
1

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

Vectors and PyGame

#3

Vectors

(a) Illustration of vectors, (b) vector addition, (c) units vectors, decomposition
and angle, (d) dot product

2

3

Vector Addition
Vector addition is intuitive for the addition of displacements: If you first move
along the vector 𝒂 from A to B, and then along the vector b from B to C, the
net displacement is the vector:

 from point A to C. This geometric definition
 of vector addition is general, and we use it
 also for vectors that are not displacements:
 We find the sum of two vectors a and b
 geometrically by placing the tail of vector b
 at the tip of vector a. The sum is called the
 resultant vector.

𝒄 = 𝒂 + 𝒃

4

From this definition, we realize that vector addition is commutative, the
order of addition is arbitrary, and associative:

Scalar Multiplication
We can rescale the length of a vector by multiplying it with a scalar:

Vector b is twice as long as vector a, but still pointing in the same direction. If
we multiply a vector by a negative number, we change the direction of the
vector to point in the opposite direction.

𝒂 + 𝒃 = 𝒃 + 𝒂

𝒂 + 𝒃 + 𝒄 = 𝒂 + 𝒃 + 𝒄

𝒃 = 𝟐𝒂

5

Vector Components

A coordinate system is a grid you choose to describe
the world in numbers. Here, we use Cartesian
coordinate systems, where the axes are orthogonal
to each other. We describe the coordinate system by
the position of the origin, O, and by unit vectors
pointing along each axis: the x-, y-, and z-axis. The
unit vectors are of unit length, of length 1, and do
not have any unit. The unit vectors are orthogonal,
they form 90◦ angles with each other. It is common
to use the symbol i, j, and k for the unit vectors
along the x, y, and z-axis respectively.

6

Any vector can be uniquely decomposed into a set of component vectors
along each of the axes

 where each of the component vectors can be written in terms of the unit
vector along the axis:

Here, the units of the vectors are in the scalar numbers Ax and Ay .

𝑨 = 𝑨𝒙 + 𝑨𝒚

𝑨𝒙 = 𝐴𝑥𝒊,

𝑨𝒚 = 𝐴𝑦𝒋

7

If you know the magnitude and direction of a vector, you can find the
component of the vector from trigonometrical considerations.

We may write a vector by using the unit vectors or by writing the vector
directly in coordinate form:

𝑨 = 𝐴𝑥𝒊 + 𝐴𝑦𝒋 = 𝑨 𝒄𝒐𝒔 𝝋𝒊 + 𝑨 𝒔𝒊𝒏 𝝋𝒋

𝑨 = 𝐴𝑥𝒊 + 𝐴𝑦𝒋 + 𝐴𝑧𝒌 = 𝐴𝑥, 𝐴𝑦, 𝐴𝑧

8

The Magnitude of a Vector Using Components

If the coordinate system is orthogonal, then all the axis are orthogonal to
each other, and we can use Pythagoras’ theorem to relate the magnitude to
the vector to the components:

𝑨 = 𝐴𝑥
𝟐 + 𝐴𝑦

𝟐

Addition, Subtraction and Scalar Multiplication Using Components

A particular advantage of the component form is that addition, subtraction,
and scalar multiplications can be done for each component independently.

9

𝐴𝑥𝒊 + 𝐴𝑦𝒋 + 𝐵𝑥𝒊 + 𝐵𝑦𝒋 = 𝐴𝒙 + 𝐵𝑥 𝒊 + 𝐴𝑦 + 𝐵𝑦 𝒋

𝑨 𝑩 = 𝑨 + 𝑩

𝒄𝑨 = 𝒄 𝐴𝑥𝒊 + 𝐴𝑦𝒋 = 𝒄𝐴𝑦𝒊 + 𝒄𝐵𝑦𝒋

The Dot Product

Often in game programming, you need to know how much one vector is in
the direction of another vector. Mathematically, that requires finding the
projection of a vector onto another vector. One example of the need for
vector projections is to find the reflection of a vector off another vector. As
you might imagine, this is commonly being done by the physics engine every
time there is a collision to determine what new direction an object should
move after the collision.

10

The Dot Product

Often in game programming, you need to know how much one vector is in
the direction of another vector. Mathematically, that requires finding the
projection of a vector onto another vector. One example of the need for
vector projections is to find the reflection of a vector off another vector. As
you might imagine, this is commonly being done by the physics engine every
time there is a collision to determine what new direction an object should
move after the collision.

