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mechanics that bridges the areas of kinematics

and kinetics. It is the process by which forces and
moments of force are indirectly determined from the
kinematics and inertial properties of moving bodies.
Direct dynamics, in contrast, determines the motion
of bodies under the influence of applied forces. In
principle, inverse dynamics also applies to stationary
bodies, but usually it is applied to bodies in motion. It
derives from Newton’s second law, where the resultant
force is partitioned into known and unknown forces.
The unknown forces are combined to form a single net
force that can then be solved. A similar process is done
for the moments of force so that a single net moment of
force is computed. This chapter

Inverse dynamics is the specialized branch of

> defines the process of inverse dynamics for planar
motion analysis,

> presents the standard method for numerically
computing the internal kinetics of planar human
movements,

> describes the concept of general plane motion,

» outlines the method of sections for individually
analyzing components of a system or segments of
a human body,

» outlines how inverse dynamics aids research of joint
mechanics, and

> examines applications of inverse dynamics in bio-
mechanics research.

Inverse dynamics of human movement dates to the
seminal work of Wilhelm Braune and Otto Fischer
between 1895 and 1904. These works were later revisited
by Herbert Elftman for his research on walking (1939a,
1939b) and running (1940). Little follow-up research

was conducted until Bresler and Frankel (1950) con-
ducted further studies of gait in three dimensions (3-D)
and Bresler and Berry (1951) expanded the approach to
include the powers produced by the ankle, knee, and hip
moments during normal, level walking. Because Bresler
and Frankel’s 3-D approach measured the moments of
force against a Newtonian or absolute frame of reference,
they could not determine the contributions made by the
flexors or extensors of a joint versus the abductors and
adductors (a problem since solved by the 3-D methods
described in chapter 7).

Few inverse dynamics studies of human motion
were conducted until the 1970s, when new research was
spurred by the advent of commercial force platforms to
measure the ground reaction forces (GRFs) during gait
and inexpensive computers to provide the necessary pro-
cessing power. Another important development has been
the recent propagation of automated and semiautomated
motion-analysis systems based on video or infrared
camera technologies, which greatly decrease the time
required to process the motion data.

Inverse dynamics studies have since been carried
out on such diverse movements as lifting (McGill and
Norman 1985), skating (Koning et al. 1991), jogging
(Winter 1983a), race walking (White and Winter 1985),
sprinting (Lemaire and Robertson 1989), jumping (Ste-
fanyshyn and Nigg 1998), rowing (Robertson and Fortin
1994; Smith 1996), and kicking (Robertson and Mosher
1985), to name a few. Yet inverse dynamics has not been
applied to many fundamental movements: swimming
and skiing, because of the unknown external forces of
water and snow; or batting, puck shooting, and golfing,
because of the indeterminacy caused when the two
arms and the implement (the bat, stick, or club) form a
closed kinematic chain. Future research may be able to
overcome these difficulties.
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PLANAR MOTION ANALYSIS

One of the primary goals of biomechanics research
is to quantify the patterns of force produced by the
muscles, ligaments, and bones. Unfortunately, recording
these forces directly (a process called dynamometry)
requires invasive and potentially hazardous instruments
that inevitably disturb the observed motion. Some
technologies that measure internal forces include a
surgical staple for forces in bones (Rolf et al. 1997) and
mercury strain gauges (Brown et al. 1986; Lamontagne
et al. 1985) or buckle force transducers (Komi 1990) for
forces in muscle tendons or ligaments. Although these

A Figure 5.1
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devices enable the direct measurement of internal forces,
they have been used only to measure forces in single
tissues and are not suitable for analyzing the complex
interaction of muscle contractions across several joints
simultaneously. Figure 5.1 (Seireg and Arvikar 1975)
shows the complexity of forces that a biomechanist
must consider when trying to analyze the mechanics
of the lower extremity. In figure 5.2, the lines of action
of only the major muscles of the lower extremity have
been graphically presented by Pierrynowski (1982). It
is easy to imagine the difficulty of and the risks associ-
ated with attempting to attach a gauge to each of these
tendons.

Free-body diagrams of the segments of the lower extremity during walking.

Reprinted from Journal of Biomechanics, Vol. 18, A. Seireg and R.J. Arvikar, “The prediction of muscular load sharing and joint forces in the
lower extremities during walking,” pgs. 89-102, copyright, with permission of Elsevier.
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A Figure 5.2 Lines of action of the muscle forces in the lower extremity and trunk: (a) front view, (b) side view.
Adapted from data, by permission, from M.R. Pierrynowski, 1982, 4 physiological model for the solution of individual muscle forces during

normal human walking (Simon Fraser University).

Inverse dynamics, although incapable of quantifying
the forces in specific anatomical structures, is able to
measure the net effect of all of the internal forces and
moments of force acting across several joints. In this way,
a researcher can infer what total forces and moments
are necessary to create the motion and quantify both
the internal and the external work done at each joint.
The steps set out next clarify the process for reducing
complex anatomical structures to a solvable series of
equations that indirectly quantify the kinetics of human
or animal movements.

Figure 5.3 shows the space and free-body diagrams
of one lower extremity during the push-off phase of
running. Three equations of motion can be written for
each segment in a two-dimensional (2-D) analysis, so for
the foot, three unknowns can be solved. Unfortunately,
because there are many more than three unknowns
(figure 5.4), the situation is called indeterminate. Inde-
terminacy occurs when there are more unknowns than
there are independent equations. To reduce the number
of unknowns, each force can be resolved to its equivalent
force and moment of force at the segment’s endpoint.
The process starts at a terminal segment, such as the
foot or hand, where the forces at one end of the segment
are known or zero. They are zero when the segment is
not in contact with the environment or another object.
For example, the foot during the swing phase of gait
experiences no forces at its distal end; when it contacts
the ground, however, the GRF must be measured by, for
example, a force platform.

A detailed free-body diagram (FBD) of the foot
in contact with the ground is illustrated in figure 5.4.
Notice the many types of forces crossing the ankle joint,
including muscle and ligament forces and bone-on-bone
forces; many others have been left out (e.g., forces from
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A Figure5.3 (a) Space and (b) free-body diagrams
of the foot during the push-off phase of running.

skin, bursa, and joint capsule). Furthermore, the foot is
assumed to be a “rigid body,” although some researchers
have modeled it as having two segments (Cronin and
Robertson 2000; Stefanyshyn and Nigg 1998). A rigid
body is an object that has no moving parts and cannot be
deformed. This state implies that its inertial properties
are fixed values (i.e., that its mass, center of gravity, and
mass distribution are constant).

