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In a fantastic race in the 100m finals of the 2008 Olympic Games in Beijing, 
Usain Bolt set a new world record of 9.69 s. He even took the time to 
celebrate his victory over the last 20 meters of the race. But did this affect his 
winning time? Could he have run even faster? 
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The position x(ti) of the runner is shown at 1 and 0.5 s intervals. 
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A motion diagram illustrates the motion by a sequence of positions xi at 
subsequent times ti for i = 0, 1, 2, . . ., preferably at times ti = t0 + i Δt, where 
Δt is the time interval. 
 
The motion of an object is described by the position, x(t), as a function of 
time, t, measured in a given reference system. We have chosen to measure 
the position x along the lane. We call this direction the x-axis. The position x 
is measured from the starting line, which we call the origin—the point where 
x is zero. The choice of an origin and an axis is called a reference system. You 
are free to choose the axes and the origin of your reference system as you 
like, but we usually try to choose so that measurements become simple. 



import matplotlib.pyplot as plt 

import numpy as np 

# Data for plotting 

t = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]) 

x = np.array([0.0, 3.4, 11.1, 21.3, 33.2, 45.8, 57.9]) 

 

fig, ax = plt.subplots() 

ax.plot(t, x) 

 

ax.set(xlabel='time [s]',\ 

       ylabel='Distance [x]', 

       title='Distance vs Time Graph') 

 

ax.grid(True, linestyle='-.') 

ax.tick_params(labelcolor='r', \ 

               labelsize='medium', \ 

               width=3) 

plt.show() 
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The displacement Δx(t1) over the time interval from t = t1 to t = t1 + Δt is 
defined as: 

Δx(t1) = x(t1 + Δt) − x(t1)  
 

The displacement is read directly from the motion diagram as the length of 
the line from x(1 s) to x(2 s). The displacement has a direction—it is the 
displacement from x(ti ) to x(ti + Δt). 
The average velocity from t = t1 to t = t1 + Δt is: 
 

𝑣 𝑡𝑖 =
𝑥 𝑡1 + ∆𝑡 − 𝑥 𝑡1

∆𝑡
=
∆𝑥 𝑡1
∆𝑡

 

 
The average velocity has units meters per second, m/s. 



Average Velocity 
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Average Velocity 

11 



12 

The instantaneous velocity is defined as the time derivative of the position: 
 
 

𝑣 𝑡𝑖 = lim
∆𝑡→0

𝑥 𝑡1 + ∆𝑡 − 𝑥 𝑡1
∆𝑡

=
𝑑𝑥

𝑑𝑡
 

 
Notice that the notation x’(t) for the derivative that you may be used to from 
calculus, is not commonly used in physics. Instead, it is denoted the time 
derivative of a quantity by the placing a dot over it. The velocity is therefore 
often written as: 

𝑣 𝑡𝑖 =
𝑑𝑥

𝑑𝑡
= 𝑥  



The velocity may also vary throughout the motion. As we introduced the 
velocity to characterize the rate of change of position, we introduce the 
acceleration to characterize the rate of change of the velocity: 
 
The average acceleration over a time interval Δt from t to t + Δt is: 
 

𝑎 𝑡𝑖 =
𝑣 𝑡1 + ∆𝑡 − 𝑣 𝑡1

∆𝑡
=
∆𝑣 𝑡1
∆𝑡

 

 
The average acceleration has units meters per second squared, m/s2. 
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The instantaneous acceleration is defined as: 
 
 

𝑎 𝑡𝑖 = lim
∆𝑡→0

𝑣 𝑡1 + ∆𝑡 − 𝑣 𝑡1
∆𝑡

=
𝑑𝑣

𝑑𝑡
= 𝑣  

 
 
When we use the term acceleration we mean the instantaneous 
acceleration. The acceleration can be found as the slope of the v(t) curve. 
 

𝑎 𝑡𝑖 =
𝑑𝑣

𝑑𝑡
=

𝑑

𝑑𝑡

𝑑𝑥

𝑑𝑡
=
𝑑2𝑥

𝑑𝑡2
= 𝑥  
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Using the dot-notation, we can write this as: 
 

𝑎 𝑡 = 𝑣 𝑡 = 𝑥 𝑡  
 
 
or in shorthand. 