11

The Dot Product

12

𝒗𝒓 = 𝒗 − 𝟐 𝑷𝒓𝒐𝒋𝒏𝒗

?

13

The Dot Product

The dot product between two vectors A and B is defined as:

where α is the angle between the two vectors,
The dot product is linear:

And commutative:

𝑨. 𝑩 = 𝑨 𝑩 𝒄𝒐𝒔 𝜶

𝑨 + 𝑩 . 𝑪 = 𝑨. 𝑪 + 𝑩. 𝑪

𝑨. 𝑩 = 𝑩. 𝑨

14

The dot product depends on the angle α. When two vectors are parallel and
point in the same direction, the dot product is equal to the product of the
magnitudes. A particular useful property of the dot product is that the dot
product of two orthogonal vectors is zero. As a result the dot product is
simple on component form

 𝑨. 𝑩 = 𝐴𝑥𝒊 + 𝐴𝑦𝒋 . 𝐵𝑥𝒊 + 𝐵𝑦𝒋

𝑨. 𝑩 = 𝐴𝑥𝐵𝑥𝒊. 𝒊 + 𝐴𝑥𝐵𝑦 𝒊. 𝒋 + 𝐴𝑦𝐵𝑥 𝒋. 𝒊 + 𝐴𝑦𝐵𝑦 𝒋. 𝒋

𝑨. 𝑩 = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦

= 𝟏 = 𝟏 = 𝟎 = 𝟎

What makes the dot product so useful, is that it can be used to decompose a
vector onto a given set of unit vector—it can be used to find the components
of a vector in any given coordinate system. A vector A can be written in
component form as:

How can we determine the components Ax , Ay , and Az? We find them by
using to dot product, and remembering that the unit vectors are orthogonal.

𝑨 = 𝐴𝑥𝒊 + 𝐴𝑦𝒋 + 𝐴𝑧𝒌 = 𝐴𝑥, 𝐴𝑦, 𝐴𝑧

𝑨. 𝒊 = 𝐴𝑥𝒊. 𝒊 + 𝐴𝑦𝒋. 𝒊 + 𝐴𝑧𝒌. 𝒊 = 𝐴𝑥

= 𝟏 = 𝟎 = 𝟎

15

The component of a vector A can be found by dot-multiplication with the
unit vectors i, j, and k:

𝐴𝑥 = 𝑨. 𝒊 𝐴𝑦 = 𝑨. 𝒋 𝐴𝑧 = 𝑨. 𝒌

Import a library of functions called 'pygame'

import pygame

Initialize the game engine

pygame.init()

16

To make graphics easier to work with, we'll use “Pygame”
• Draw graphic shapes
• Display bitmapped images
• Animate
• Interact with the keyboard, mouse, and gamepad
• Play sound
• Detect when objects collide

Pygame Library

17

Define some colors

BLACK = (0, 0, 0)

WHITE = (255, 255, 255)

GREEN = (0, 255, 0)

RED = (255, 0, 0)

17

Colors are defined in a list of three colors: red, green, and blue.
Each element of the RGB triad is a number ranging from 0 to 255. Zero means
there is none of the color, and 255 tells the monitor to display as much of the
color as possible. The colors combine in an additive way, so if all three colors
are specified, the color on the monitor appears white.

Colors

So far, the programs we have created only printed text out to the screen or
plot some graphics. The code to open a window is not complex. Below is the
required code, which creates a window sized to a width of 700 pixels and a
height of 500:

To set the title of the window (which is shown in the title bar), use the
following line of code:

18

size = (700, 500)

screen = pygame.display.set_mode(size)

Open a Window

pygame.display.set_caption(“BCO 611 Physics in CAG")

19

Loop until the user clicks the close button.

done = False

Used to manage how fast the screen updates

clock = pygame.time.Clock()

-------- Main Program Loop -----------

while not done:

 # --- Main event loop

 for event in pygame.event.get(): # User did something

 if event.type == pygame.QUIT: # If user clicked close

 done = True # Exit this loop

 # --- Game logic should go here

 # --- Drawing code should go here

 # First, clear the screen to white. Don't put other drawing commands

 # above this, or they will be erased with this command.

 screen.fill(WHITE)