Figure 5.5 shows how to replace a single muscle force
with an equivalent force and moment of force about a
common axis. In this example, the muscle force exerted
by the tibialis anterior muscle on the foot segment is
replaced by an equivalent force and moment of force
at the ankle center of rotation. Assuming that the foot
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A Figure 5.4 Free-body diagram of the foot showing anatomical forces.

is a “rigid body,” a force (F*) equal in magnitude and
direction to the muscle force (F ) is placed at the ankle.
Because this would unbalance the free body, a second
force (—F *) is added to maintain equilibrium (figure
5.5b). Next, the force couple (F and —F *) is replaced
by the moment of force (M Fl; ). The resulting force and
moment of force in figure 5.5¢ have the same mechanical
effects as the single muscle force in figure 5.5a, assuming
that the foot is a rigid body.

The first step to simplifying the complex situation
shown in figure 5.4 is to use the process illustrated in
figure 5.5 to replace every force that acts across the ankle
with its equivalent force and moment of force about a
common axis. Figure 5.6 shows this situation. Note that
forces with lines of action that pass through the ankle

Foot with
muscle
force F

Forces F* and
—F* added at
ankle center

joint center produce no moment of force around the
joint. Thus, the major structures that contribute to the
net moments of force are the muscle forces. The liga-
ment and bone-on-bone forces contribute mainly to the
net force experienced by the ankle and only affect the
ankle moment of force when the ankle is at the ends of
its range of motion.

Muscles attach in such a way that their turning effects
about a joint are enhanced, and most have third-class
leverage to promote speed of movement. Thus, muscles
rarely attach so that they cross directly over a joint axis
of rotation because that would eliminate their ability to
create a moment about the joint. Ligaments, in contrast,
often cross joint axes, because their primary role is to
hold joints together rather than to create rotations of the

Couple —=F* and F
replaced by free
moment M_k

A Figure 5.5 Replacement of a muscle force by its equivalent force and moment of force at the ankle axis of

rotation.
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A Figure 5.6 Free-body diagram of the foot showing the muscle forces replaced by their equivalent force and

moment about the ankle.

segments that they connect. They do, however, have a
role in producing moments of force when the joint nears
or reaches its range-of-motion limits. For example, at the
knee, the collateral ligaments prevent varus and valgus
rotations and the cruciate ligaments restrict hyperexten-
sion. Often, the ligaments and bony prominences pro-
duce force couples that prevent excessive rotation, such
as when the olecranon process and the ligaments of the
elbow prevent hyperextension of the elbow.

To complete the inverse dynamics process for the
foot, every anatomical force, including ligament and
bone-on-bone (actually, cartilaginous) forces, must be
transferred to the common axis at the ankle. Note that

Ankle center = (X, .. V...)

Center of gravity = (x

only forces that act across the ankle are included in this
process. Internal forces that originate and terminate
within the foot are excluded, as are external forces in
contact with the sole of the foot. Figure 5.7 represents the
situation after all of the ankle forces have been resolved.
In this figure, the ankle forces and moments of force are
summed to produce a single force and a moment of force,
called the net force and net moment of force, respectively.
They are also sometimes called the joint force and joint
moment of force, but these are confusing because many
different joint forces are included in this sum, such as
those caused by the joint capsule, the ligaments, and
the articular surfaces (cartilage). Other confusing terms

foot” Y fuot)

rglound

ground

Center of pressure = (X, ¥oound)

A Figure 5.7 Reduced free-body diagram showing net force and moment of force.



114 ) Research Methods in Biomechanics

are resultant joint force and resultant moment of force,
because these terms may be confused with the resultant
force and moment of force of the foot segment itself.
Recall that the resultant force and moment of force of a
rigid body are the sums of all forces and moments acting
on the body. These sums are not the same as the net force
and moment of force just defined. The resultant force and
moment of force concern Newton’s first and second laws.

The moment of force is often called forque in the
scientific literature. In engineering, torque is usually
considered a moment of force that causes rotation about
the longitudinal axis of an object. For example, a torque
wrench measures the axial moment of force when one
is tightening nuts or bolts, and a torque motor generates
spin about an engine’s spin axis. In the biomechanics
literature, however, as stated in chapter 4, torque and
moment of force are used interchangeably.

Another term related to moment of force is the force
couple. A force couple occurs when two parallel, noncol-
linear forces of equal magnitude but opposite direction
act on a body. The effect of a force couple is special
because the forces, being equal but opposite in direction,
effect no translation on the body when they act. They do,
however, attempt to produce a pure rotation, or torque,
of the body. For example, a wrench (figure 5.8a) causes
two parallel forces when applied to the head of a nut.
The nut translates because of the threads of the screw
but turns around the bolt because of the rotational forces
(i.e., moment of force, force couple, or torque) created
by the wrench.

Another interesting characteristic of a force couple,
or couple for short, is that when the couple is applied to
arigid body, the effect of the couple is independent of its
point of application. This makes it a free moment, which
means that the body experiencing the couple will react
in the same way wherever the couple is applied as long

9

as the lines of axis of the force are parallel. For example,
a piece of wood that is being drilled will react the same
no matter where the drill contacts the wood as long
as the drill bit enters the wood from the same parallel
direction. Of course, how the wood actually reacts will
depend on friction, clamping, and other forces, but the
drill will inflict the same rotational motion on the wood
no matter where it enters.

The work done by the net moments of force quantifies
the mechanical work done by only the various tissues that
act across and contribute a turning effect at a particular
joint. All other forces, including gravity, are excluded
from contributing to the net force and moment of force.
More details about how the work of the moment of force
is calculated are delineated in chapter 6.

Net forces and moments are not real entities; they are
mathematical concepts and therefore can never be mea-
sured directly. They do, however, represent the summed
or net effect of all the structures that produce forces or
moments of force across a joint. Some researchers (e.g.,
Miller and Nelson 1973) have called the source of the
net moment of force a “single equivalent muscle.” They
contend that each joint can be thought of as having two
single, equivalent muscles that produce the net moments
of force about each joint—for example, one for flexion
and the other for extension—depending on the joint’s
anatomy. Others have called the net moments of force
“muscle moments,” but this nomenclature should be
avoided, because even though muscles are the main
contributors to the net moment, other structures also
contribute, especially at the ends of the range of motion.
An illustration of this situation is when the knee reaches
maximal flexion during the swing phase of sprinting.
Lemaire and Robertson (1989) and others showed that
although a very large moment of force occurs, the likely
cause is not an eccentric contraction of the extensors;
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A Figure 5.8 Force couples produced by a wrench and the ligaments of the knee.
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instead it is the result of the calf and thigh bumping
together. However, the same cannot be said to occur for
the negative work done by the knee extensors during the
swing phase of walking, because the joint does not fully
flex and therefore muscles must be recruited to limit knee
flexion (Winter and Robertson 1979).

