
1

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

Motion in One Dimension

#2

2

In a fantastic race in the 100m finals of the 2008 Olympic Games in Beijing,
Usain Bolt set a new world record of 9.69 s. He even took the time to
celebrate his victory over the last 20 meters of the race. But did this affect his
winning time? Could he have run even faster?

3

4

5

6

The position x(ti) of the runner is shown at 1 and 0.5 s intervals.

7

A motion diagram illustrates the motion by a sequence of positions xi at
subsequent times ti for i = 0, 1, 2, . . ., preferably at times ti = t0 + i Δt, where
Δt is the time interval.

The motion of an object is described by the position, x(t), as a function of
time, t, measured in a given reference system. We have chosen to measure
the position x along the lane. We call this direction the x-axis. The position x
is measured from the starting line, which we call the origin—the point where
x is zero. The choice of an origin and an axis is called a reference system. You
are free to choose the axes and the origin of your reference system as you
like, but we usually try to choose so that measurements become simple.

import matplotlib.pyplot as plt

import numpy as np

Data for plotting

t = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0])

x = np.array([0.0, 3.4, 11.1, 21.3, 33.2, 45.8, 57.9])

fig, ax = plt.subplots()

ax.plot(t, x)

ax.set(xlabel='time [s]',\

 ylabel='Distance [x]',

 title='Distance vs Time Graph')

ax.grid(True, linestyle='-.')

ax.tick_params(labelcolor='r', \

 labelsize='medium', \

 width=3)

plt.show()
8

9

The displacement Δx(t1) over the time interval from t = t1 to t = t1 + Δt is
defined as:

Δx(t1) = x(t1 + Δt) − x(t1)

The displacement is read directly from the motion diagram as the length of
the line from x(1 s) to x(2 s). The displacement has a direction—it is the
displacement from x(ti) to x(ti + Δt).
The average velocity from t = t1 to t = t1 + Δt is:

𝑣 𝑡𝑖 =
𝑥 𝑡1 + ∆𝑡 − 𝑥 𝑡1

∆𝑡
=
∆𝑥 𝑡1
∆𝑡

The average velocity has units meters per second, m/s.

Average Velocity

10

Average Velocity

11

12

The instantaneous velocity is defined as the time derivative of the position:

𝑣 𝑡𝑖 = lim
∆𝑡→0

𝑥 𝑡1 + ∆𝑡 − 𝑥 𝑡1
∆𝑡

=
𝑑𝑥

𝑑𝑡

Notice that the notation x’(t) for the derivative that you may be used to from
calculus, is not commonly used in physics. Instead, it is denoted the time
derivative of a quantity by the placing a dot over it. The velocity is therefore
often written as:

𝑣 𝑡𝑖 =
𝑑𝑥

𝑑𝑡
= 𝑥

The velocity may also vary throughout the motion. As we introduced the
velocity to characterize the rate of change of position, we introduce the
acceleration to characterize the rate of change of the velocity:

The average acceleration over a time interval Δt from t to t + Δt is:

𝑎 𝑡𝑖 =
𝑣 𝑡1 + ∆𝑡 − 𝑣 𝑡1

∆𝑡
=
∆𝑣 𝑡1
∆𝑡

The average acceleration has units meters per second squared, m/s2.

13

The instantaneous acceleration is defined as:

𝑎 𝑡𝑖 = lim
∆𝑡→0

𝑣 𝑡1 + ∆𝑡 − 𝑣 𝑡1
∆𝑡

=
𝑑𝑣

𝑑𝑡
= 𝑣

When we use the term acceleration we mean the instantaneous
acceleration. The acceleration can be found as the slope of the v(t) curve.

𝑎 𝑡𝑖 =
𝑑𝑣

𝑑𝑡
=

𝑑

𝑑𝑡

𝑑𝑥

𝑑𝑡
=
𝑑2𝑥

𝑑𝑡2
= 𝑥

14

15

Using the dot-notation, we can write this as:

𝑎 𝑡 = 𝑣 𝑡 = 𝑥 𝑡

or in shorthand.