 # --- Go ahead and update the screen with what we've drawn.

 pygame.display.flip()

 # --- Limit to 60 frames per second

 clock.tick(60)

Interacting with the User

M
a
i
n

P
r
o
g
r
a
m

L
o
o
p

20 20

for event in pygame.event.get(): # get events from the queue

 if event.type == pygame.QUIT:

 print("User asked to quit.")

 elif event.type == pygame.KEYDOWN:

 print("User pressed a key.")

 elif event.type == pygame.KEYUP:

 print("User let go of a key.")

 elif event.type == pygame.MOUSEBUTTONDOWN:

 print("User pressed a mouse button")

The Event Processing Loop

The for loop processes all the events in a list.

21

The Event Processing Loop

QUIT none

ACTIVEEVENT gain, state

KEYDOWN key, mod, unicode, scancode

KEYUP key, mod, unicode, scancode

MOUSEMOTION pos, rel, buttons, touch

MOUSEBUTTONUP pos, button, touch

MOUSEBUTTONDOWN pos, button, touch

JOYAXISMOTION instance_id, axis, value

JOYBALLMOTION instance_id, ball, rel

JOYHATMOTION instance_id, hat, value

JOYBUTTONUP instance_id, button

JOYBUTTONDOWN instance_id, button

VIDEORESIZE size, w, h

VIDEOEXPOSE none

USEREVENT code

22

The Event Processing Loop

Event type Short description
WINDOWSHOWN Window became shown

WINDOWHIDDEN Window became hidden

WINDOWEXPOSED Window got updated by some external event

WINDOWMOVED Window got moved

WINDOWRESIZED Window got resized

WINDOWSIZECHANGED Window changed it's size

WINDOWMINIMIZED Window was minimized

WINDOWMAXIMIZED Window was maximized

WINDOWRESTORED Window was restored

WINDOWENTER Mouse entered the window

WINDOWLEAVE Mouse left the window

WINDOWFOCUSGAINED Window gained focus

WINDOWFOCUSLOST Window lost focus

WINDOWCLOSE Window was closed

WINDOWTAKEFOCUS Window was offered focus

WINDOWHITTEST Window has a special hit test

Since pygame 2.0.1, there are a new set of events, called window events.

23 23

Processing Each Frame

The basic logic and order for each frame of the game:

 • While not done:
 : • For each event (keypress, mouse click, etc.):
 : • Use a chain of if statements to run code to handle each event.
 • Run calculations to determine where objects move, what happens when objects collide, etc.
 • Clear the screen.
 • Draw everything.

It makes the program easier to read and understand if these steps aren't mixed together. Don't
do some calculations, some drawing, some more calculations, some more drawing.

24 24 24

Ending the Program

Clicking the “close” button of a window while running this Pygame program in IDLE will still cause
the program to crash. This is a hassle because it requires a lot of clicking to close a crashed
program. The problem is, even though the loop has exited, the program hasn't told the computer
to close the window. By calling the command below, the program will close any open windows
and exit as desired.

pygame.quit()

Clearing the Screen

The following code clears whatever might be in the window with a white background. Remember
that the variable WHITE was defined earlier as a list of three RGB values.

Clear the screen and set the screen background

screen.fill(WHITE)

25

Open a Blank Window

import pygame

Define some colors

BLACK = (0, 0, 0)

WHITE = (255, 255, 255)

GREEN = (0, 255, 0)

RED = (255, 0, 0)

pygame.init()

Set the width and height of the screen [width, height]

size = (700, 500)

screen = pygame.display.set_mode(size)

pygame.display.set_caption("Physics in Game and Animation")

Loop until the user clicks the close button.

done = False

Used to manage how fast the screen updates

clock = pygame.time.Clock()

26

Open a Blank Window

-------- Main Program Loop -----------

while not done:

 # --- Main event loop

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 done = True

 # --- Game logic should go here

 # --- Drawing code should go here

 # First, clear the screen to white. Don't put other drawing commands

 # above this, or they will be erased with this command.

 screen.fill(WHITE)

 # --- Go ahead and update the screen with what we've drawn.

 pygame.display.flip()

 # --- Limit to 60 frames per second

 clock.tick(60)

Close the window and quit.