NUMERICAL
FORMULATION

This section presents the standard method in biome-
chanics for numerically computing the internal kinet-
ics of planar human movements. In this process, we
use body kinematics and anthropometric parameters
to calculate the net forces and moments at the joints.
This process uses three important principles: Newton’s
second law (2 F =ma ), the principle of superposition,
and an engineering technique known as the method of
sections. The principle of superposition holds that in a
system with multiple factors (i.e., forces and moments),
given certain conditions, we can either sum the effects
of multiple factors or treat them independently. In the
method of sections, the basic idea is to imagine cutting
a mechanical system into components and determining
the interactions between them. For example, we usually
section the human lower extremity into a thigh, leg, and
foot. Then, via Newton’s second law, we can determine

the forces acting at the joints by using measured values
for the GRFs and the acceleration and mass of each seg-
ment. This process, called the linked-segment or iterative
Newton-Euler method, is diagrammed in figure 5.9. The
majority of this chapter explains how this method works.
We will begin with kinetic analysis of single objects in
2-D, then demonstrate how to analyze the kinetics of
a joint via the method of sections, and finally explain
the general procedure diagrammed in figure 5.9 for the
entire lower extremity.

Note the diagram conventions used in this chapter:
Linear parameters are drawn with straight arrows, and
angular parameters are drawn with curved arrows.
Known kinematic data (linear and angular accelerations)
are drawn with green lines. Known forces and moments
are drawn with black arrows. Unknown forces and
moments are drawn with gray arrows. These conven-
tions will assist you in visualizing the solution process.

General Plane Motion

General plane motion is an engineering term for 2-D
movement. In this case, an object has three degrees of
freedom (DOF): two linear positions and an angular
position. Often, we draw these as translations along the
x- and y-axes and a rotation about the z-axis. As discussed
in chapter 2, many lower-extremity movements can be
analyzed using this simplified representation, including

<\Hip
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—Knee

Section
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A Figure 5.9 Space diagram of a runner’s lower extremity in the stance phase, with three free-body diagrams

of the segments.
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walking, running, cycling, rowing, jumping, kicking,
and lifting. However, despite the simplification to 2-D
analysis, the resulting mechanics can still be compli-
cated. For example, a football punter has three lower-
extremity segments that swing forward much like a whip,
kick the ball, and elevate. Even the ball has a somewhat
complicated movement, translating both horizontally and
vertically and rotating. To determine the kinetics of such
situations, we treat the three DOF independently. That
is, we exploit the fact that an object accelerates in the
vertical direction only when acted on by a vertical force
and accelerates in the horizontal direction only when
acted on by a horizontal force. Similarly, the body does
not rotate unless a moment (torque) is applied to it. The
principle of superposition states that when one or more
of these actions occur, we can analyze them separately.
We therefore separate all forces and moments into three
coordinates and solve them separately.

To illustrate, let us consider the football example. In
figure 5.10d, a football being kicked is subjected to the
force of the punter’s foot. The ball moves horizontally
and vertically and also rotates. Our goal is to determine
the force with which the ball was kicked. We cannot
measure the force directly with an instrumented ball
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or shoe. However, we can film the ball’s movement and
measure its mass and moment of inertia. Given these
data, we are left with an apparently confusing situation
to analyze: The single force of the foot has caused all
three coordinates to change. However, the situation
becomes simpler when we use superposition. The hori-
zontal and vertical accelerations of the ball’s mass center
must be proportional to their respective forces, and the
angular acceleration must be proportional to the applied
moment. Consider the examples in figure 5.10. Figure
5.10a and b are rather obvious but are presented for the
sake of demonstration. In figure 5.10a, a horizontal force
is applied to the ball through its center of mass, and the
ball will accelerate horizontally; it will not accelerate
vertically because there is no vertical force. Similarly,
in figure 5.10b, the ball will accelerate only vertically
because there is no horizontal force. In figure 5.10c¢, the
force acts at a 45° angle, and therefore the ball acceler-
ates at a 45° angle. This is just a superposition of the
situations in figure 5.10a and b. We do not deal with the
force at this angle; rather, we measure the accelerations
in the horizontal and vertical directions, and therefore
we can determine the forces in the horizontal and verti-
cal directions. In Figure 5.10d, the applied force is not

A Figure 5.10 Four free-body diagrams of a football experiencing four different external forces.
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directed through the center of mass. In this case, the
force is the same as it is in figure 5.10c, so the ball’s
center of mass has the same acceleration. However,
there is also an angular acceleration proportional to the
product of the force, F, and the distance, d, between its
line of action and the center of mass. The acceleration,
a, in this case is the same as in figure 5.10c. However,
the ball will also rotate.

To reiterate, a force causes a body’s center of mass
to accelerate in the same direction as that force. A force
does not cause a body to rotate; only the moment of a
force causes a body to rotate. These principles derive
from Newton’s first and second laws. If a ball is kicked,
a resulting force is imparted on the ball. This force is
the reaction of the ball being accelerated. Whether the
ball was kicked through its center of mass, causing it to
rotate, is irrelevant. Rotation is affected in proportion to
the distance by which the applied force and mass center
are out of line.

Let us explore moments further. Referring to figure
5.11, a moment can be defined as the effect of a force-
couple system, that is, two forces of equal magnitude and
opposite direction that are not collinear (figure 5.11a).
In this system, the sum of the forces is zero. However,
because the two forces are noncollinear, they cause the
body to rotate. This is drawn diagrammatically as a
curved arrow (figure 5.115).

To return to the football in figure 5.10, there is a force
couple in all four diagrams, the applied force, F, and the
reaction, ma. In figure 5.10, a through c, this force couple
is collinear, so there is no moment. However, in figure
5.10d, the force and reaction are noncollinear. There is a
perpendicular distance between the line of action of the
force and the reaction of the mass center, and the result
is a moment that rotates the ball.

Let us formalize the present discussion. Given a 2-D
FBD, the process is to use Newton’s second law in the
horizontal, vertical, and rotational directions:

2Fx=max 2Fy=may 2M=Ioz é.1

~—d ——»

a

The mass, m, and moment of inertia, /, for the object
in question are determined beforehand. The linear and
angular accelerations are determined from camera data.
The sum of the forces or moments on the left side of each
equation (i.e., each 3, term) can combine many forces or
moments, but it should contain only one unknown—a
net force or moment—to solve for. Because of this, we
usually must solve for the two forces before we solve for
the unknown moment.