𝑎 = 𝑣 = 𝑥  
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Free Fall of an Object: An Experiment by Apollo15 Team 

At the end of the last Apollo 15 moon 
walk, Commander David Scott 
performed a live demonstration for the 
television cameras. He held out a 
geologic hammer (1.32 kg) and a feather 
(0.03 kg) and dropped them at the same 
time. Because they were essentially in a 
vacuum, there was no air resistance and 
the feather fell at the same rate as the 
hammer, as Galileo had concluded 
hundreds of years before - all objects 
released together fall at the same rate 
regardless of mass of mass.  
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X Y 

56.77 159.06 

56.74 159.10 

56.70 158.85 

56.64 158.37 

56.53 157.37 

56.47 156.11 

56.38 154.33 

56.30 152.21 

56.21 149.65 

56.12 146.74 

56.03 143.33 

55.94 139.58 

55.87 135.39 

55.80 130.86 

55.72 125.80 

55.63 120.48 

55.56 114.61 

55.50 108.47 

55.41 101.82 

55.38 94.85 

55.27 87.41 

55.17 79.67 

55.07 71.47 

55.00 63.06 

54.92 54.11 

54.79 44.90 

54.73 35.26 

54.69 25.35 

54.61 15.05 

54.58 4.53 
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Free Fall of an Object: Table with calculated values 



The average velocities can be calculated from the data: For each i in Table we 
calculate the average velocity from ti to ti+1 using: 
 
 
 
The velocities are increasing in magnitude since the ball is accelerating 
downward. We estimate the average accelerations by 
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𝑣𝑖 =
𝑦𝑖+1 − 𝑦𝑖

∆𝑡
 

Free Fall of an Object: Table with calculated values 

𝑎𝑖 =
𝑣𝑖 − 𝑣𝑖+1

∆𝑡
 



The fundamental package for scientific computing with Python 

NumPy is available at www.numpy.org. 
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Vectors, matrices, and arrays of higher dimensions are essential tools in numerical 
computing. When a computation must be repeated for a set of input values, it is 
natural and advantageous to represent the data as arrays and the computation in 
terms of array operations. Computations that are formulated this way are said to 
be vectorized. Vectorized computing eliminates the need for many explicit loops 
over the array elements by applying batch operations on the array data. The 
result is concise and more maintainable code, and it enables delegating the 
implementation of (e.g., elementwise) array operations to more efficient low-
level libraries. Vectorized computations can therefore be significantly faster than 
sequential element-by-element computations.  

For example: 

>>> a = np.array([1, 2, 3, 4, 5, 6]) 

The NumPy Array Object 
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The NumPy Array Object 
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The NumPy Array Object 

2-D, or two-dimensional array, and so on. The NumPy ndarray class is used to 
represent both matrices and vectors. A vector is an array with a single dimension 
(there’s no difference between row and column vectors), while a matrix refers to 
an array with two dimensions. For 3-D or higher dimensional arrays, the term 
tensor is also commonly used. 

 

>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) 

 

We can access the elements in the array using square brackets. When you’re 
accessing elements, remember that indexing in NumPy starts at 0. 
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The NumPy Array Object 

The core of the NumPy library is the data structures for representing 
multidimensional arrays of homogeneous data. Homogeneous refers to all 
elements in an array having the same data type. The main data structure for 
multidimensional arrays in NumPy is the ndarray class. In addition to the data 
stored in the array, this data structure also contains important metadata about 
the array, such as its shape, size, data type, and other attributes. 



from objbrowser import browse 

a = 16 

browse(locals()) 

 

The NumPy Array Object 
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The NumPy Array Object 

>>> import numpy as np 

# To create a NumPy array, you can use the function np.array() 

 

>>> data = np.array([[1, 2], [3, 4], [5, 6]]) 

>>> type(data) 

numpy.ndarray 

>>> data 

array([[1, 2], 

       [3, 4], 

       [5, 6]]) 
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>>> data.ndim 

2 

>>> data.shape 

(3, 2) 

>>> data.size 

6 

>>> data.dtype 

dtype('int32') 

>>> data.nbytes 

24 

The NumPy Array Object 



>>> np.zeros(2) 

array([0., 0.]) 

>>> np.ones(2) 

array([1., 1.]) 

>>> np.arange(4) 

array([0, 1, 2, 3]) 

# specify the first number, last number, and the step size 

>>> np.arange(2, 9, 2) 

array([2, 4, 6, 8]) 

The NumPy Array Object 
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>>> # Create an empty array with 2 elements 

>>> np.empty(2) 

array([ 3.14, 42.  ])  # may vary 

The function empty creates an array whose initial content is random and depends on the 
state of the memory. The reason to use empty over zeros (or something similar) is speed - 
just make sure to fill every element afterwards! 