𝑎 = 𝑣 = 𝑥

16

Free Fall of an Object: An Experiment by Apollo15 Team

At the end of the last Apollo 15 moon
walk, Commander David Scott
performed a live demonstration for the
television cameras. He held out a
geologic hammer (1.32 kg) and a feather
(0.03 kg) and dropped them at the same
time. Because they were essentially in a
vacuum, there was no air resistance and
the feather fell at the same rate as the
hammer, as Galileo had concluded
hundreds of years before - all objects
released together fall at the same rate
regardless of mass of mass.

17

18

X Y

56.77 159.06

56.74 159.10

56.70 158.85

56.64 158.37

56.53 157.37

56.47 156.11

56.38 154.33

56.30 152.21

56.21 149.65

56.12 146.74

56.03 143.33

55.94 139.58

55.87 135.39

55.80 130.86

55.72 125.80

55.63 120.48

55.56 114.61

55.50 108.47

55.41 101.82

55.38 94.85

55.27 87.41

55.17 79.67

55.07 71.47

55.00 63.06

54.92 54.11

54.79 44.90

54.73 35.26

54.69 25.35

54.61 15.05

54.58 4.53

19

Free Fall of an Object: Table with calculated values

The average velocities can be calculated from the data: For each i in Table we
calculate the average velocity from ti to ti+1 using:

The velocities are increasing in magnitude since the ball is accelerating
downward. We estimate the average accelerations by

20

𝑣𝑖 =
𝑦𝑖+1 − 𝑦𝑖

∆𝑡

Free Fall of an Object: Table with calculated values

𝑎𝑖 =
𝑣𝑖 − 𝑣𝑖+1

∆𝑡

The fundamental package for scientific computing with Python

NumPy is available at www.numpy.org.

21

Vectors, matrices, and arrays of higher dimensions are essential tools in numerical
computing. When a computation must be repeated for a set of input values, it is
natural and advantageous to represent the data as arrays and the computation in
terms of array operations. Computations that are formulated this way are said to
be vectorized. Vectorized computing eliminates the need for many explicit loops
over the array elements by applying batch operations on the array data. The
result is concise and more maintainable code, and it enables delegating the
implementation of (e.g., elementwise) array operations to more efficient low-
level libraries. Vectorized computations can therefore be significantly faster than
sequential element-by-element computations.

For example:

>>> a = np.array([1, 2, 3, 4, 5, 6])

The NumPy Array Object

22

The NumPy Array Object

23

24

The NumPy Array Object

2-D, or two-dimensional array, and so on. The NumPy ndarray class is used to
represent both matrices and vectors. A vector is an array with a single dimension
(there’s no difference between row and column vectors), while a matrix refers to
an array with two dimensions. For 3-D or higher dimensional arrays, the term
tensor is also commonly used.

>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

We can access the elements in the array using square brackets. When you’re
accessing elements, remember that indexing in NumPy starts at 0.

25

The NumPy Array Object

The core of the NumPy library is the data structures for representing
multidimensional arrays of homogeneous data. Homogeneous refers to all
elements in an array having the same data type. The main data structure for
multidimensional arrays in NumPy is the ndarray class. In addition to the data
stored in the array, this data structure also contains important metadata about
the array, such as its shape, size, data type, and other attributes.

from objbrowser import browse

a = 16

browse(locals())

The NumPy Array Object

26

27

The NumPy Array Object

>>> import numpy as np

To create a NumPy array, you can use the function np.array()

>>> data = np.array([[1, 2], [3, 4], [5, 6]])

>>> type(data)

numpy.ndarray

>>> data

array([[1, 2],

 [3, 4],

 [5, 6]])

28

>>> data.ndim

2

>>> data.shape

(3, 2)

>>> data.size

6

>>> data.dtype

dtype('int32')

>>> data.nbytes

24

The NumPy Array Object

>>> np.zeros(2)

array([0., 0.])

>>> np.ones(2)

array([1., 1.])

>>> np.arange(4)

array([0, 1, 2, 3])

specify the first number, last number, and the step size

>>> np.arange(2, 9, 2)

array([2, 4, 6, 8])

The NumPy Array Object

29

>>> # Create an empty array with 2 elements

>>> np.empty(2)

array([3.14, 42.]) # may vary

The function empty creates an array whose initial content is random and depends on the
state of the memory. The reason to use empty over zeros (or something similar) is speed -
just make sure to fill every element afterwards!