When putting together the sums of forces and
moments, we must adhere to the sign conventions estab-
lished by the FBD. Inverse dynamics problems often
require careful bookkeeping of positive and negative
signs. As the examples in this chapter show, the FBD
takes care of this as long as we honor the sign conventions
that have been drawn. For example, in many cases we
solve for a force or moment even though we are uncer-
tain of its direction. This is not a problem with FBDs:
We merely draw the force or moment with an assumed
direction. If, in fact, the force points in the opposite
direction, our calculations simply return a negative
numerical value.

A sum of moments must be calculated about a single
point on the object in question. There is no right or
wrong point about which to calculate; however, some
points are simpler than others. If we sum moments about
a point where one or more forces act, then the moments
of those forces will be zero because their moment arms
are zero. Therefore, sometimes in human movement, it is
convenient to calculate about a joint center. However, in
most cases we calculate moments about the mass center;
there, we can neglect the reaction force (ma) and gravity
terms because their moment arms are zero.

This text uses the convention that a counterclockwise
moment is positive, also called the right-hand rule. Coor-
dinate system axes on FBDs establish their positive force
directions. When solving a problem from an FBD, the
proper technique is to first write the equations in alge-
braic form, honoring the sign conventions, and then to
substitute known numerical values with their signs once

b

A Figure 5.11 (a) A force couple and (b) its equivalent free moment.
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all of the algebraic manipulations have been carried out.
These procedures are only learned by example, so we
now present a few of them.

5.la—Suppose that in our football example, the ball
was kicked and its mass center moved horizontally.
The horizontal acceleration was —64 m/s?, the angular
acceleration was —28 rad/s?, the mass of the ball was
0.25 kg, and its moment of inertia was 0.05 kg'm?. What
was the kicking force? How far from the center of the
ball was the force’s line of action?

See answer 5.1a on page 377.

5.1b—Now solve the same problem assuming that there
was a force plate under the football and that the tee on
which the football rested resisted the kicking force. The
force of the tee was 4 N in the horizontal direction; its
center of pressure (COP) was 15 cm below the mass
center of the ball.

See answer 5.1b on page 378.

A commuter is standing inside a subway car as it accel-
erates away from the station at 3 m/s>. She maintains
a perfectly rigid, upright posture. Her body mass of
60 kg is centered 1.2 m off the floor, and the moment
of inertia about her ankles is 130 kg'm?. What floor
forces and ankle moment must the commuter exert to
maintain her stance?

See answer 5.2 on page 378.

A tennis racket is swung in the horizontal plane (X and
Y axis are both horizontal). The racket’s mass center
is accelerating at 32 m/s? in the Y direction and its
angular acceleration is 10 rad/s%. Its mass is 0.5 kg and
its moment of inertia is 0.1 kg'm?. From the base of the
racket, the locations of the hand and racket mass center
are 7 and 35 cm, respectively. If we ignore the force
of gravity, what are the net force and moment exerted
on the racket? Given that the hand is about 6 cm wide,
interpret the meaning of the net moment (i.e., what is
the actual force couple at the hand?).

See answer 5.3 on page 379.

In these examples, we provided distances between
various points on the FBDs. These distances are not the
data we measure with camera systems and force plates.
Rather, these instruments measure the locations of
points, specifically the locations of joint centers and the
GRF (the COP). We need these points to calculate the
moment arms of the various forces in the FBD. This is
simply a matter of subtracting corresponding positions in
the global coordinate system (GCS) directions. However,
a commonly made error is that the moment arm of a force
in the x direction is a distance in the perpendicular y
direction, and vice versa. This is a very important point
that we again illustrate with examples.

Given the FBD of the arbitrary object following, cal-
culate the reactions R, R, M_ at the unknown end. Its
mass is 8.0 kg and its moment of inertia is 0.2 kg-m?
about the mass center.

M

z

(0.7,0.8) m

5 m/s?

(0.55, 0.54) m
3 m/s?

700 N

(0.0,0.0) m 50 N

See answer 5.4 on page 379.

Given the following data for a bicycle crank, draw
the FBD and calculate the forces and moments at the
crank axle: pedal force x = =200 N; pedal force y =
—800 N; pedal axle at (0.625, 0.310) m; crank axle at
(0.473, 0.398) m; crank mass center at (0.542, 0.358)
m. The crank mass is 0.1 kg and its moment of inertia
is 0.003 kg-m?. Its accelerations are —0.4 m/s? in the x
direction and —0.7 m/s? in the y direction; its angular
acceleration is 10 rad/s%.

See answer 5.5 on page 380.
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Having discussed general plane motion for a single
object, we now turn to the solution technique for mul-
tiobject systems like arms and legs. The procedure for
each body segment is exactly the same as for single-
body systems. The only difference is that the method
of sections is applied to manage the interactive forces
between segments. In fact, this technique was applied
in the previous example of the bicycle crank: We had to
“section” the crank, that is, we imagined cutting it off
at the axle, to determine the forces and moment at the
axle. Let us explore this technique in detail.

Method of Sections

Engineering analysis of a mechanical device usually
focuses on a limited number of key points of the struc-
ture. For example, on a railroad bridge truss, we normally
study the points where its various pieces are riveted
together. The same is true when we analyze the kinet-
ics of human movement. We generally do not concern
ourselves with a complete map of the forces and moments
within the body. Rather, we study specific points of the
body—most commonly the joints. We therefore “sec-
tion” the body at the joints and calculate the reactions
between adjacent segments that keep them from flying
apart. These forces and moments at a sectioned joint are
unknown. Therefore, when constructing our FBD, we
must draw a reaction for each DOF—that is, a horizontal
force, a vertical force, and a moment. In some calcula-
tions, it is possible for one or two of these reactions to
be zero, but the method of sections requires that each
be drawn and solved for because they are unknowns.
The method of sections is straightforward:

> Imagine cutting the body at the joint of interest.
» Draw FBDs of the sectioned pieces.

> Atthe sectioned point of one piece, draw the unknown
horizontal and vertical reactions and the net moment,
honoring the positive directions of the GCS.

> At the sectioned point of the other piece, draw the
unknown forces and moment in the negative direc-
tions of the GCS. This is Newton’s third law.

> Solve the three equations of motion for one of the
sections.

Single Segment Analysis

In many cases, we may be interested in only one of the
sectioned pieces. Let us start with three such examples
and then progress to multisegmented analysis.

Multisegmented Analysis

Complete analysis of a human limb follows the procedure
used in the previous examples. We simply have to for-

Consider an arm being held horizontally. What are the
shoulder reaction forces and joint moment? Assume that
the arm is stationary and rigid. The weights of the upper
arm, forearm, and hand are 4, 3, and 1 kg, respectively,
and their mass centers are, respectively, 10, 30, and
42 cm from the shoulder.

See answer 5.6 on page 381.

