \mathrm{w}=\mathrm{A}^{*} \mathrm{Z}$; $\mathrm{w}^{\text {s }} \quad$ \%Compute $\mathrm{w}=\mathrm{A}^{*} \mathrm{z}$
ans $=\begin{array}{lll}29 & 23 & 17\end{array}$
$\gg \mathrm{z}=\mathrm{w} / \mathrm{w}(1)$; $\mathrm{z}^{\text {; }} \quad$ \%Normalize w using the largest value and use as a guess ans $=1.000000000000000 .793103448275860 .58620689655172$

After 15 iterations the estimate of the largest eigenvalue: $\lambda \approx 28.06845698567594$ eigenvector $z^{\prime}: \approx 1.000000000000000 .631534310913830 .20511727084952$ error : $A^{*} Z-w(1)^{*} Z=0 \quad-0.00061599002606-0.00158620392198$ max norm of the error: $\|A z-\lambda z\|_{\infty}=0.00158620392198$

In MATLAB®:
$\gg[\operatorname{eig}(A)]{ }^{\prime}$
ans $=28.06839976386356 \quad 6.58643222669528 \quad 14.34516800944117$
The largest eigenvalue is 28.06839976 and successive approximations of the power method converge towards this value

Ex: Basic Power Method

function [z,wmax]=BasicPower(A,imax,tol)
[m, n]=size(A); \quad \% Get the dimensions of A
$w=0$ nes $(m, 1)$; \quad Start with initial guess eigenvalues
disp(iter wmax r \quad z(1) $\quad z(2) \quad z(3) \quad z(4)$ ')
for i=1: :imax
$[\mathrm{kk}, \mathrm{k}]=\max (\mathrm{abs}(\mathrm{w}))$; \% Returns the indices of the maximum w values in vector k
$\mathrm{z}=\mathrm{w} / \mathrm{w}(\mathrm{k})$; \quad \% Normalize w with respect to maxw=w(k)
w=A*z; \quad \% Calculate w again
wmax=w(k); $\quad \% \mathrm{z}(\mathrm{k})=1$
$r=n o r m(w m a x * z-w) ; \%$ Use Euclidean form (norm(w,p) $\left.=\operatorname{sum}\left(a b s(w) .^{\wedge} p\right)^{\wedge}(1 / p)\right)$
final=[i,wmax,r,z'];
disp(final)
if r<tol, disp('Power method has converged'), break
end
end

Ex: Basic Power Method in MATLAB®

$\gg A=[239-3 ; 11102 ; 5-4$ 16]; [z,wmax]=BasicPower(A,20,.001);

Inverse Power Method

Gives the smallest eigenvalue of A and is based on the fact that:
Eigenvalues of $B=A^{-1}$ are the reciprocals of the eigenvalues of A
To find the smallest λ of A (by avoiding computation of A^{-1}) first find $w_{\max }$ (dominant λ of B):
Apply the power method to $B=A^{-1}$ to find $w_{\text {max }}$

Ex: Inverse Power Method in MATLAB(B)

function [z,wmin]=PowerInverse(A,imax,tol)
[m, n]=size(A); \quad \% Get the dimensions of A
L=eye(m); \quad \% Create an identity matrix
$\mathrm{U}=\mathrm{A} ; \quad$ \% Set U equal to A o start with
for $\mathrm{j}=1$:m
for $\mathrm{i}=\mathrm{j}+1: m, \quad L(\mathrm{i}, \mathrm{j})=\mathrm{U}(\mathrm{i}, \mathrm{j}) / \mathrm{U}(\mathrm{j}, \mathrm{j})$;
$\mathrm{U}(\mathrm{i},:)=\mathrm{U}(\mathrm{i},:)^{2} \mathrm{~L}(\mathrm{i}, \mathrm{j})^{*} \mathrm{U}(\mathrm{j},:) ;$
end
end, A,U,L,
w=ones(m, 1);
disp('iter wmax r z(1) z(2) z(3) z(4)')
for $\mathrm{i}=1$: imax
$\mathrm{z}=\mathrm{w} /$ norm(w); $\mathrm{w}=\mathrm{LUsolve}(\mathrm{L}, \mathrm{U}, \mathrm{z}) ;$ \%Uses LU decomposition wmax=z**; r=norm(wmax*z-w);
final=[i, wmax, r, z']; disp(final)
if $r<t o l$, disp('Inverse Power Method has converged'), break, end end
wmin=1/wmax, \% Smallest eigenvalue is the reciprocal of wmax of

