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ON THE GIBBS ENERGY AND CHEMICAL

POTENTIALS OF AN IDEAL GAS MIXTURE

A b s t r a c t

There are three, assentialy independent, derivations of the Gibbs
energy of an ideal gas mixture and the chemical potentials of its com-
ponents. One approach is to first derive the expressions for the chemi-
cal potentials (µi), which are then used in the expression for the molar
Gibbs energy Gm =

∑
Xiµi, where Xi is the molar concentration of

the i-th component in the mixture. In this approach, the molar en-
tropy of the mixture is evaluated a posteriori, as the temperature
gradient of the Gibbs energy. The second derivation is the simplest,
and is based on the assumed additive decomposition of the Gibbs en-
ergy in terms of the partial Gibbs energies of individual components.
The third derivation is based on the additive decomposition of the
entropy of mixture in terms of partial entropies of its components.
The three derivations are here critically examined and discussed.
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O GIBSOVOJ ENERGIJI I HEMIJSKIM

POTENCIJALIMA MJEŠAVINE IDEALNIH

GASOVA

I z v o d

U radu je ukazano na tri medjusobno nezavisna izvodjenja izraza
za Gibsovu energiju i hemijske potencijale mješavine idealnih gasova,
što je od značaja za termodinamičku analizu modela rastvora i legura.
U prvom pristupu, izrazi za hemijske potencijale (µi) se izvedu prvo,
nakon čega molarna Gibsova energija slijedi iz izraza Gm =

∑
Xiµi,

gdje Xi predstavlja molarnu koncentraciju i-te komponente. Molarna
entropija slijedi a posteriori, kao temperaturni gradijent Gibsove en-
ergije. Drugi pristup analizi je najjednostavniji, ali je baziran na
dodatnoj pretpostavci o aditivnoj dekompoziciji same Gibsove en-
ergije. Treći pristup počiva na pretpostavci o aditivnoj dekompozi-
ciji entropije mješavine u parcijalne entropije njenih komponenti. Tri
opisana pristupa analizi su kritički uporedjena i diskutovana.

1. INTRODUCTION

The derivation of the expressions for the Gibbs energy of an ideal
gas mixture and the chemical potentials of its components is a classi-
cal topic, addressed in standard textbooks of thermodynamics (e.g.,
Callen, 1960; Dickerson, 1969; Swalin, 1972; Denbigh, 1981; Carter,
2001). However, different authors use different approaches to de-
rive these expressions, and their relationship may not be immedi-
ately clear. It seems therefore desirable, from the conceptual point of
view, to review the topic. We present in this paper three independent
derivations. The first derivation is based on the equation of state and
the integration of the Maxwell’s reciprocity relation between the gra-
dients of volume and chemical potentials. The other two derivations
are based on an additive decomposition of the Gibbs energy, or the
entropy of the mixture, in terms of the corresponding partial proper-
ties of the mixture components. The first derivation requires the least
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assumptions, the second is the simplest, and the third can be most
easily interpreted from the physical point of view.

In the thermodynamics of open systems, an increment of Gibbs
energy associated with the changes in pressure and temperature (dp

and dT ), and the change in composition (dni), is

dG = −SdT + V dp +
∑

i

µidni . (1.42)

The entropy of the system is S, the volume is V , and µi = µi(p, T, nall)
is the chemical potential of the i-th component in the mixture. Since
G is a homogeneous function of degree one in ni, one can write

G =
∑

i

niµi . (1.43)

If ni = n (nj 6=i = 0), µi can be interpreted as the molar Gibbs energy
of the component i in its pure state (µi = Gm

i ). Furthermore, G being
a thermodynamic state function, the right-hand side of (1.42) must
be a total differential, so that

S = −
(

∂G

∂T

)

p,nall

, V =
(

∂G

∂p

)

T,nall

, µi =
(

∂G

∂ni

)

p,T,nj 6=i

.

(1.44)
One of the corresponding Maxwell relations, relevant for the derivation
presented in Section 2, is

(
∂µi

∂p

)

T,nall

=
(

∂V

∂ni

)

p,T,nj 6=i

. (1.45)

Finally, the Clausius–Duhem equation reads

SdT − V dp +
∑

i

nidµi = 0 , (1.46)

so that the sum of (1.42) and (1.46) stays in accord with the incre-
mental version of (1.43). The relations (1.42)–(1.46) are of the fun-
damental importance in many thermodynamic studies, such as in the
analysis of the solution models and chemical reactions (e.g., Lupis,
1983; DeHoff, 1993; Gaskell, 2003; Asaro and Lubarda, 2006).
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2. THE DERIVATION FROM µµµ TO GGG AND SSS