Suppose the hand is holding a 2 kg weight. What are the
shoulder reaction forces and joint moment now?

See answer 5.7 on page 381.

EXAMPLE 5.8

The elbow is 22 cm from the shoulder. What are the
reactions at the elbow on the forearm? On the upper
arm? Solve again for the reactions at the shoulder using
the FBD of the upper arm.

See answer 5.8 on page 382.

malize our solution process. This process has a specific
order: We start at the most distal segment and continue
proximally. The reason for this is that we have only three
equations to apply to each segment, which means that we
can have only three unknowns for each segment—one
horizontal force, one vertical force, and one moment.
However, we can see (return to figure 5.9, if necessary)
that if we were to section and analyze either the thigh or
the leg, we would have six unknowns—two forces and
one moment at each joint. The solution is to start with
a segment that has only one joint (i.e., the most distal)
and from there proceed to the adjacent segment. For this
we use Newton’s third law, applying the negative of the
reactions of the segment that we just solved, as shown
for the lower extremity in figure 5.12. Of the lower-
extremity segments, only the foot has the requisite three
unknowns, so we solve this segment first. Note how the
actions on the ankle of the foot have corresponding equal
and opposite reactions on the ankle of the leg. Then we
can calculate the unknown reactions at the knee. These
are drawn in reverse in the FBD for the thigh, and then
we solve for the hip reactions.

One final, but important, detail about this process is
that the sign of each numerical value does not change
from one segment to the next. From Newton’s third
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Step 3: Thigh
H M,
y
H, Known: K, Ky, and M,
K, Solve for: H,, Hy, and M,
Ky
MK
Ky, Ky, and M, used
Step 2: Leg
M
K K
y
KX
Known: AX,Ay, and M,
Ay Solve for: K, K, and M,
A
y
MA
Ay, A, and M, used
Step 1: Foot
A, M, Known: GRF, and GRF,
AX
L Solve for: A,, A ,and M,
\ y
GRF,
GRF

A Figure5.12 Free-body diagrams of the segments
of the lower extremity.

law, every action has an equal but opposite reaction.
At the joints, therefore, the forces on the distal end of
one segment must be equal to but opposite of those on
the proximal end of the adjacent segment. However, we
never change the signs of numerical values. The FBDs
take care of this. Note that in figure 5.12, the knee forces
and moments are drawn in opposing directions. Fol-
lowing the procedures shown previously, first construct
the equations for a segment from the FBD without
considering the numeric values. Once the equations
are constructed, the numeric values with their signs are

substituted into these equations. Note how this process
is carried out in data tables for examples 5.9 and 5.10.

We provide example calculations there for each of
the two distinct phases of human locomotion, swing and
stance. When we are solving the kinetics of a swing limb,
the process is almost exactly the same as for stance. The
only difference is that the GRFs are zero, and thus we
can neglect their terms in the equations of motion. The
procedure is virtually identical to the calculations that
would be carried out in computer code for one frame
of data.

What exactly are these forces and moments that we have
just calculated? The answer, which was given earlier
in this chapter, deserves revisiting: The net forces and
moments represent the sum of the actions of all the
joint structures. A common error is thinking of a joint
reaction force as the force on the articular surfaces of
the bone and a joint moment as the effect of a particular
muscle. These interpretations are incorrect because joint
reaction forces and moments are more abstract than that;
they are sums, net effects. In examples 5.9 and 5.10, we
calculate relative measures to compare the efforts of the
three lower-extremity joints in producing the movement
and forces that were measured. We do not even have
estimates of the activities of the quadriceps, triceps
surae, or any other muscle. We do not have estimates of
the forces on the articular surfaces of the joints or any
other anatomical structure. Let us explain this further.

As depicted in figure 5.2, many muscle-tendon com-
plexes, ligaments, and other joint structures bridge each
joint. Each of these structures exerts a particular force
depending on the specific movement. In figure 5.2, we
neglected all friction between the articular surfaces as
well as between all other adjacent structures. It cannot be
overemphasized that joint reaction forces and moments
should be discussed without reference to specific ana-
tomical structures. There are several reasons for this.
Equal joint reactions may be carried by entirely different
structures. Consider, for example, the elbow joint of a
gymnast: When the gymnast is hanging from the rings,
the elbow is subjected to a tensile force that must be borne
by the various tendons, ligaments, and other structures
crossing the elbow. In contrast, when the gymnast per-
forms a handstand, many of these same structures can be
lax, because much of the load is shifted to the articular
cartilage. From the sectional analysis presented in this
chapter, we would calculate equal but opposite joint reac-
tion forces in each case; both would equal one-half of
body weight minus the weight of the forearms. However,
the distribution of the force among the joint structures is
completely different in these two cases.
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The ankle is at (0.303, 0.189) m, the knee is at (0.539,
0.420) m, and the hip is at (0.600, 0.765) m.

See answer 5.9 on page 383.

Determine the joint reaction forces and moments at the
ankle, knee, and hip given the following data. These
occurred during the swing phase of walking, so the GRFs
are zero.

Foot 0.011 —4.39 6.77 5.12 (0.373, 0.117)
Leg 24 0.064 —4.01 275 —3.08 (0.437, 0.320)
Thigh 6.0 0.130 6.58 -1.21 8.62 (0.573, 0.616)

Determine the joint reaction forces and moments at the
ankle, knee, and hip given the following data. These
occurred during the stance phase of walking, so the
ground reaction forces are nonzero. The solution process
is almost identical.

The ankle is at (0.637, 0.063) m, the knee at (0.541, 0.379)
m, and the hip at (0.421, 0.708) m. The horizontal GRF
is =110 N, the vertical GRF is 720 N, and its center of
pressure is (0.677, 0.0) m.

See answer 5.10 on page 384.

E—TT ccnt) | Cnter ot v

Foot 0.011 -5. 33 —1 71 —20.2 (0.734, 0.089)
Leg 2.4 0.064 —1.82 —-0.56 —22.4 (0.583, 0.242)
Thigh 6.0 0.130 1.01 0.37 8.6 (0.473, 0.566)

Even if we are not analyzing an agile gymnast, the fact
remains that we do not know from net joint forces and
moments how loading is shared between various struc-
tures. This situation, in which there are more forces than
equations, is said to be statically indeterminate. In plain
language, it is a case in which we know the total load on a
system, but we are not able to determine the distribution
of the load without considering the specific properties
of the load-bearing structures. This is analogous to a
group of people moving a heavy object such as a piano:
We know that they are carrying the total weight of the
piano, but without a force plate under each individual,
we cannot know how much weight each person bears.

