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Numerical Representation of Vectors 
 
In Python a vector is represented by its component form. The vector a: 
 
 
 
is generated by the following command: 
   >>> import numpy as np 

   >>> a = np.array([1,2,0]) 

   >>> b = np.array([2,-4,0]) 

Addition and Subtraction 
   >>> c = a + b 

   >>> print(c) 

   [3 -2 0] 

𝒂 = 1𝒊 + 2𝒋 + 0𝒌 = 1 , 2 , 0  
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𝒃 = 2𝒊 − 4𝒋 + 0𝒌 = 2 , −4 , 0  
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You can decide if you want to use a vector in two - or three dimensions. For 
example, you could instead have defined the vector a as: 
 
    >>> a = np.array([1,2]) 

 

But notice that you can not add two vectors that do not have the same 
number of components.  
 
Scalar Multiplication 
 
Scalar multiplication is similarly naturally implemented: 

>>> d = 3*a 

>>> print(d) 

[3 6]    



Componentwise Operations 
 
Notice that there is room for error because of the way commands are 
interpreted. For example, if you add a scalar to a vector, this is interpreted as 
a componentwise addition: The scalar is added to each of the components: 
 
   >>> a = np.array([1,2,0]) 

   >>> e = a + 3 

   >>> print(e) 

   [4 5 3] 

4 



5 

Dot Product 
 
The dot product is found by applying the function dot, which returns a 
scalar: 

>>> f = np.dot(a, b) 

>>> print(f) 
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A common application of the dot product is to find the component of a 

vector 𝒂 along the direction given by a vector 𝒃. In general, 𝒃, is not a unit 

vector. We therefore first need to find a unit vector in the direction of 𝒃: 
 
   

𝒖𝒃 =
𝒃

𝒃
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Dot Product 
 
and the component of a in this  direction is given by the dot product: 
 
 
 
Numerically, this is done in exactly the same way: 

>>> ab = np.dot(a,b)/np.sqrt(np.dot(b,b)) 

>>> print(ab) 

-1.3416407865 

Notice that we use the relation: 
 
for the magnitude of b. 

𝒂𝒃 = 𝒂.𝒖𝒃 = 𝒂.
𝒃

𝒃
 

𝒃 = 𝒃. 𝒃 
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Time Sequences of Vectors 
 
We will often work with a sequence of vectors, corresponding to the time 
evolution of a vector. For example, we may be interested in the position, 𝒓, 
or the force, F, as a function of time, t: 
 
 
 
Numerically, we will have a corresponding sequence of positions or forces at 
discrete times, ti : 

𝒓 𝒕   𝒂𝒏𝒅  𝑭 𝒕   

𝒓𝒊 = 𝒓 𝒕𝒊   𝒂𝒏𝒅  𝑭𝒊 = 𝑭 𝒕𝒊   



We generate a sequence of n vectors ri with x, y, and z coordinates by: 
 

n = 10 

r = np.zeros((n, 3),float) 

 

We can use mathematical vector operations directly on element in the 
sequence, as shown in the following example: 
>>> v = np.array([1.0,-2.0,2.0]) # constant speed 

>>> n = 10     # number of step 

>>> r = np.zeros((n,3),float) 

>>> r[0] = np.array([0,0,0]) # initial position 

>>> dt = 0.1     # time step 

>>> r[1] = r[0] + v*dt   # new position 
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Motion Diagram and Position Vector 
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We mark the position of the soccer ball regular time intervals and record the 
positions 𝒓 𝑡  of the ball relative to the origin at time ti . We are free to 
choose the origin and the axes of the coordinate system. The origin 
determines where we measure the positions from. The position can be 
decomposed along the x, y, and z-axes respectively 
 
 
 
where x(t), y(t), and z(t) are lengths along the axes and hence have units of 
length. 
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𝒓 𝑡 = 𝑥 𝑡 𝒊 + 𝑦 𝑡 𝒋 + 𝑧 𝑡 𝒌 



 
For example, the position at t = 0.5 s is: 
 
Positions of the soccer ball 
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𝒓 𝑡 = 𝑥 𝑡 𝒊 + 𝑦 𝑡 𝒋 + 𝑧 𝑡 𝒌 