Consider an isolated closed system that consists of I chambers
separated by diathermal rigid walls. The i-th chamber, having the
volume Vi, contains ni moles of an ideal gas whose (molar) specific
heat is Ci

V (i = 1, 2, . . . , I). The pressure and temperature in all
chambers are equal to p and T , respectively, so that

pVi = niRT , (2.1)

where R is the universal gas constant. If summed over i, (2.1) gives

pV = nRT , V =
∑

i

Vi , n =
∑

i

ni . (2.2)

The internal energy in the whole system is the sum of the internal
energies in all chambers,

U =
∑

i

niC
i
V T . (2.3)

If the walls between the chambers are removed, the diffusive mix-
ing of gases takes place. Since the entire system is closed and isolated,
the internal energy can not change, and the temperature of the equi-
libriated mixture state is the same as the initial temperature T . The
corresponding pressure is p is given by (2.2). When this is rewritten
as

V =
RT

p

∑

i

ni , (2.4)

it follows that (
∂V

∂ni

)

p,T,nj 6=k

=
RT

p
. (2.5)

The substitution of (2.5) into (1.45), and integration (see, for example,
DeHoff, 1995) gives

µi =
∫ pi

p

RT

p
dp + Gm

i (p, T ) , (2.6)
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where pi is the partial pressure of the i-th component in the mixture,
defined by piV = niRT . The molar Gibbs energy of the component
i in its pure state, at pressure p and temperature T , is denoted by
Gm

i (p, T ). By comparing piV = niRT and pV = nRT , we deduce
that pi = Xip, with Xi = ni/n standing for the molar fraction of the
i-th component in the mixture. Consequently, (2.6) becomes

µi = RT ln Xi + Gm
i (p, T ) , (2.7)

which is a desired expressions for the chemical potential.
The molar Gibbs energy of the component i in its pure state,

appearing on the right-hand side of (2.7), can be evaluated from

Gm
i (p, T ) = [Ci

p − Sm
i (p, T )]T , (2.8)

because the molar entalpy of an ideal gas is Hm
i = Ci

pT and Gm
i =

Hm
i − TSm

i . The molar entropy of the pure component i is given by
the classical expression

Sm
i (p, T ) = Ci

p ln
T

T0
−R ln

p

p0
+ Sm

i (p0, T0) . (2.9)

The reference pressure and temperature are denoted by p0 and T0.
Equation (2.9) is easily obtained by integrating dSm

i = Ci
P dT/T −

Rdp/p, which follows from the energy equation dUm
i = −pdV m +

TdSm
i by incorporating pV m = RT and Um

i = Ci
V T .

Having derived the expressions for the chemical potentials of the
components, given by (2.7), the Gibbs energy of the mixture is ob-
tained from (1.43), or its molar counterpart

Gm =
∑

i

Xiµi . (2.10)

The result is

Gm = RT
∑

i

Xi lnXi +
∑

i

XiG
m
i (p, T ) . (2.11)
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The first part in the expression on the right-hand side is the mixing
contribution to the Gibbs energy. The molar entropy of the mixture
is

Sm = −
(

∂Gm

∂T

)

p,Xall

= −
∑

i

Xi

(
∂µi

∂T

)

p,Xall

, (2.12)

which gives

Sm = −R
∑

i

Xi ln Xi +
∑

i

XiS
m
i (p, T ) . (2.13)

3. THE DERIVATION FROM GGG TO µµµ AND SSS

An independent derivation of the results from the previous sec-
tion, in the direction from G to µ and S, is as follows. Since the
components of an ideal gas mixture do not interact, the Gibbs energy
of the mixture can be calculated as the sum of the Gibbs energies of
all components in their independent transitions from the state (p, T )
to (pi, T ) (e.g., Müler, 1985; Carter, 2001). Thus,

G =
∑

i

Gi , Gi = niG
m
i . (3.1)

The increment of the molar Gibbs energy Gm
i is

dGm
i = V m

i dpi = RT
dpi

pi
. (3.2)

This follows from the basic expression for the change of the Gibbs
energy of a pure substance (dG = V dp− SdT ), because dT = 0 and
piV

m
i = RT . Upon the integration of (3.2) from the initial pressure p

to the partial pressure pi = Xip, one obtains

Gm
i = RT lnXi + Gm

i (p, T ) . (3.3)

This is also the chemical potential of the i-th component, because the
molar version of (3.1) is

Gm =
∑

i

XiG
m
i ≡

∑

i

Xiµi . (3.4)

The molar entropy is the negative temperature gradient of the above
expression, which reproduces (2.13).
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4. THE DERIVATION FROM SSS TO GGG AND µµµ

The third derivation, independent of the previous two, proceeds
from the derivation of the entropy expression. First, by Dalton’s
law the total pressure in an ideal gas mixture is the sum of partial
pressures of its components, i.e., p =