If you forget this line, the program will 'hang'

on exit if running from IDLE.

pygame.quit()

27

28

pygame module for drawing shapes

pygame.draw.rect — draw a rectangle shape
pygame.draw.polygon — draw a shape with any number of sides
pygame.draw.circle — draw a circle around a point
pygame.draw.ellipse — draw a round shape inside a rectangle
pygame.draw.arc — draw a partial section of an ellipse
pygame.draw.line — draw a straight line segment
pygame.draw.lines — draw multiple contiguous line segments
pygame.draw.aaline — draw fine antialiased lines
pygame.draw.aalines — draw a connected sequence of antialiased lines

Drawing

Here is a list of things that you can draw: http://www.pygame.org/docs/ref/draw.html

29

Draw on the screen a green line from (0, 0) to (100, 100)

that is 5 pixels wide.

pygame.draw.line(screen, GREEN, [0, 0], [100, 100], 5)

Draw on the screen several lines from (0, 10) to (100, 110)

5 pixels wide using a while loop

y_offset = 0

while y_offset < 100:

 pygame.draw.line(screen,RED,[0,10+y_offset],[100,110+y_offset],5)

 y_offset = y_offset + 10

Draw on the screen several lines from (0,10) to (100,110)

5 pixels wide using a for loop

for y_offset in range(0, 100, 10):

 pygame.draw.line(screen,RED,[0,10+y_offset],[100,110+y_offset],5)

Drawing Lines

30

draw_pygame_example.py

31

Animation

We will put together a program to bounce a white rectangle around a screen
with a black background.

First step: start with the base template and flip the background color from
white to black.

Next up, draw the rectangle we plan to animate. A simple rectangle will
suffice. This code should be placed after clearing the screen, and before
flipping it.

To move the rectangle to the right, x can be increased by one each frame. This
code is close, but it does not quite do it:

32

Animation

screen.fill(BLACK)

pygame.draw.rect(screen, WHITE, [50, 50, 50, 50])

rect_x = 50

pygame.draw.rect(screen, WHITE, [rect_x, 50, 50, 50])

rect_x += 1

The problem with the code is that rect_x is reset back to 50 each time
through the loop. To fix this problem, move the initialization of rect_x up
outside of the loop. This next section of code will successfully slide the
rectangle to the right

33

Animation

Starting x position of the rectangle

Note how this is outside the main while loop.

rect_x = 50

-------- Main Program Loop -----------

while not done:

 for event in pygame.event.get(): # User did something

 if event.type == pygame.QUIT: # If user clicked close

 done = True # Flag that we are done so we exit this loop

 # Set the screen background

 screen.fill(BLACK)

 pygame.draw.rect(screen, WHITE, [rect_x, 50, 50, 50])

 rect_x += 1

34

We can expand this code and increase both x and y, causing the square to
move the box faster both down and right.

Animation

Starting x position of the rectangle

rect_x = 50

rect_y = 50

-------- Main Program Loop -----------

while not done:

 for event in pygame.event.get(): # User did something

 if event.type == pygame.QUIT: # If user clicked close

 done = True # Flag that we are done so we exit this loop

 # Set the screen background

 screen.fill(BLACK)

 pygame.draw.rect(screen, WHITE, [rect_x, 5 rect_y, 50, 50])

 rect_x += 5

 rect_y += 5

35

The direction and speed of the box’s movement can be stored in a vector.

Animation

Starting x and y position of the rectangle

rect_x = 50

rect_y = 50

Speed and direction of rectangle

rect_change_x = 5

rect_change_y = 5

-------- Main Program Loop -----------

while not done:

 for event in pygame.event.get(): # User did something

 if event.type == pygame.QUIT: # If user clicked close

 done = True # Flag that we are done so we exit this loop

 # Set the screen background

 screen.fill(BLACK)

 pygame.draw.rect(screen, WHITE, [rect_x, 5 rect_y, 50, 50])

 rect_x += rect_change_x

 rect_y += rect_change_y

36

Once the box hits the edge of the screen it will keep going. Nothing makes the
rectangle bounce off the edge of the screen. To reverse the direction so the
rectangle travels towards the right, rect_change_y needs to change from
5 to -5 once the rectangle gets to the bottom side of the screen. The
rectangle is at the bottom when rect_y is greater than the height of the
screen. The code below can do the check and reverse the direction:

Animation

Bounce the rectangle if needed

if rect_y > 450:

 rect_change_y = rect_change_y * -1

y = 0

y = 450

y = 500

37

Animation

Bounce the rectangle if needed

if rect_y > 450 or rect_y < 0:

 rect_change_y = rect_change_y * -1

if rect_x > 650 or rect_x < 0:

 rect_change_x = rect_change_x * -1

Draw a red rectangle inside the white one

pygame.draw.rect(screen, WHITE, [rect_x, rect_y, 50, 50])

pygame.draw.rect(screen, RED, [rect_x + 10, rect_y + 10 ,30, 30])

y = 0

y = 450

y = 500

x = 0 x = 650

38

bouncing_rectangle.py

It takes one line of code to get the mouse coordinates.

 The mouse can be hidden by using the following code right before the main
program loop

39

Mouse

pos = pygame.mouse.get_pos()

Game logic

pos = pygame.mouse.get_pos()

x = pos[0]

y = pos[1]

Hide the mouse cursor

pygame.mouse.set_visible(False)

Controlling with the keyboard is a bit more complex. Inside the main while
loop of the program, we need to add some items to our event processing
loop. In addition to looking for a pygame.QUIT event, the program needs to
look for keyboard events. An event is generated each time the user presses a
key. To start with, set the location and speed before the main loop starts:

40

Keyboard

Speed in pixels per frame

x_speed = 0

y_speed = 0

Current position

x_coord = 10

y_coord = 10

A pygame.KEYDOWN event is generated when a key is pressed down. A
pygame.KEYUP event is generated when the user lets up on a key.

41

Keyboard

for event in pygame.event.get():

 if event.type == pygame.QUIT: done = True

 # User pressed down on a key

 elif event.type == pygame.KEYDOWN:

 # Figure out if it was an arrow key. If so adjust speed.

 if event.key == pygame.K_LEFT: x_speed = -3

 elif event.key == pygame.K_RIGHT: x_speed = 3

 elif event.key == pygame.K_UP: y_speed = -3

 elif event.key == pygame.K_DOWN: y_speed = 3

 # User let up on a key

 elif event.type == pygame.KEYUP:

 # If it is an arrow key, reset vector back to zero

 if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT: x_speed = 0

 elif event.key == pygame.K_UP or event.key == pygame.K_DOWN: y_speed = 0

Move the object according to the speed vector.

x_coord += x_speed

y_coord += y_speed

Pygame Code ASCII Common Name
K_BACKSPACE \b backspace
K_RETURN \r return
K_TAB \t tab
K_ESCAPE ̂ [escape
K_SPACE space
K_COMMA , comma sign
K_MINUS - minus
K_PERIOD . period slash
K_SLASH / forward
K_0 0 0
K_1 1 1
… … …
K_9 9 9
K_SEMICOLON ; semicolon sign
K_EQUALS = equals sign

42

Keyboard https://www.pygame.org/docs/ref/key.html

Pygame Code ASCII Common Name
K_LEFTBRACKET [left
K_RIGHTBRACKET] right
K_BACKSLASH \ backslash bracket
K_BACKQUOTE ` grave
K_a a a
K_b b b
… … …
K_y y y
K_z z z
K_DELETE delete
K_KP0 keypad 0
K_KP1 keypad 1
… … …
K_KP8 keypad 8
K_KP9 keypad 9

43

Keyboard https://www.pygame.org/docs/ref/key.html

Pygame Code ASCII Common Name
K_UP up arrow
K_DOWN down arrow
K_RIGHT right arrow
K_LEFT left arrow
K_RSHIFT right shift
K_LSHIFT left shift
K_RCTRL right ctrl
K_LCTRL left ctrl
K_RALT right alt
K_LALT left alt

44

Keyboard https://www.pygame.org/docs/ref/key.html

Pygame Code ASCII Common Name
K_LEFTBRACKET [left
K_RIGHTBRACKET] right
K_BACKSLASH \ backslash bracket
K_BACKQUOTE ` grave
K_a a a
K_b b b
… … …
K_y y y
K_z z z
K_DELETE delete
K_KP0 keypad 0
K_KP1 keypad 1
… … …
K_KP8 keypad 8
K_KP9 keypad 9

45

Keyboard https://www.pygame.org/docs/ref/key.html

Game controllers require a different set of code, but the idea is still simple. To
begin, check to see if the computer has a joystick, and initialize it before use.