You can also use np.linspace() to create an array with values that are spaced linearly in a 
specified interval: 

>>> np.linspace(0, 10, num=5) 

array([ 0. ,  2.5,  5. ,  7.5, 10. ]) 
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The NumPy Array Object 
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Free Fall of an Object: How to calculate velocity and accelerations  
 

import matplotlib.pyplot as plt 

import numpy as np 

 

x, y = np.loadtxt('Dropxy.dat', delimiter=',', usecols=[0,1],unpack=True ) 

n = len(x) 

delta_t = 1/50      # 50 frames per second 

time = np.linspace(0, (n-1)*delta_t, n) 

 

vy = np.zeros(n-1, float) 

for i in range(n-1): 

    vy[i] = (y[i+1] - y[i])/delta_t 

 

ay = np.zeros(n-2, float) 

for i in range(n-2): 

    ay[i] = (vy[i+1] - vy[i])/delta_t 



 
fig, (ax1,ax2,ax3)= plt.subplots(3, 1) 

 

ax1.plot(time, y, 'o-') 

ax1.set_ylabel('y[cm]') 

 

ax2.plot(time[0:n-1],vy, '.-') 

ax2.set_ylabel('vy [cm/s]') 

 

ax3.plot(time[1:n-1],ay, '.-') 

ax3.set_ylabel('ay [cm/sˆ2]') 

ax3.set_xlabel('time (s)') 

 

plt.show() 

Free Fall of an Object: How to calculate velocity and accelerations 
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Calculation of Acceleration is Prone to Error 

from sympy import * 

v, a, t = symbols('v a t', real = True) 

init_printing(use_unicode = True)  

## Position 

y = 2*sin(2*t)  

print('Ideal Position : ', y) 

plot(y, (t, 0, 5), line_color = 'r', ylabel = 'Position') 

noise = 0.02*sin(20*t) 

print('Noise : ', noise) 

plot(noise, (t, 0, 5), ylabel = 'Noise') 

yexp = y + noise 

print('Position with noise : ', yexp) 

yPlot = plot(y,yexp,(t,0,5), ylabel='Poistion+Noise', show = False) 

yPlot[0].line_color = 'r' 

yPlot.show() 



Calculation of Acceleration is Prone to Error 
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Calculation of Acceleration is Prone to Error 
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## Velocity 

v = diff(y, t) # dy/dt 

print('Velocity : ', v) 

plot(v, (t, 0, 5), line_color = 'r', ylabel='Velocity') 

v_noise = diff(noise, t) # dnoise/dt 

plot(v_noise, (t, 0, 5), ylabel = 'First Derivative of Noise') 

vexp = diff(yexp, t) 

vPlot = plot(v,vexp,(t,0,5),ylabel='Velocity+First Derivative of Noise', 

show = False) 

vPlot[0].line_color = 'r' 

vPlot.show() 
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## Acceleration 

a = diff(v, t) # dv/dt 

print('Acceleration : ', a) 

plot(a, (t, 0, 5), line_color = 'r', ylabel='Acceleration') 

a_noise = diff(noise, t, 2) #d2noise/dt^2 

plot(a_noise, (t, 0, 5), ylabel='Second Derivative of Noise') 

aexp = diff(vexp, t) 

aPlot = plot(a, aexp, (t, 0, 5), ylabel='Acceleration + Second 

Derivative of Noise', show = False) 

#change the color of aexp 

aPlot[0].line_color = 'r' 

aPlot.show() 

Calculation of Acceleration is Prone to Error 
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Calculation of Acceleration is Prone to Error 
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We can compare the results better by studying the velocities and 
accelerations. In the mathematical model, we know y(t), and we can 
calculate the instantaneous velocity and acceleration by applying the 
definitions directly. The velocity of the ball is defined as: 

𝑣 =
𝑑𝑦

𝑑𝑡
=

𝑑

𝑑𝑡
𝑦0 −

1

2
𝑔𝑡2 = −𝑔𝑡 

 
Similarly, the acceleration is defined as 

𝑎 =
𝑑𝑣

𝑑𝑡
=

𝑑

𝑑𝑡
−𝑔𝑡 = −𝑔 = 9.8 𝑚/𝑠2 
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Refreshing Calculus with SymPy  

from sympy import * 

v, a, t, g, y0 = symbols('v a t g y0', real = True) 

init_printing(use_unicode = True)  