∑
pi, because pi = Xip and∑

Xi = 1. Since the components in an ideal gas mixture do not inter-
act, one can introduce the partial entropies (Si) of the components,
such that the total entropy of the mixture is additively decomposed
(e.g., Landau and Lifshitz, 1980; Ragone, 1995) as

S =
∑

i

Si . (4.1)

The partial entropy Si = niS
m
i can be easily evaluated as the entropy

of the pure component i at the partial pressure pi and temperature
T . Since the reference state is (p, T ) (i.e., pVi = piV = niRT ), and
since dUm

i = 0 for an isothermal path, the energy equation gives

TdSm
i = pidV m

i . (4.2)

Furthermore, recalling that pidV m
i = −V m

i dpi for an isothermal change
of state of an ideal gas, (4.2) can be rewritten as

dSm
i = −R

dpi

pi
. (4.3)

Upon integration from p to pi, this yields

Sm
i = −R ln

pi

p
+ Sm

i (p, T ) . (4.4)

Thus, in view of pi = Xip, the partial entropies can be expressed as

Si = ni [−R lnXi + Sm
i (p, T )] . (4.5)

The substitution of (4.5) into (4.1) gives

S =
∑

i

ni [−R lnXi + Sm
i (p, T )] , (4.6)
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with its molar counterpart

Sm =
∑

i

Xi [−R lnXi + Sm
i (p, T )] , (4.7)

which is in agreement with (2.13).
Having established the expression (4.7), the Gibbs energy of the

mixture and the chemical potentials of its components follow imme-
diately. Indeed, the molar Gibbs energy is

Gm = Um + pV m − TSm , (4.8)

where
Um =

∑

i

XiC
i
V T , pV m = RT . (4.9)

The substitution of (4.7) and (4.9) into (4.8) gives

Gm =
∑

i

Xi

[
Ci

p + R lnXi − Sm
i (p, T )

]
T. (4.10)

Note that the molar specific heats
∑

XiC
i
V and

∑
XiC

i
p can be inter-

preted as the average (effective) specific heats of the mixture, which
is known in the context of solid or liquid compounds as Kopp’s rule
(Lupis, 1983). Observing that

[
Ci

p − Sm
i (p, T )

]
T = Gm

i (p, T ) (4.11)

is the Gibbs energy of the pure component i at the pressure p and
temperature T , (4.10) can be rewritten as

Gm =
∑

i

Xi [RT ln Xi + Gm
i (p, T )] . (4.12)

Finally, since Gm =
∑

Xiµi, one identifies from (4.12) the expression
for the chemical potential of the i-th component,

µi = RT ln Xi + Gm
i (p, T ) , (4.13)

which parallels (2.7) or (3.3).
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5. DISCUSSION

The first presented derivation of the expression for the molar Gibbs
energy of an ideal gas mixture was based on the derivation of the
expressions for the chemical potentials of its components. This was
accomplished by using the equation of state and the integration of the
Maxwell relation between the gradients of the volume and chemical
potentials. The molar entropy of the mixture is evaluated a posteri-
ori, as the negative temperature gradient of the molar Gibbs energy.
The second derivation is the simplest, but it involves an additional
assumption, the additive decomposition of the Gibbs energy of the
mixture into partial Gibbs energies of individual components. The
chemical potentials are the corresponding molar Gibbs energies. The
third, in essence opposite from the first, derivation starts from an ex-
pression for the entropy of the mixture, by assuming that it is given
by the sum of partial entropies of individual components in their inde-
pendent isothermal expansions. This then yields the expressions for
both the Gibbs energy and the chemical potentials.

The selection of the most suitable of the presented three deriva-
tions is a matter of individual preference, although the third deriva-
tion, starting from the entropy of mixing, may be most readily related
to either continuum or statistical interpretations of the involved ther-
modynamic quantities. For example, if there are N∞ available and
uniformly distributed sites for the molecules within a volume V occu-
pied by the mixture, the configurational entropy of all its molecules
is

S = k lnΩ , Ω =
I∏

i=1

(
N∞ −∑i−1

j=0 Nj

Ni

)
. (5.1)

The number of molecules of each component is Ni (i = 1, 2, . . . , I),
and N0 = 0. On the other hand, the sum of individual configurational
entropies of each gas, if it would occupy the volume V alone, is

S = k lnΩ , Ω =
I∏

i=1

(
N∞

Ni

)
. (5.2)
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Assuming that N∞ À Ni for all i, the two expressions give the same
configurational entropy, to the leading order terms. This may be
viewed to be a statistical basis for the additive decomposition of en-
tropy embedded in (4.1).
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