Ex: Inverse Power Method in MATLAB©

>> [z,wmin]=PowerInverse(A,20,0.001)

$\mathrm{A}=$			
23	9	-3	
11	10	2	
5	-4	16	
$\mathrm{U}=$			
23.0000	9.0000	-3.0000	
0	5.6957	3.4348	
0	0	20.2443	
$\mathrm{~L}=$			
1.0000	0	0	
0.4783	1.0000	0	
0.2174	-1.0458	1.0000	

Ex: Inverse Power Method in MATLAB©

```
iter wmax r r z(1) z(2) z(3) z(4)
1.0000
2.0000-0.0650
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000
10.0000}00.1512 0.0005 -0.3360 0.7857 0.5195
Inverse Power Method has converged
wmin = 6.6120
Z =
-0.3360
0.7857
0.5195
```


QR Method

To find eigenvalues of a real matrix A :

- Generate a sequence of matrices $A^{(m)}$ that are orthogonally similar to A, i.e., have the same eigenvalues as A
- Find the eigenvalues from the matrix to which the $A^{(m)}$ sequence converges

QR Factorization Using Householder Transformations

- Suppose that \mathbf{A} is a real symmetric matrix.
- Householder's method is used to construct a similar symmetric tridiagonal matrix. Then the QR Method can be used to find all eigenvalues of the tridiagonal matrix. $A=Q R$ where Q is orthogonal and R is upper triangular

$$
\begin{aligned}
& A=\left(H_{1}\right)\left(H_{1} A\right) \quad=Q_{1} R_{1} \\
&=\left(Q_{1} H_{2}\right)\left(H_{2} R_{1}\right)=Q_{2} R_{2} \\
&=\left(Q_{2} H_{3}\right)\left(H_{3} R_{2}\right)=Q_{3} R_{3} \\
&= \\
&=\left(Q_{n-2} H_{n-1}\right)\left(H_{n-1} R_{n-2}\right)=Q R
\end{aligned}
$$

H_{k} : Householder matrix that zeros out the $k^{\text {th }}$ column, below the diagonal, of the matrix it multiplies

QR Factorization Using Householder Transformations

```
%QR Factorization using Householder transformations
%Ref: L.V.Fausett, Applied Numerical Analysis Using Matlab, 2nd ed.,p. }16
    function [Q,R]=QRfactor(A)
[m,n]=size(A);
R=A; %Start with R=A
Q=eye(m); %Set Q as the identity matrix
for k=1:m-1
    x=zeros(m,1);
    x(k:m,1)=R(k:m,k);
    g=norm(x);
    v=x; v(k)=x(k)+g;
    %Orthogonal transformation matrix that eliminates one element
    %below the diagonal of the matrix it is post-multiplying:
    s=norm(v);
        if s~=0,w=v/s; u=2*R'*w;
        R=R-w*u'; %Product HR
        Q=Q-2*Q*w*w'; %Product QR
    end
end
```


QR Method

To see that $A^{(m)}$ (that are orthogonally similar to A) in the sequence are similar:

1. $A=Q R \rightarrow R=Q^{\prime} A$
2. $A^{(1)} \equiv R Q \rightarrow A^{(1)}=Q^{\prime} A Q$

Thus, $A^{(1)}$ is similar to A
Factor $A^{(1)}=Q^{(1)} R^{(1)}$ and form $A^{(2)}=Q^{(1)} R^{(1)}$

R: Upper triangular matrix
Q: Unitary matrix

Ref: L. V. Fausett, Applied Numerical Analysis Using MATLAB, 2nd Ed, Pearson Prentice Hall 2008, Chap. 5

QR Method: Outline

To find all eigenvalues of matrix A :

Define $A(1)=A$
for $k=1$:kmax
Factor $A(k)=Q(k)^{*} R(k)$
Define $A(k+1)=R(k)^{*} Q(k)$ end

Ref: L. V. Fausett, Applied Numerical Analysis Using MATLAB, 2nd Ed, Pearson Prentice Hall 2008, Chap. 5

Ex: QR Method in MATLAB®

\%QR method to find eigenvalues
\%Using QRfactorization
$\% A=Q R=>R=Q$ 'A where $Q^{\prime}=i n v(Q)$
function eigen=QReigen(A,imax)
for $\mathrm{i}=1$:imax,
[Q,R]=QRfactor(A); \%Personally created function $A=R^{*} Q$; \%Defining new $A=R Q=Q^{\prime} A Q$
end eigen=diag(A)