You can also use np.linspace() to create an array with values that are spaced linearly in a
specified interval:

>>> np.linspace(0, 10, num=5)

array([0. , 2.5, 5. , 7.5, 10.])

30

The NumPy Array Object

31

Free Fall of an Object: How to calculate velocity and accelerations

import matplotlib.pyplot as plt

import numpy as np

x, y = np.loadtxt('Dropxy.dat', delimiter=',', usecols=[0,1],unpack=True)

n = len(x)

delta_t = 1/50 # 50 frames per second

time = np.linspace(0, (n-1)*delta_t, n)

vy = np.zeros(n-1, float)

for i in range(n-1):

 vy[i] = (y[i+1] - y[i])/delta_t

ay = np.zeros(n-2, float)

for i in range(n-2):

 ay[i] = (vy[i+1] - vy[i])/delta_t

fig, (ax1,ax2,ax3)= plt.subplots(3, 1)

ax1.plot(time, y, 'o-')

ax1.set_ylabel('y[cm]')

ax2.plot(time[0:n-1],vy, '.-')

ax2.set_ylabel('vy [cm/s]')

ax3.plot(time[1:n-1],ay, '.-')

ax3.set_ylabel('ay [cm/sˆ2]')

ax3.set_xlabel('time (s)')

plt.show()

Free Fall of an Object: How to calculate velocity and accelerations

32

33

Calculation of Acceleration is Prone to Error

from sympy import *

v, a, t = symbols('v a t', real = True)

init_printing(use_unicode = True)

Position

y = 2*sin(2*t)

print('Ideal Position : ', y)

plot(y, (t, 0, 5), line_color = 'r', ylabel = 'Position')

noise = 0.02*sin(20*t)

print('Noise : ', noise)

plot(noise, (t, 0, 5), ylabel = 'Noise')

yexp = y + noise

print('Position with noise : ', yexp)

yPlot = plot(y,yexp,(t,0,5), ylabel='Poistion+Noise', show = False)

yPlot[0].line_color = 'r'

yPlot.show()

Calculation of Acceleration is Prone to Error

34

Calculation of Acceleration is Prone to Error

35

Velocity

v = diff(y, t) # dy/dt

print('Velocity : ', v)

plot(v, (t, 0, 5), line_color = 'r', ylabel='Velocity')

v_noise = diff(noise, t) # dnoise/dt

plot(v_noise, (t, 0, 5), ylabel = 'First Derivative of Noise')

vexp = diff(yexp, t)

vPlot = plot(v,vexp,(t,0,5),ylabel='Velocity+First Derivative of Noise',

show = False)

vPlot[0].line_color = 'r'

vPlot.show()

36

Acceleration

a = diff(v, t) # dv/dt

print('Acceleration : ', a)

plot(a, (t, 0, 5), line_color = 'r', ylabel='Acceleration')

a_noise = diff(noise, t, 2) #d2noise/dt^2

plot(a_noise, (t, 0, 5), ylabel='Second Derivative of Noise')

aexp = diff(vexp, t)

aPlot = plot(a, aexp, (t, 0, 5), ylabel='Acceleration + Second

Derivative of Noise', show = False)

#change the color of aexp

aPlot[0].line_color = 'r'

aPlot.show()

Calculation of Acceleration is Prone to Error

37

Calculation of Acceleration is Prone to Error

38

39

We can compare the results better by studying the velocities and
accelerations. In the mathematical model, we know y(t), and we can
calculate the instantaneous velocity and acceleration by applying the
definitions directly. The velocity of the ball is defined as:

𝑣 =
𝑑𝑦

𝑑𝑡
=

𝑑

𝑑𝑡
𝑦0 −

1

2
𝑔𝑡2 = −𝑔𝑡

Similarly, the acceleration is defined as

𝑎 =
𝑑𝑣

𝑑𝑡
=

𝑑

𝑑𝑡
−𝑔𝑡 = −𝑔 = 9.8 𝑚/𝑠2

40

Refreshing Calculus with SymPy

from sympy import *

v, a, t, g, y0 = symbols('v a t g y0', real = True)

init_printing(use_unicode = True)

y = y0 - 0.5*g*t**2

print('Position : ', y)

v = diff(y, t)

print('Velocity : ', v)

a = diff(v, t)

print('Acceleration : ', a)

