KMÜ 396 Materials Science and Tech. I Presentation

Energy Dispersive X-Ray, EDX and Wavelength Dispersive X-ray spectroscopy (WDX)

<u>Prepared and will be presented by:</u> Ömer Vehbi Karaosmanoğlu Gökhan Uzun Osman Turan

KMÜ 396 / Spring 2010 / May 21, 2010, H.Ü. Chemical Engineering Department

Outline

*X-Ray

- *A form of electromagnetic radiation
- *Have a wavelength in the range of 10 to 0.01 nanometers
- *Largest use is to take images of the inside of objects in diagnostic radiography and crystallography

*X-ray Spectroscopy

- Gathering name for several spectroscopic techniques
- Determining the electronic structure of materials by using x-ray excitation.

* Types of X-ray spectroscopy

- *X-ray emission spectroscopy or X-ray fluorescence (XRF)**
- * Identification and measurement of concentration of elements
- *X-ray absorption spectroscopy
- *A widely-used technique for determining the local geometric and/or electronic structure of matter.
- *X-ray magnetic circular dichroism
- *A difference spectrum of two x-ray absorption spectra (XAS) taken in a magnetic field

*EDX and WDX

*Variants of X-ray fluorescence (XRF) or X-ray emission spectroscopy

- *Chemical analysis methods of this spectroscopy
- *Used in conjuction with each other

*What is EDX ?

*Energy dispersive X-ray spectroscopy (EDS or EDX)

- *Analytical technique used for the elemental analysis
- *Technique used for chemical characterization of a sample
- *Investigation of a sample
- *Analyzing X-rays emitted by the matter
- *Full quantitative analysis showing the sample composition

* EDX spectrum of the mineral crust of Rimicaris exoculata (bacteria)

*What is WDX ?

*Wavelength dispersive X-ray spectroscopy (WDXRF or WDS)
*A method used to count the number of X-rays
*Reads or counts only the x-rays of a single wavelength
*Element must be known

*Often used in conjunction with EDS

*Usage Areas of EDX

*Materials evaluation and identification

*Contaminants

*Elemental diffusion profiles

*Glassivation phosphorus content

*Multiple spot analysis of areas from 1 micron to 10 cm in diameter

*Failure analysis

*Contamination identification

*Unknowns identification

*Stringer location and identification

*Quality control screening

*Material verification

* Plating specification and certification

*Usage Areas of WDX

Identification of spectrally overlapped elements * S in the presence of Pb or Mo * W or Ta in Si, or N in Ti

Detection of low concentration species (10-100 ppm) * P or S in metals

*Contaminants in precious metal catalysts

* Trace heavy metal contamination

* Performance-degrading impurities in high temperature solder alloys

Analysis of low atomic number elements

- *Composition of advanced ceramics and composites
- * B in BPSG films (sensitivity to 2000 ppm)

*Oxidation and corrosion of metals

*Characterization of biomedical and organically modified materials

* History of X-Ray Techniques

- First discovered by Wilhelm Röntgen (~1875)
- He also named X-Ray: Röntgen rays
- EDX and WDX are new techniques
- EDX since 1950s
- WDX since late 1960s

Wilhelm Röntgen, German Scientist (1845-1923)

Energy Dispersive X-Ray Spectrophotometer (EDX) System Schematic

Wavelenght Dispersive X-Ray Spectrophotometer (EDX) System Schematic

X-ray Detector Detects and converts X-rays into electronic signals

Pulse Processor

Measures the electronic signals to determine the energy of each X-ray detected

Analyzer Displays and interprets the X-ray data

Detectors Are Important!

Lithium doped Silicon (SiLi) crystal detector acts as a semiconductor

* How it works ? - EDX

Obtaining EDX Spectrums

- A high-energy beam of charged particles is focused into the sample
- Ground state (unexcited) electrons in sample are stimulated
- Electrons are excited from lower energy shells to higher energy shell
- The difference in energy between the shells may be released in the form of an X-ray
- The number and energy of the X-rays emitted from a specimen can be measured by an energy dispersive spectrometer

* How it works ? - WDX

- The WDX operates in much the same way as EDX.
- Unlike the related technique of Energy dispersive X-ray spectroscopy (EDX) WDX reads or counts only the x-rays of <u>a single wavelength</u>, not producing a broad spectrum of wavelengths or energies.
- The crystal structure of sample diffracts the photons in principles of Bragg's law.
- Diffractions are then collected by a detector.

* EDX-WDX comparison

Spectral resolution	Higher (160 eV and less)	Lower (2-10 eV)
Light elements?	With windowless or thin window detector	With synthetic diffractors ("crystals")
Detection Limits	~1000-5000 ppm	<100-500 ppm
Specifications	Cheaper, quicker but some elements are	More expensive, but with much better
	too close together to resolve	spectral resolution
	(eg S Ka, Mo La, Pb Ma)	giving lower detection limits.

Table is adapted from : www.geology.wisc.edu/~johnf/g777/ppt/00_What_is_777.ppt

* What type of materials can not be tested?

*Elements like H, He, Li, or Be

*The multiple masses of an element (i.e. isotopes)

* Analysis of X-Rays

*Point analysis

*Line scanning

*Dot mapping

* Ref: http://www.concrete.cv.ic.ac.uk/durability/research%20techniques%20sem%20edx.htm

*Quick *Versatile *Inexpensive *Widely available

*Why WDX?

- *Analysis for light element*Higher sensivity
- *Lowered detection limit
- *More accurate analysis
- *Superior peak resolution

*Comparison of EDS (left) and WDS (right)

* http://serc.carleton.edu/research_education/geochemsheets/wds.html

Photo: A security guard is running an analysis using X-Rays 🙂

Photo ref: http://www.devrimgazetesi.com.tr/resim/x%20ray%20cihaz%C4%B1%20devrede%20.JPG

- Definitions of x-ray and x-ray spectroscopy
- A brief information about edx &wdx
- Definitions of edx & wdx and application areas
- History of edx & wdx
- How edx & wdx work
- Advantages and disavantages of edx & wdx
- Materials that could be tested by edx & wdx

*References

http://mee-inc.com/eds.html

http://www.photometrics.net/techniq.html

http://serc.carleton.edu/research_education/geochemsheets/wds.html

Beckhoff, B., Kanngießer, B., Langhoff, N., Wedell, R., Wolff, H., Handbook of Practical X-Ray Fluorescence Analysis, Springer, 2006, ISBN 3-540-28603-9

http://serc.carleton.edu/research_education/geochemsheets/wds.html

Corbari, L *et al.* (2008). "Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata". *Biogeosciences* **5**: 1295-1310. http://www.ifremer.fr/docelec/doc/2008/publication-4702.pdf.

Goldstein, J. I. *et al.* (2003). *Scanning Electron Microscopy and X-Ray Microanalysis*. Springer. ISBN 0306472929. http://books.google.com/books?id=ruF9DQxCDLQC&printsec=frontcover.