Ex: Orthogonal-Triangular Decomposition in MATLAB®

$\mathrm{A}=$

-2	2	3
1	3	5
-3	-1	2

$\gg[\mathrm{Q}, \mathrm{R}]=\operatorname{qr}(\mathrm{A})$
Q =
$\begin{array}{lll}-0.5345 & -0.6172 & -0.5774\end{array}$
$\begin{array}{llll}0.2673 & -0.7715 & 0.5774\end{array}$
$\begin{array}{lll}-0.8018 & 0.1543 & 0.5774\end{array}$
$\mathrm{R}=$
$\begin{array}{ccc}3.7417 & 0.5345 & -1.8708 \\ 0 & -3.7033 & -5.4006 \\ 0 & 0 & 2.3094\end{array}$
$\gg Q^{*} R$
ans =

-2.0000	2.0000	3.0000
1.0000	3.0000	5.0000
-3.0000	-1.0000	2.0000

QR Orthogonal-triangular decomposition
$[Q, R]=Q R(A)$, where A is $m-$ by-n, produces an m-by-n upper triangular matrix R and an m-by-m unitary matrix Q so that $\mathrm{A}=$ Q*R.
$[Q, R]=Q R(A, 0)$ produces the "economy size" decomposition. If $m>n$, only the first n columns of Q and the first n rows of R are computed. If $m<=n$, this is the same as $[\mathrm{Q}, \mathrm{R}]=\mathrm{QR}(\mathrm{A})$
Example: The least squares approximate solution to $A^{*} x=b$, i.e. $\min \left|A^{*} x-b\right|$, can be found with the $Q-l e s s ~ Q R$ decomposition and one step of iterative refinement:
if issparse(A), $R=\operatorname{qr}(A)$; else $R=\operatorname{triu}(q r(A))$; end
$x=\operatorname{Ri}\left(R^{\prime}\right)\left(A^{\prime *} b\right)$);
$r=b-A^{*} x ;$
$e=\operatorname{RI}\left(R^{\prime}\left(A^{\prime *} r\right)\right) ;$
$x=x+e$;
$\gg A=[123 ; 456 ; 789 ; 101112$]
A $=$

1	2	3		
4	5	6		
7	8	9		
10	11	12		
$\gg[Q, R]=\operatorname{qr}(A)$				
$Q=$				
-0.0776	-0.8331	0.5473	-0.0221	
-0.3105	-0.4512	-0.7133	0.4373	
-0.5433	-0.0694	-0.2153	-0.8085	
-0.7762	0.3124	0.3813	0.3932	
$R=$				
-12.8841	-14.5916	-16.2992		
0	-1.0413	-2.0826		
0	0	-0.0000		
0	0	0		

$\gg A=[123 ; 456 ; 789 ; 101112] ; \quad y=[2 ; 4 ; 6 ; 8] ;$ $\gg x=$ Aly
Warning:Rank deficient, rank=2, tol=1.4594e-014.

$\mathrm{X}=[-0.0000 ; 0 ; 0.6667]$			
>> $\mathrm{Q}, \mathrm{R}, \mathrm{E}]=\operatorname{qr}(\mathrm{A})$			
Q =			
-0.1826	-0.8165	0.5465	0.0363
-0.3651	-0.4082	-0.7558	0.3589
-0.5477	-0.0000	-0.1280	-0.8268
-0.7303	0.4082	0.3373	0.4316

$\mathrm{R}=$
-16.4317 -12.7802 -14.6059
$\begin{array}{lll}0 & 1.6330 & 0.8165\end{array}$
$0 \quad 0 \quad 0.0000$
$0 \quad 0 \quad 0$
$E=$
$\begin{array}{lll}0 & 1 & 0\end{array}$
$\begin{array}{lll}0 & 0 & 1\end{array}$
100
\gg tol $=\max (\operatorname{size}(A))^{*} \operatorname{eps}^{*} a b s(R(1,1))$
tol $=1.4594 \mathrm{e}-014$
$\gg z=Q^{\prime *} y ; \quad x=R 1 z$
Warning:Rank deficient,rank=2, tol $=1.4594 \mathrm{e}-014$.
$x=[-0.0000 ; 0 ; 0.6667]$