𝒓 0.5 = 𝑥 0.5 𝒊 + 𝑦 0.5 𝒋 + 𝑧 0.5 𝒌 = 16.2 𝒊 + 14.95 𝒋 + 0 𝒌 

𝒓 0.5 = 16.2 𝒊 + 14.95 𝒋 



Velocity Vector 
 
The change in position is also a vector and is called the displacement. The 
displacement from t = 1.0 s to t = 2.0 s is denoted Δr(1.0 s): 
 
 
 
 
The displacement depends on a difference between two positions, it does 
not depend on the choice of origin. The rate of change of the displacement, 
the velocity, must therefore also be a vector: 
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∆𝒓 1.0 = 𝒓 2.0 − 𝒓 1.0 = 46.6 𝒊 + 31.3 𝒋 − 29.9 𝒊 + 19.0 𝒋  

∆𝒓 1.0 = 16.7 𝒊 + 12.3 𝒋 



Velocity Vector 
 
The average velocity from a time t = t0 to a time t = t0 + Δt is defined as: 
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𝒗 𝑡0 =
𝒓 𝑡0 + ∆𝑡 − 𝒓 𝑡0

∆𝑡
=
∆𝒓

∆𝑡
 

𝒗 𝑡0 =
∆𝒓

∆𝑡
=
∆𝒓 1.0 𝑠

1.0 𝑠
=
16.7 𝒊 + 12.3 𝒋 

1.0
= 16.7

𝑚

𝑠
𝒊 + 12.3

𝑚

𝑠
𝒋  
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Velocity Vector 
 
If we instead use a time interval Δt = 0.5 s to find the average velocity at t = 
1.0 s we find: 
 
 

𝒗 𝑡0 =
∆𝒓

∆𝑡
=
∆𝒓 1.0 𝑠

0.5 𝑠
=
9.0 𝒊 + 7.1 𝒋 

0.5
= 18.0

𝑚

𝑠
𝒊 + 14.2

𝑚

𝑠
𝒋  

∆𝒓 1.0 = 𝒓 1.5 − 𝒓 1.0 = 38.9 𝒊 + 26.1 𝒋 − 29.9 𝒊 + 19.0 𝒋  

∆𝒓 1.0 = 9.0 𝒊 + 7.1 𝒋 
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The instantaneous velocity at the time t is defined as the limit of the average 
velocity when the time interval Δt goes to zero, that is, the time derivative of 
the position vector, r(t). 
 

𝒗 𝑡 = lim
∆𝑡→0

𝒓 𝑡 + ∆𝑡 − 𝒓 𝑡

∆𝑡
= lim

∆𝑡→0

∆𝒓

∆𝑡
=
𝑑𝒓

𝑑𝑡
 

 
Speed 
The magnitude of the velocity vector is called the speed, v, defined as: 
 
 𝒗 𝒕 = 𝒗 𝒕  
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Decreasing time intervals Δt for the motion of the cheetah 

𝑑𝒓

𝑑𝑡
 

∆𝒓

4∆𝑡
 

∆𝒓

3∆𝑡
 

∆𝒓

2∆𝑡
 

∆𝒓

∆𝑡
 



Time Derivatives of Vector Functions 
 
 
 
 
 
 
 
The velocity vector can therefore also be written: 
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𝒗 𝑡 =
𝑑

𝑑𝑡
𝒓 𝑡 =

𝑑

𝑑𝑡
𝑥 𝑡  𝒊 + 𝑦 𝑡  𝒋 + 𝑧 𝑡  𝒌 =

𝑑𝑥

𝑑𝑡
𝒊 +

𝑑𝑦

𝑑𝑡
𝒋 +

𝑑𝑧

𝑑𝑡
𝒌 

𝑣𝑥 𝑡 =
𝑑𝑥

𝑑𝑡
, 𝑣𝑦 𝑡 =

𝑑𝑦

𝑑𝑡
, 𝑣𝑧 𝑡 =

𝑑𝑧

𝑑𝑡
 

𝒗 𝑡 = 𝑣𝑥 𝑡  𝒊 + 𝑣𝑦 𝑡  𝒋 + 𝑣𝑧 𝑡  𝒌 = 𝑣𝑥 𝑡 , 𝑣𝑦 𝑡 , 𝑣𝑧 𝑡   



The average acceleration over a time interval Δt from t to t + Δt is: 
 

𝑎 𝑡𝑖 =
𝒗 𝑡 + ∆𝑡 − 𝒗 𝑡

∆𝑡
=
∆𝒗 𝑡1
∆𝑡

 

 
We define the instantaneous acceleration vector, or simply the 
instantaneous acceleration, as the limit of the average acceleration vector 
when the time interval approaches zero: 
 
 
 
 
The acceleration vector is the time derivative of the velocity vector. 