46

Game Controller

Current position

x_coord = 10

y_coord = 10

Count the joysticks the computer has

joystick_count = pygame.joystick.get_count()

if joystick_count == 0:

 # No joysticks!

 print("Error, I didn't find any joysticks.")

else:

 # Use joystick #0 and initialize it

 my_joystick = pygame.joystick.Joystick(0)

 my_joystick.init()

A joystick will return two floating-point values. If the joystick is perfectly
centered it will return (0, 0).

47

Game Controller

Center (0,0) Right (1,0) Left (-1,0)

48

Game Controller

Up Right (1,-1) Up Left (-1,-1) Up (0,-1)

Down Right (1,1) Down (0,1) Down Left (-1,1)

49

The values of the joystick returns may be multiplied according to how far an
object should move.

Game Controller

This goes in the main program loop!

As long as there is a joystick

if joystick_count != 0:

 # This gets the position of the axis on the game controller

 # It returns a number between -1.0 and +1.0

 horiz_axis_pos = my_joystick.get_axis(0)

 vert_axis_pos = my_joystick.get_axis(1)

 # Move x according to the axis.

 # We multiply by 10 to speed up the movement.

 # Convert to an integer because we can't draw at pixel 3.5, just 3 or 4.

 x_coord = x_coord + int(horiz_axis_pos * 10)

 y_coord = y_coord + int(vert_axis_pos * 10)

Clear the screen

screen.fill(BLACK)

Draw the item at the proper coordinates

50

Game Controller

joystick_calls.py

Controllers have a lot of joysticks,
buttons, and even hat switches. Below is
an example program and screenshot that
prints everything to the screen showing
what each game controller is doing. Take
heed that game controllers must be
plugged in before this program starts, or
the program can’t detect them.

move_rectangle_game_controller.py

51

Game Controller

52

Homework

bouncing_sphere.py

Add vector

Sounds in Pygame

In this section we’ll play a sound when the mouse button is clicked. Like
images, sounds must be loaded before they are used. This should be done
once sometime before the main program loop. The following command loads
a sound file and creates a variable named click_sound to reference it

click_sound = pygame.mixer.Sound(“sound.ogg")

We can play the sound by using the following command:

click_sound.play()

53

Sounds in Pygame

But where do we put this command? If we put it in the main program loop it
will play it 20 times or so per second. Really annoying. We need a trigger.
Some action occurs, then we play the sound. For example, this sound can be
played when the user hits the mouse button with the following code:

for event in pygame.event.get():

 if event.type == pygame.QUIT:

 done = True

 elif event.type == pygame.MOUSEBUTTONDOWN:

 click_sound.play()

54

Sounds in Pygame

Uncompressed sound files usually end in .wav. These files are larger than
other formats because no algorithm has been run on them to make them
smaller. There is also the ever popular .mp3 format, although that format has
patents that can make it undesirable for certain applications. Another format
that is free to use is the OGG Vorbis format that ends in .ogg. Pygame
does not play all .wav files that can be found on the Internet. If you have a
file that isn’t working, you can try using the program
http://sourceforge.net/projects/audacity to convert it to an ogg-
vorbis type of sound file that ends in .ogg. Great places to find free sounds
to use in your program.
OpenGameArt.org and www.freesound.org

55

56

Setting a Background Image in Pygame

Any bitmap images used in a game should already be sized for how it should
appear on the screen. Don’t take a 5000x5000 pixel image from a high-
resolution camera and then try to load it into a window only 800x600. Use a
graphics program (even MS Paint will work) and resize/crop the image before
using it in your Python program. Loading an image is a simple process and
involves only one line of code.

pygame.image.load(“background.jpg")

This file must be located in the same directory that the Python program is in,
or the computer will not find it.