Ex2: QR Decomposition

- The QR factorization is used to solve linear systems with more equations than unknowns
- Linear system $A x=y$ represents 4 equations in only 3 unknowns. The best solution in a least squares sense is computed by $\mathrm{x}=\mathrm{Aly}$
- The quantity tol is a tolerance used to decide if a diagonal element of R is negligible. If $[Q, R, E]=\operatorname{lr}(A)$, then tol $=\max (\operatorname{size}(A))^{*}{ }^{*} \operatorname{cs}^{*} \operatorname{abs}(\mathrm{R}(1,1))$
- $[\mathrm{Q}, \mathrm{R}, \mathrm{E}]=\operatorname{qr}(\mathrm{A})$ for full matrix A , produces a permutation matrix E, an upper triangular matrix R with decreasing diagonal elements, and a unitary matrix Q so that $A^{*} E=Q^{*} R$. The column permutation E is chosen so that abs(diag(R)) is decreasing.
- The solution x is computed using the factorization and the two steps
$z=Q^{* *} b ; x=R \backslash z$
Ax equals y to within roundoff error, which indicates that even though the simultaneous equations $A x=y$ are overdetermined and rank deficient, they happen to be consistent. There are infinitely many solution vectors x; the QR factorization has found just one of them.

$\gg[\mathrm{u}, \mathrm{s}, \mathrm{v}]=\mathrm{svd}(\mathrm{A})$		
$\mathrm{u}=$		
-0.5476	0.3027	-0.7800
-0.7997	-0.4636	0.3815
-0.2462	0.8327	0.4960
$\mathrm{s}=$		
7.0172	0	0
0	3.9254	0
0	0	1.1617
$\mathrm{V}=$		
0.1473	-0.9088	0.3904
-0.4629	-0.4122	-0.7847
-0.8741	0.0651	0.4814
>> u^{*} s $^{*} v^{\prime}$		
ans =		
-2.0000	2.0000	3.0000
1.0000	3.0000	5.0000
-3.0000	-1.0000	2.0000

Ex: Eigenvalues in MATLAB®

SVD Singular value decomposition $[U, S, V]=S V D(X)$ produces a diagonal matrix S, of the same dimension as X and with nonnegative diagonal elements in decreasing order, and unitary matrices U and V so that X $=U^{*} S^{*} V^{\prime}$.

S = SVD (X) returns a vector containing the singular values.
$[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\mathrm{SVD}(\mathrm{X}, 0)$ produces the "economy size" decomposition. If X is m-by- n with $m>$ n , then only the first n columns of U are computed and S is n -by-n.

For $m<=n, \operatorname{SVD}(X, 0)$ is equivalent to SVD(X).

When the eigenvalues (and eigenvectors) of a symmetric matrix are known, the following values are easily calculated:

- Condition number: For a nonsingular matrix A, it is defined as cond $(A)=$
$\|A\|_{2}^{*}\|A-1\|_{2}$. In case of a symmetric matrix, it is the absolute value of the quotient of the largest and smallest eigenvalue. Matrices with large condition numbers can cause numerically unstable results, i.e., small perturbation can result in large errors. Hillbert matrices are the most famous ill-conditioned matrices. For ex: Fourth order Hilbert matrix has a condition of 15514 , while for order 8 it is $2.7{ }^{*} 10^{8}$.
- Rank: A matrix A has rank r if it has r columns which are linearily independent while the remaining columns are linearly dependent on these.
Equivalently, r is the dimension of the range of A. Furthermore it is the number of nonzero singular values. In case of a symmetric matrix r is the number of nonzero eigenvalues. Due to rounding errors, numerical approximations of zero eigenvalues may not be zero (it may also happen that a numerical approximation is zero while the true value is not). Thus, one can only calculate the numerical rank by making a decision which of the eigenvalues are close enough to zero.
- Singular values: For a (square) matrix A, these are the square roots of the (non negative) eigenvalues of $A^{\prime} A$. In case of a symmetric matrix $S \rightarrow S ' S=S^{2}$, and the singular values of S are the absolute values of the eigenvalues of S
- 2-Norm and spectial radius: For a matrix A, it is the norm based on the euclidian vectornorm, i.e. the largest value $\|A x\|_{2}$ when x runs through all vectors with $\|x\|_{2}=1$. It is the largest singular value of A. In case of a symmetric matrix, it is the largest absolute value of its eigenvectors and thus equal to its spectral radius.

For More Online Information

- http://www.sosmath.com/diffeg/system/linear/eigenvalue/eigenvalue. html
- http://mathworld.wolfram.com/Eigenvalue.html
- http:///www.miislita.com/information-retrieval-tutorial/matrix-tutorial-3-eigenvalues-eigenvectors.html
- http://math.fullerton.edu/mathews/n2003/EjgenvaluesMod.html
- http://math.fullerton.edu/mathews/n2003/HessenbergMod.html
- htti:://math.fullerton.edu/mathews/n2003/HouseholderMod.html