Consider another specific example, a human stand-
ing quietly with straight lower extremities. We could
calculate a joint reaction force at the knee. Assuming that
the limbs share body weight evenly, the knee reaction
force would equal one-half of the body weight minus
the weight of the leg and foot. If we asked the subject to
clench his muscles as much as possible, the joint reac-
tion forces would not change. However, the tensions in
the tendons would increase, as would the compressive

forces on the bones. The changes are equal but opposite
and thus do not express themselves as an external, joint
reaction force change.

Before discussing patterns of joint moments during
human movements, we detail the limitations of these
measures. As stated earlier, they are somewhat abstract.
However, the purpose of the previous discussion was
simply to delineate the limits of joint moments. This
being done, these data can be discussed appropriately.

Limitations

Aside from the intrinsic limitations of 2-D kinematics
discussed in chapter 1, there are several other important
limitations in our foregoing analysis of 2-D kinetics.
Effects of friction and joint structures are not consid-
ered. The tensions of various ligaments become high near
the limits of joints, and thus moments can occur when
muscles are inactive. Also, although the frictional forces
in joints are very small in young subjects, this is often
not the case for individuals with diseased joints. Inter-
ested readers should refer to Mansour and Audu (1986),
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Audu and Davy (1988), or McFaull and Lamontagne
(1993, 1998). Segments are assumed to be rigid. When
a segment is not rigid, it attenuates the forces that are
applied to it. This is the basis for car suspension systems:
The forces felt by the occupant are less than those felt
by the tires on the road. Human body segments with at
least one full-length bone such as the thigh and leg are
reasonably rigid and transmit forces well. However, the
foot and trunk are flexible, and it is well documented that
the present joint moment calculations are slightly inac-
curate for these structures (see, for example, Robertson
and Winter 1980). In the foot, for example, various liga-
ments stretch to attenuate the GRFs. It is for this reason
that individuals walking barefoot on a hard floor tend to
walk on their toes: The calcaneus-talus bone structures
are much more rigid than the forefoot.

The present model is sensitive to its input data. Errors
in GRFs, COPs, marker locations, segment inertial
properties, joint center estimates, and segment accel-
erations all affect the joint moment data. Some of these
problems are less significant than others. For example,
GRFs during locomotion tend to dominate stance-phase
kinetics; measuring them accurately prevents the major-
ity of accuracy problems. However, during the swing
phase of locomotion, data-treatment techniques and
anthropometric estimates are critical. Interested readers
can refer to Pezzack and colleagues (1977), Wood (1982),
or Whittlesey and Hamill (1996) for more information.
Exact comparisons of moments calculated in different
studies are not appropriate; we recommend allowing at
least a 10% margin of error.

Individual muscle activity cannot be determined
from the present model. We do not know the tension in
any given muscle simply because muscle actions are
represented by moments. Moreover, we do not even
know the moment of a single muscle because multiple
muscles, ligaments, and other structures cross each joint.
Muscle forces are estimated using the musculoskeletal
techniques discussed in chapter 9. An important aspect
of this is that cocontraction of muscles occurs in essen-
tially all human movements. Thus, for example, if knee
extensor moments decrease under a certain condition,
we do not know whether the decrease occurs because
of decreased quadriceps activity or increased hamstring
activity. As another example, a subject asked to stand
straight and clench her lower-extremity muscles would
have joint moments close to zero even though her muscles
were fully activated; their actions would work against
each other.

Two-joint muscles are not well represented by the
present model. Although the moments of two-joint
muscles are included in joint moment calculations, the
segment calculations effectively assume that muscles
only cross one joint. Again, this is a problem that is
addressed by musculoskeletal models (see chapter 9).

People with amputations require different interpre-
tations than other individuals. For example, an ankle
moment can be measured for prostheses even when the
leg and foot are a single, semirigid piece. Prosthetic
knees have stops to prevent hyperextension and have
other components, such as springs and frictional ele-
ments, to control their movement. These cause knee
moments that require completely different interpreta-
tions from those seen in intact subjects. Similar con-
siderations also apply to subjects with braces such as
ankle-foot orthoses.

It was a conscious choice on the authors’ part to pres-
ent the interpretation of joint moments after this discus-
sion of their limitations. Limitations do not invalidate
model data, but they do limit the extent of interpretation.
Note in the following discussion that no reference is
made to specific muscles or muscle groups and that the
magnitudes of different peaks are not referenced to the
nearest 0.1 of a newton meter.

Relative Motion Method
Versus Absolute Motion
Method

The approach presented so far is just one way of comput-
ing the net forces and moments at the joints. Plagenhoef
(1968, 1971) called this approach the absolute motion
method of inverse dynamics because the segmental kine-
matic data are computed based on an absolute or fixed
frame of reference. An alternative approach outlined by
Plagenhoef is the relative motion method. This method
quantifies the motion of the first segment in a kinematic
chain from an absolute frame of reference, but all other
segments are referenced to moving axes that rotate with
the segment. Thus, each segment’s axis, except that of
the first, moves relative to the preceding segment. This
method has the advantage of showing how one joint’s
moment of force contributes to the moments of force of
the other joints in the kinematic chain. The drawback is
that the level of complexity of the analysis increases with
every link added to the kinematic chain. Furthermore, the
method requires the inclusion of Coriolis forces, which
are forces that appear when an object rotates within a
rotating frame of reference. These fictitious forces—
sometimes called pseudoforces—only exist because of
their rotating frames of reference. From an inertial (i.e.,
fixed or absolute) frame of reference, they do not exist.
Rarely have researchers tried to compare the two
methods. However, Pezzack (1976) did compare both
methods using the same coordinate data and found that
the relative motion method was less accurate, especially
as the kinematic chain got longer (had more segments).
For short kinematic chains (two or three segments), both
methods yielded similar results. Most researchers have
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adopted the absolute motion method, because most data-
collection systems measure segmental kinematics with
respect to axes affixed to the ground or laboratory floor.

APPLICATIONS

There are many uses for the results of an inverse dynam-
ics analysis. One application sums the extensor moments
of a lower extremity during the stance phase of walking
and jogging to find characteristic patterns and predict

whether people with artificial joints or pathological
conditions have a sufficient support moment to prevent
collapse (Winter 1980, 1983a; see From the Scientific
Literature). Others have used the net forces and moments
in musculoskeletal models to compute the compressive
loading of the base of the spine for research on lifting
and low back pain (e.g., McGill and Norman 1985). An
extension of this approach is to calculate the compres-
sion and shear force at a joint. To do this, the researcher
must know the insertion point of the active muscle acting

FROM THE SCIENTIFIC LITERATURE

Winter, D.A. 1980. Overall principle of lower limb support during stance phase of gait. Journal of Bio-

mechanics 13:923-7.