57

Setting a Background Image in Pygame

That code may load the image, but we have no way to reference that image
and display it! We need a variable set equal to what the load() command
returns.

background_image = pygame.image.load(“background.jpg")

Finally, the image needs to be converted to a format that pygame can more
easily work with. To do that, we append .convert() to the command to call
the convert function.

background_image = pygame.image.load(“background.jpg“).convert()

58

Setting a Background Image in Pygame

Loading the image should be done before the main program loop. While it
would be possible to load it in the main program loop, this would cause the
program to fetch the image from the disk 20 or so times per second. This is
completely unnecessary. It is only necessary to do it once at program startup.
To display the image use the blit command. This blits the image bits to the
screen. The blit command is a method in the screen variable, so we need to
start our command by screen.blit. Next, we need to pass the image to blit
and where to blit it. This command should be done inside the loop so the
image gets drawn each frame.

screen.blit(background_image, [0, 0])

59

Moving an Image in Pygame

Now we want to load an image and move it around the screen. The image for
the bird can be downloaded from the course web site, or you can find a .gif
or .png that you like with a white or black background. Don’t use a .jpg.

player_image = pygame.image.load(“background.jpg“).convert()

Finally, the image needs to be converted to a format that pygame can more
easily work with. To do that, we append .convert() to the command to call
the convert function.

background_image = pygame.image.load(“background.jpg“).convert()

60

Background Image, moving Image and Sounds in Pygame

61

Call this function so the Pygame library can initialize itself

pygame.init()

Create an 1280x800 sized screen

screen = pygame.display.set_mode([1280, 800])

This sets the name of the window

pygame.display.set_caption("BCO611 is cool")

clock = pygame.time.Clock()

Before the loop, load the sounds

click_sound = pygame.mixer.Sound("voyyy.ogg")

Set positions of graphics

background_position = [0, 0]

Load and set up graphics

background_image = pygame.image.load("background.png").convert()

player_image = pygame.image.load("red_sprite_small.png").convert()

done = False

62

while not done:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 done = True

 elif event.type == pygame.MOUSEBUTTONDOWN:

 click_sound.play()

 # Copy image to screen:

 screen.blit(background_image, background_position)

 # Get the current mouse position. This returns the position

 # as a list of two numbers

 player_position = pygame.mouse.get_pos()

 x = player_position[0] - 45

 y = player_position[1] - 45

 # Copy image to screen

 screen.blit(player_image, [x, y])

 pygame.display.flip()

 clock.tick(20)

pygame.quit ()

63

6
0

0
 p

x

Limit the Red’s movement

Vectors in Pygame

64

import pygame

import math

Initialize the game engine

pygame.init()

Define the colors we will use in RGB format

black = (0, 0, 0)

white = (255, 255, 255)

blue = (0, 0, 255)

green = (0, 255, 0)

red = (255, 0, 0)

Set the height and width of the screen

size = [400, 300]

screen = pygame.display.set_mode(size)

pygame.display.set_caption("BCO611 Bilgisayar Animasyonu ve Oyun Teknolojilerinde Fizik")

#Loop until the user clicks the close button.

done = False

clock = pygame.time.Clock()

angle = 0

mag = 10

control how held keys are repeated

pygame.key.set_repeat(1, 50)

x, y = pygame.mouse.get_pos()

65

while not done:

 for event in pygame.event.get(): # User did something

 if event.type == pygame.QUIT: # If user clicked close

 done = True # Flag that we are done so we exit this loop

 if event.type == pygame.KEYDOWN:

 # Figure out if it was an arrow key. If so adjust speed.

 if event.key == pygame.K_DOWN: angle+= 10

 elif event.key == pygame.K_UP: angle-= 10

 elif event.key == pygame.K_RIGHT: mag+= 5

 elif event.key == pygame.K_LEFT: mag-= 5

 elif event.type == pygame.MOUSEBUTTONDOWN:

 print("User pressed a mouse button")

 x, y = pygame.mouse.get_pos() # get the initial coordinates of line (x1,y1)

 # Clear the screen and set the screen background

 screen.fill(white)

 # Draw on the screen a line from (x1,y1) to (x2, y2)

 pygame.draw.aaline(screen, red, [x, y], [x+mag*math.cos(math.radians(angle)),\

 y+mag*math.sin(math.radians(angle))], True)

 # This MUST happen after all the other drawing commands

 pygame.display.flip()

 clock.tick(60) # the program will never run at more than 60 frames per second.

 # Be IDLE friendly

pygame.quit()

Vectors in Pygame

66

Homework : Draw components of the vector