Prints

Position : -0.5*g*t**2 + y0

Velocity : -1.0*g*t

Acceleration : -1.0*g

41

Refreshing Calculus with SymPy

Let's do some experiment

Leave the ball from 10 meters on the earth

yexp = y.subs({y0:10, g: 9.8182})

plot(yexp, (t, 0, 5), ylabel='Position')

vexp = diff(yexp, t)

plot(vexp, (t, 0, 5), ylabel='Velocity')

aexp = diff(vexp, t)

plot(aexp, (t, 0, 5), ylabel='Acceleration')

𝒚 = −𝒂𝒙 + 𝒃

𝒚 = −𝒂

𝒚 = −𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄

42

𝒗 = −𝒈𝒕

𝒂 = −𝒈

𝒚 = −𝒂𝒙 + 𝒃

𝒚 = −𝒂

𝒚 = −𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄

There is a mathematical model for the motion of a falling tennis ball when
there is no air resistance

𝑦 𝑡 = 𝑦0 −
1

2
𝑔𝑡2

where g = 9.8m/s2 is a constant and y0 is the position of the tennis ball at t =
0 s. Let us see how this model matches up with the observed data. We
calculate the position of the ball for various times. From the experimental
data, we see that y(0) = 1.5905 m. We use Python as a calculator to find the
positions for all the times in table with a single line of code:

43

Free Fall of an Object: Mathematical Model

𝑦 𝑡 = 1.5908 −
1

2
9.81𝑡2

𝑦 𝑡 = −4.905𝑡2 + 1.5908

Curve fitting is the process of constructing a curve, or mathematical function,
that has the best fit to a series of data points, possibly subject to constraints.
Curve fitting can involve either interpolation, where an exact fit to the data is
required, or smoothing.

Most commonly, one fits a function of the form y=f(x).

First degree polynomial equation

Second degree polynomial equation

Third degree polynomial equation

Curve fitting: Fitting lines and polynomial functions to data points

𝑦 = 𝑎𝑥 + 𝑏

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

44

Polynomial curves fitting points
generated with a sine function.

Red line is a first degree
polynomial, green line is second
degree, orange line is third
degree and blue is fourth degree.

Curve fitting: Fitting lines and polynomial functions to data points

45

46

The goodness of fit of a statistical
model describes how well it fits a set
of observations. Measures of
goodness of fit typically summarize
the discrepancy between observed
values and the values expected
under the model in question.

The coefficient of determination,
denoted R2 or r2 and pronounced R
squared, is a number that indicates
how well data fit a statistical model.

Goodness of fit: Coefficient of determination

47

The better the linear regression (on the right) fits the data in comparison to
the simple average (on the left), the closer the value of R2 is to 1. The areas
of the blue squares represent the squared residuals with respect to the
linear regression. The areas of the red squares represent the squared
residuals with respect to the average value.

Goodness of fit: Coefficient of determination

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

𝑆𝑆𝑡𝑜𝑡 = 𝑦𝑖 − 𝑦 2

𝑖

 𝑆𝑆𝑟𝑒𝑠 = 𝑦𝑖 − 𝑓𝑖
2

𝑖

48

X Y

56.77 159.06

56.74 159.10

56.70 158.85

56.64 158.37

56.53 157.37

56.47 156.11

56.38 154.33

56.30 152.21

56.21 149.65

56.12 146.74

56.03 143.33

55.94 139.58

55.87 135.39

55.80 130.86

55.72 125.80

55.63 120.48

55.56 114.61

55.50 108.47

55.41 101.82

55.38 94.85

55.27 87.41

55.17 79.67

55.07 71.47

55.00 63.06

54.92 54.11

54.79 44.90

54.73 35.26

54.69 25.35

54.61 15.05

54.58 4.53

import matplotlib.pyplot as plt

import numpy as np

y = np.loadtxt('Dropxy.dat', delimiter=',', usecols=[1],unpack=True)

n = len(y)

delta_t = 1/50 # 50 frames per second

time = np.linspace(0, (n-1)*delta_t, n)