This paper presents a special way of combining the
moments of force of the lower extremity during the stance
phase of gait. During stance, the three moments of force—
the ankle, knee, and hip—combine to support the body
and prevent collapse. The author found that by adding the
three moments in such a way that the extensor moments
had a positive value, the resulting “support moment” fol-
lowed a particular shape. The support moment (Mmppm )
was defined mathematically as

=-M, +M, M

knee ankle

(.2)

support

Notice that the negative signs for the hip and ankle
moments change their directions so that an extensor

moment from these joints makes a positive contribution to
the support moment. A flexor moment at any joint reduces
the amplitude of the support moment. Figure 5.13 shows
the average support moment of normal subjects and the
support moment and hip, knee, and ankle moments of a
73-year-old male with a hip replacement.

This useful tool allows a clinical researcher to moni-
tor a patient’s progress during gait rehabilitation. As the
patient becomes stronger or coordinates the three joints
more effectively, the support moment gets larger. People
with one or even two limb joints that cannot adequately
contribute to the support moment will still be supported
by that limb if the remaining joints’ moments are large
enough to produce a positive support moment.
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A Figure 5.13a Averaged support moment of subjects with intact joints.
Reprinted from Journal of Biomechanics, Vol. 13, D.A. Winter, “Overall principle of lower limb support during stance phase of gait,” pgs. 923-

927, copyright 1980, with permission of Elsevier.
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replacement during the stance phase of walking.

Reprinted from Journal of Biomechanics, Vol. 13, D.A. Winter, “Overall principle of lower limb support during stance phase of gait,” pgs. 923-
927, copyright 1980, with permission of Elsevier.
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across a joint and assume that there are no other active
muscles.

Computing the force in a muscle requires several
assumptions to prevent indeterminacy (i.e., too few
equations and too many unknowns). For example, if a
single muscle can be assumed to act across a joint and
no other structure contributes to the net moment of force,
then, if the muscle’s insertion point and line of action
are known (from radiographs or estimation), the muscle
force (F ) 1is defined:

muscle

F_ =M/rsin §)

muscle

(5.3)

where M is the net moment of force at the joint, » is the
distance from the joint center to the insertion point of
the muscle, and 6 is the angle of the muscle’s line of
action and the position vector between the joint center
and the muscle’s insertion point. Of course, such a situ-
ation rarely occurs because most joints have multiple
synergistic muscles with different insertions and lines
of action as well as antagonistic muscles that often act
in cocontraction. By monitoring the electrical activity
(with an electromyograph) of both the agonists and
antagonists, one can reduce these problems, but even
an inactive muscle can create forces, especially if it is
stretched beyond its resting length. The contributions

of other tissues to the net moment of force can be mini-
mized also as long as the motion being analyzed does
not include the ends of the range of motion, when these
structures become significant.

Once the researcher has estimated the force in the
muscle, the muscle stress can be computed by determin-
ing the cross-sectional area. The cross-sectional areas of
particular muscles can be derived from published reports
or measured directly from MRI scans or radiographs.
Axial stress (o) is defined as axial force divided by cross-
sectional area. For pennate types of muscles in which
the force is assumed to act along the line of the muscle,
the stress is defined as o= F, /A, where F s the
muscle force in newtons and A is the cross-sectional area
in square meters. The units of stress are called pascals
(Pa), but because of the large magnitudes, kilopascals
(kPa) are usually used. Of course, true stress on the
muscle cannot be quantified because of the difficulty of
directly measuring the actual muscle force.

The following sections present and discuss the pat-
terns of planar lower-extremity joint moments during
walking and running. These movements and others
such as stair ascent and descent often can be analyzed
two-dimensionally because their principal motions
occur primarily in the sagittal plane. The convention

FROM THE SCIENTIFIC LITERATURE

McGill, S., and R.W. Norman. 1985. Dynamically and statically determined low-back moments during

lifting. Journal of Biomechanics 18:877-85.

This study presents a method for computing the compres-
sive load at the L4-L5 joint from data collected on the
motion of the upper body during a manual lifting task.
Three different methods for computing the net moments of
force at L4-L5 were compared. A conventional dynamic
analysis was performed using planar inverse dynamics to
compute the net forces and moments at the shoulder and
neck, from which the net forces and moments were cal-
culated for the lumbar end of the trunk (L4-L5). Second,
a static analysis was done by zeroing the accelerations of
the segments. A third, quasi-dynamic approach assumed
a static model but used dynamic information about the
load. Once the lumbar net forces and moments were cal-
culated, it was assumed that a “single equivalent muscle”
was responsible for producing the moments of force and
that the effective moment arm of this muscle was 5 cm.
The magnitude of the compressive force (meprm ) on the
L4-L5 joint was then computed by measuring the angle
of the lumbar spine (actually, the trunk), 6. The equation
used was

=¥+chos0+Fx sin@ (5.4

compress

where M is the net moment of force at the L4-L5 joint, r is
the moment arm of the single equivalent extensor muscle
across L4-L5 (5 cm), (F, Fy ) is the net force at the L4/
L5 joint, and 6 is the angle of the trunk (the line between
L4-L5 and C7-T1).

The researchers showed that there were “statistically sig-
nificant and appreciable difference(s)” among the results of
the three methods for the pattern and peak values of the net
moment of force at L4-L5. In general, the dynamic method
yielded larger peak moments than the static approach but
smaller values than the quasi-dynamic method. Compari-
sons of a single subject’s lumbar moment histories and the
averaged histories of all subjects showed that each approach
produced very different patterns of activity. These compari-
sons also showed that although the static approach produced
compressive loads that were less than the 1981 National
Institute for Occupational Health and Safety (NIOSH) lift-
ing standard, the more accurate dynamic model produced
loads greater than the “maximum permissible load.” The
quasi-dynamic approach produced even higher compres-
sive loads. Clearly, then, one should apply the most accurate
method to obtain realistic conclusions.
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for presenting these figures is that extensor moments are
presented as positive and flexor moments as negative.
This is in agreement with the engineering standard that
mechanical actions that lengthen a system are positive
(positive strain) and actions that shorten the system
are negative (negative strain). In figure 5.9, hip flexor
moments and dorsiflexor moments were calculated as
positive. Therefore, these two moments are usually
presented as the negative of what is calculated.

Walking

Joint moments during walking have many typical fea-
tures. Sample data are presented in figure 5.14 for the
ankle, knee, and hip joint moments. These data are pre-
sented as percentages of the gait cycle; the vertical line at
60% of the cycle represents toe-off, and the 0% and 100%
points of the cycle reflect heel-contact. On the vertical
axes, the joint moments are presented in newton meters.
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A Figure 5.14 Moments of force at the (a) ankle, (b) knee, and (c) hip during normal level walking. HC = heel-

contact; TO = toe-off.
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Sometimes these values are scaled to the percentage of
body mass or percentage of body mass times leg length
to assist in comparing different subjects. We keep these
data in newton meters for continuity with the preceding
examples. In general, joint moments do scale up and
down with body size. They also change magnitude with
the speed of movement.