 

y = y0 - 0.5*g*t**2 

print('Position : ', y) 

 

v = diff(y, t) 

print('Velocity : ', v) 

 

a = diff(v, t) 

print('Acceleration : ', a) 

# Prints 

Position :  -0.5*g*t**2 + y0 

Velocity :  -1.0*g*t 

Acceleration :  -1.0*g 
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Refreshing Calculus with SymPy  

# Let's do some experiment 

# Leave the ball from 10 meters on the earth 

yexp = y.subs({y0:10, g: 9.8182}) 

plot(yexp, (t, 0, 5), ylabel='Position') 

vexp = diff(yexp, t) 

plot(vexp, (t, 0, 5), ylabel='Velocity') 

aexp = diff(vexp, t) 

plot(aexp, (t, 0, 5), ylabel='Acceleration') 

𝒚 = −𝒂𝒙 + 𝒃 

𝒚 = −𝒂 

𝒚 = −𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 
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𝒗 = −𝒈𝒕 

𝒂 = −𝒈 

𝒚 = −𝒂𝒙 + 𝒃 

𝒚 = −𝒂 

𝒚 = −𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 



There is a mathematical model for the motion of a falling tennis ball when 
there is no air resistance 
 

𝑦 𝑡 = 𝑦0 −
1

2
𝑔𝑡2 

 
where g = 9.8m/s2 is a constant and y0 is the position of the tennis ball at t = 
0 s. Let us see how this model matches up with the observed data. We 
calculate the position of the ball for various times. From the experimental 
data, we see that y(0) = 1.5905 m. We use Python as a calculator to find the 
positions for all the times in table with a single line of code: 
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Free Fall of an Object: Mathematical Model 

𝑦 𝑡 = 1.5908 −
1

2
9.81𝑡2 

𝑦 𝑡 = −4.905𝑡2 + 1.5908 



Curve fitting is the process of constructing a curve, or mathematical function, 
that has the best fit to a series of data points, possibly subject to constraints. 
Curve fitting can involve either interpolation, where an exact fit to the data is 
required, or smoothing. 
 
Most commonly, one fits a function of the form y=f(x). 
 
First degree polynomial equation 
 
Second degree polynomial equation 
 
Third degree polynomial equation 

Curve fitting: Fitting lines and polynomial functions to data points 

𝑦 = 𝑎𝑥 + 𝑏 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 
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Polynomial curves fitting points 
generated with a sine function. 
 
Red line is a first degree 
polynomial, green line is second 
degree, orange line is third 
degree and blue is fourth degree. 

Curve fitting: Fitting lines and polynomial functions to data points 
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The goodness of fit of a statistical 
model describes how well it fits a set 
of observations. Measures of 
goodness of fit typically summarize 
the discrepancy between observed 
values and the values expected 
under the model in question. 
 
The coefficient of determination, 
denoted R2 or r2 and pronounced R 
squared, is a number that indicates 
how well data fit a statistical model. 

Goodness of fit: Coefficient of determination  
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The better the linear regression (on the right) fits the data in comparison to 
the simple average (on the left), the closer the value of R2 is to 1. The areas 
of the blue squares represent the squared residuals with respect to the 
linear regression. The areas of the red squares represent the squared 
residuals with respect to the average value. 

Goodness of fit: Coefficient of determination  

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

 

𝑆𝑆𝑡𝑜𝑡 = 𝑦𝑖 − 𝑦 2

𝑖

 𝑆𝑆𝑟𝑒𝑠 = 𝑦𝑖 − 𝑓𝑖
2

𝑖
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X Y 

56.77 159.06 

56.74 159.10 

56.70 158.85 

56.64 158.37 

56.53 157.37 

56.47 156.11 

56.38 154.33 

56.30 152.21 

56.21 149.65 

56.12 146.74 

56.03 143.33 

55.94 139.58 

55.87 135.39 

55.80 130.86 

55.72 125.80 

55.63 120.48 

55.56 114.61 

55.50 108.47 

55.41 101.82 

55.38 94.85 

55.27 87.41 

55.17 79.67 

55.07 71.47 

55.00 63.06 

54.92 54.11 

54.79 44.90 

54.73 35.26 

54.69 25.35 

54.61 15.05 

54.58 4.53 

 
 

import matplotlib.pyplot as plt 

import numpy as np 

 

y = np.loadtxt('Dropxy.dat', delimiter=',', usecols=[1],unpack=True ) 

n = len(y) 

delta_t = 1/50      # 50 frames per second 

time = np.linspace(0, (n-1)*delta_t, n) 