Fit 2nd Order Polynomial

y_poly = np.polyfit(time, y, 2)

Evaluate 2nd Order Polynomial with time values

y_val = np.polyval(y_poly, time)

correlation = np.corrcoef(time, y)[0,1]

print('R squared = {:2.2f}'.format(correlation**2))

R2 = R squared = 0.92

Curve fitting: Python Applications

49

import matplotlib.pyplot as plt

import numpy as np

fig, ax = plt.subplots()

l1,l2= ax.plot(time,y,‘ko’,time,y_val,‘:r')

ax.set_ylabel('y [cm]')

ax.set_xlabel('time [s]')

ax.legend((l1, l2),\

 ('Experiment','Polynomial Fit'),\

 loc='upper right', shadow=True)

plt.show()

R squared = 0.92

Curve fitting: Python Applications

50

Curve fitting: Python Applications
import matplotlib.pyplot as plt

import numpy as np

fig, ax = plt.subplots()

ax.plot(time, y_val - y, 'o:b')

plt.suptitle('Difference Poynomial Fit and Experiment')

ax.set_ylabel('Difference [cm]')

ax.set_xlabel('time [s]')

plt.show()

51

v_poly = np.polyder(y_poly)

a_poly = np.polyder(y_poly, 2)

v_val = np.polyval(v_poly, time)

a_val = np.polyval(a_poly, time)

fig, ax = plt.subplots()

ax.plot(time, v_val, '-r')

ax.set_ylabel('vy [cm/s]')

ax.set_xlabel('time [s]')

plt.show()

fig, ax = plt.subplots()

ax.plot(time, a_val, '-r')

ax.set_ylabel('ay [cm/sˆ2]')

ax.set_xlabel('time [s]')

plt.show()

Curve fitting: Python Applications

52

Modelling and Simulation

import matplotlib.pyplot as plt

import numpy as np

y_exp = np.loadtxt('Dropxy.dat', delimiter=',', usecols=[1],unpack=True)

n = len(y_exp)

delta_t = 1/50 # 50 frames per second

time = np.linspace(0, (n-1)*delta_t, n)

Fit 2nd Order Polynomial

y_poly = np.polyfit(time, y_exp, 2)

Evaluate 2nd Order Polynomial with time values

y_val = np.polyval(y_poly, time)

vy_exp = np.zeros(n-1, float)

vy_pol = np.zeros(n-1, float)

for i in range(n-1):

 vy_exp[i] = (y_exp[i+1] – y_exp[i])/delta_t

 vy_pol[i] = (y_val[i+1] – y_val[i])/delta_t

ay_exp = zeros(n-2, float)

ay_pol = zeros(n-2, float)

for i in range(n-2):

 ay_exp[i] = (vy_exp[i+1] – vy_exp[i])/delta_t

 ay_pol[i] = (vy_pol[i+1] – vy_pol[i])/delta_t

Modelling and Simulation

53

fig, (ax1, ax2, ax3) = plt.subplots(3, 1)

l1, l2 = ax1.plot(time, y_exp, 'ok', time, y_val, '-r')

ax1.set_ylabel('y [cm]')

ax1.legend((l1, l2),('Exp', 'Model‘))

ax2.plot(time[0:n-1], vy_exp, 'ok')

ax2.plot(time[0:n-1], vy_pol, '-r')

ax2.set_ylabel('vy [cm/s]')

ax3.plot(time[1:n-1], ay_exp, 'ok:')

ax3.plot(time[1:n-1], ay_pol, '-r')

ax3.set_xlabel('time [s]')

ax3.set_ylabel('ay [cm/sˆ2]')

plt.show()

Modelling and Simulation

54

The acceleration due to gravity on the
surface of the Moon is 1.62 m/s2

55

The acceleration due to gravity on the
surface of the Jupiter is 24.79m/s2

Class Study : Free Fall of an Object in the Moon and the Jupiter