The ankle moment depicted in figure 5.14a shows that
there was a dorsiflexor moment after heel-contact that
peaked at about 15 N-m. This moment prevents the foot
from rotating too quickly from heel-contact to foot-flat,
a condition known clinically as foot-slap. Although 15
N'm is a relatively small moment on the scale of this
graph, this peak is nonetheless a very common feature
of normal walking. Thereafter, we see a large plantar
flexor moment that peaked at about 160 N-m near 40%
of the stride duration. This reflects the effort necessary
to effect push-off. As this peak diminishes, the limb
becomes unloaded. As toe-off occurs, we again see a
small dorsiflexor moment of about 10 N-m. This action,
although small, is important because it lifts the toes out
of the way of the ground. Individuals with dorsiflexor
dysfunction have a problem with their toes catching the
ground at this part of the gait cycle. For the rest of the
swing phase, the ankle moment is near zero.

In figure 5.14b, there are four distinct peaks of the
knee moment. The largest peak during stance is extensor,
typically peaking around 100 N'm. During this peak,
the limb is loaded and thus the extensor moment acts to
prevent collapse of the limb. Note that this peak occurs
slightly earlier than the peak of the ankle moment. Often
we see a smaller knee flexor peak before toe-off as the
leg is pulled through the remainder of the stance. During
swing, the first peak is extensor; it limits the flexion of
the knee that occurs because the lower extremity is being
swung forward from the hip. Without this peak, the knee
would reach a highly flexed position, especially at faster
walking velocities. The second swing-phase peak is a
flexor peak of about 30 N-m; it slows the leg before the
knee reaches full extension.

Figure 5.14¢ shows that the hip moment tends to have
an 80 N'm extensor peak during the first half of stance. At
toe-off, there is a flexor moment that is needed to swing
the lower extremity forward. Then, similar to the knee
moment, the hip moment has an extensor peak of about
40 N'm at the end swing to slow the lower extremity
before heel-contact.

The hip moment is the most variable of the three
lower-extremity joint moments. The foot moment tends
to be the least variable because the segment is con-
strained by the ground. The hip, in contrast, not only
is responsible for lower-extremity control but also has
to control the balance of the torso. This is a significant
task, given that the torso accounts for at least two-thirds
of the body weight of an average individual. Winter and

Sienko (1988) showed that the movement of the torso
reflects a majority of the variability in hip moment. In
this regard, the hip moment becomes somewhat hard to
interpret during stance.

Running

Lower-extremity joint moments during running are
shown in figure 5.15. These moments have patterns simi-
lar to their analogues in walking. The most prominent
differences are their magnitudes. Running is a more
forceful activity than walking; thus, just as GRFs are
larger during running, so, too, are the joint moments.
Furthermore, the stance phase (HC to TO) is a smaller
percentage of the running cycle than during walking.
During stance, the ankle moment (figure 5.154) has a
larger plantar flexor peak of about 200 N-m. Thereafter,
the swing-phase (TO to second HC) ankle moment is
near zero. The ankle moment at heel-contact varies
slightly depending on running style. Runners with a
heel-toe footfall pattern exhibit a small dorsiflexor peak
at heel-contact, much like in walking (as shown in figure
5.14). Individuals who run foot-flat or on their toes do
not have this peak because there is no need to control
foot-slap.

The stance-phase knee moment (Figure 5.15b), like
the ankle moment, consists primarily of a single extensor
peak of about 250 N-m. Prior to toe-off, there is usually
a flexor moment of about 30 N-m. This action flexes
the knee rapidly before the lower extremity is swung
forward. During the swing, there is an extensor phase in
which the leg is swung forward. Finally, there is a flexor
phase before heel-contact to slow the leg.

The hip moment (figure 5.15¢) is extensor for much
of stance, peaking at more than 200 N-m. We then see
a shift to net flexor activity around toe-off to swing the
lower extremity forward. Then there is an extensor action
to slow the thigh before heel-contact.

SUMMARY

This chapter focused heavily on proper technique for
inverse dynamics problems. This focus is necessary
simply because the technique clearly has many steps
and potential pitfalls (Hatze 2002). Students are encour-
aged to practice such problems until they can solve them
without referring to this book. Students should be able
to draw an FBD for any segment, construct the three
equations of motion, and solve them.

Students are also encouraged to be mindful of the
limitations of joint moments. Joint moments are only
a summary representation of human effort, one step
more advanced than the information obtained from a
force plate. Joint moments are not an end-all statement
of human kinetics; rather, they are convenient standards
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for evaluating the relative efforts of different joints and
movements. Researchers interested in specific muscle
actions must use either electromyography (chapter
8), musculoskeletal models (chapter 9), or both. It is
noteworthy that the great Russian scientist Nikolai
Bernstein (see Bernstein 1967) refers to moments but
in fact preferred to use segment accelerations as overall

representations of segmental efforts. It is hard to argue
that joint moments offer much more information. A 200
or 20 N'm joint moment is in itself fairly meaningless.
It is only by comparing specific cases like the walking
and running examples in figures 5.14 and 5.15 that we
can develop a relative basis for the magnitudes of joint
moments.
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The problem with analyzing limbs segmentally is
that it can promote the misconception that each joint
is controlled independently. We stated that two-joint
muscles are poorly treated with this method. In addi-
tion, the individual segments of an extremity interact.
For example, we discussed the fact that thigh moments
affect the movement of the leg. Therefore, in terms of
joint moments, we know that a hip moment will affect the
thigh; however, we do not establish the resulting effect

Chapman, A.E. 2008. Biomechanical Analysis of Funda-
mental Human Movements. Champaign, IL: Human
Kinetics.

Nigg, B.M., and W. Herzog. 1999. Biomechanics of the
Musculo-Skeletal System. 2nd ed. Toronto: Wiley.

Ozkaya, N., M. Nordin, D. Goldsheyder, and D. Leger. 2012.
Fundamentals of Biomechanics. 3rd ed. New York: Van
Nostrand Reinhold.

SUGGESTED READINGS

on the leg. Many studies have noted the importance of
intersegmental coordination (see, for example, Putnam
1991); in fact, Bernstein cited the use of segment interac-
tions as the final step in learning to coordinate a move-
ment. Clinicians are also beginning to recognize such
effects in various populations, particularly in people with
amputation. Systemic analyses such as the Lagrangian
approach, outlined in chapter 10, may be preferable for
these situations.
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