# Fit 2nd Order Polynomial 

y_poly = np.polyfit(time, y, 2) 

# Evaluate 2nd Order Polynomial with time values 

y_val = np.polyval(y_poly, time) 

 

correlation = np.corrcoef(time, y)[0,1] 

print('R squared = {:2.2f}'.format(correlation**2)) 

R2 = R squared = 0.92 

Curve fitting: Python Applications 
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import matplotlib.pyplot as plt 

import numpy as np 

 

fig, ax = plt.subplots() 

l1,l2= ax.plot(time,y,‘ko’,time,y_val,‘:r') 

ax.set_ylabel('y [cm]') 

ax.set_xlabel('time [s]') 

ax.legend((l1, l2),\ 

            ('Experiment','Polynomial Fit'),\ 

             loc='upper right', shadow=True) 

plt.show() 

R squared = 0.92 

Curve fitting: Python Applications 
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Curve fitting: Python Applications 
import matplotlib.pyplot as plt 

import numpy as np 

 

fig, ax = plt.subplots() 

ax.plot(time, y_val - y, 'o:b') 

plt.suptitle('Difference Poynomial Fit and Experiment') 

ax.set_ylabel('Difference [cm]') 

ax.set_xlabel('time [s]') 

plt.show() 
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v_poly = np.polyder(y_poly) 

a_poly = np.polyder(y_poly, 2) 

v_val = np.polyval(v_poly, time) 

a_val = np.polyval(a_poly, time) 

 

fig, ax = plt.subplots() 

ax.plot(time, v_val, '-r') 

ax.set_ylabel('vy [cm/s]') 

ax.set_xlabel('time [s]') 

plt.show() 

 

fig, ax = plt.subplots() 

ax.plot(time, a_val, '-r') 

ax.set_ylabel('ay [cm/sˆ2]') 

ax.set_xlabel('time [s]') 

plt.show() 

 

Curve fitting: Python Applications 
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Modelling and Simulation 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

y_exp = np.loadtxt('Dropxy.dat', delimiter=',', usecols=[1],unpack=True ) 

n = len(y_exp ) 

delta_t = 1/50      # 50 frames per second 

time = np.linspace(0, (n-1)*delta_t, n) 

 

# Fit 2nd Order Polynomial 

y_poly = np.polyfit(time, y_exp, 2) 

# Evaluate 2nd Order Polynomial with time values 

y_val = np.polyval(y_poly, time) 

 



 
 

 

 

vy_exp = np.zeros(n-1, float) 

vy_pol = np.zeros(n-1, float) 

 

for i in range(n-1): 

    vy_exp[i] = (y_exp[i+1] – y_exp[i])/delta_t 

    vy_pol[i] = (y_val[i+1] – y_val[i])/delta_t 

 

ay_exp = zeros(n-2, float) 

ay_pol = zeros(n-2, float) 

 

for i in range(n-2): 

    ay_exp[i] = (vy_exp[i+1] – vy_exp[i])/delta_t 

    ay_pol[i] = (vy_pol[i+1] – vy_pol[i])/delta_t 

Modelling and Simulation 
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fig, (ax1, ax2, ax3) = plt.subplots(3, 1) 

l1, l2 = ax1.plot(time, y_exp, 'ok', time, y_val, '-r') 

ax1.set_ylabel('y [cm]') 

ax1.legend((l1, l2),('Exp', 'Model‘)) 

 

ax2.plot(time[0:n-1], vy_exp, 'ok') 

ax2.plot(time[0:n-1], vy_pol, '-r') 

ax2.set_ylabel('vy [cm/s]') 

 

ax3.plot(time[1:n-1], ay_exp, 'ok:') 

ax3.plot(time[1:n-1], ay_pol, '-r') 

ax3.set_xlabel('time [s]') 

ax3.set_ylabel('ay [cm/sˆ2]') 

plt.show() 

Modelling and Simulation 
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The acceleration due to gravity on the 
surface of the Moon is 1.62 m/s2 
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The acceleration due to gravity on the 
surface of the Jupiter is 24.79m/s2 

Class Study : Free Fall of an Object in the Moon and the Jupiter 