𝒂 𝑡𝑖 = lim
∆𝑡→0

𝒗 𝑡 + ∆𝑡 − 𝒗 𝑡

∆𝑡
=
𝑑𝒗

𝑑𝑡
= 𝒗  
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We find the acceleration in the vector component representation by 
componentwise derivation: 
 
 
 
Since the velocity vector is the time derivative of the position vector 
 
 
 
we can write the acceleration vector as the second time derivative of the 
position vector: 
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𝒗 𝑡 =
𝑑

𝑑𝑡
𝒓 = 𝒓  

𝒂 𝑡 =
𝑑

𝑑𝑡
𝒗 =

𝑑

𝑑𝑡

𝑑

𝑑𝑡
𝒓 =

𝑑2𝒓

𝑑𝑡2
= 𝒓  

𝒂 𝑡 =
𝑑

𝑑𝑡
𝒗 𝒕 =

𝑑

𝑑𝑡
𝑣𝑥 𝑡  𝒊 + 𝑣𝑦 𝑡  𝒋 + 𝑣𝑧 𝑡  𝒌 =

𝑑𝑣

𝑑𝑡
𝒊 +

𝑑𝑣

𝑑𝑡
𝒋 +

𝑑𝑣

𝑑𝑡
𝒌 
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Motion diagrams for the cheetah with Δt = 0.5 s illustrating both the 
displacements, interpreted as velocities, and the change in displacements, 
interpreted as accelerations. The constructions of the accelerations are 
illustrated. 



import matplotlib.pyplot as plt 

import numpy as np 

t,x,y = np.loadtxt(‘soccer.txt', usecols=[0,1,2], unpack=True) 

n = len(t) 

dt = t[1] - t[0] 

r = np.zeros((n, 2), float) 

r[:,0] = x 

r[:,1] = y 
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This generates the arrays t, x, and y, which we combine to one array to form r. 
This provides us with a vector r(ti), which contains the x- and y-components 
 
 
The vector representation in Python is useful and allows us to make 
operations on the whole vector in a very similar way to how we write the 
operations mathematically. 

𝒓 𝑡 = 𝑥 𝑡 𝒊 + 𝑦 𝑡 𝒋 

𝒓 𝑡 = 𝑥 𝑡 𝒊 + 𝑦 𝑡 𝒋 



 
fig, ax = plt.subplots() 

ax.plot(r[:,0],r[:,1]) 

ax.axis('equal') 

ax.set_xlabel('x [m]') 

ax.set_ylabel('y [m]') 

plt.show() 

where we have used axis(’equal’) to ensure that the scaling of the x- 
and y-axis are the same. 
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fig, ax = plt.subplots() 

for i in range(n-1): 

    ax.plot(r[i,0], r[i,1],'o') 

    dr = r[i+1,:] - r[i,:] 

    ax.quiver(r[i,0], r[i,1], dr[0], dr[1], angles='xy', 

           scale_units='xy', scale=1) 

ax.set_xlabel('x [m]') 

ay.set_ylabel('y [m]') 

plt.show() 
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quiver(*args, **kw)  Plot a 2-D field of arrows. 
 
quiver(X, Y, U, V, C, **kw) 

 
Arguments: 
X, Y: The x and y coordinates of the arrow locations (default is 
tail of arrow; see pivot kwarg) 
U, V: Give the x and y components of the arrow vectors 
C: An optional array used to map colors to the arrows 



32.4𝒊 − 0.1𝒋  

fig, ax = plt.subplots() 

v = np.zeros((n-1, 2),float) 
for i in range(n-1): 

    ax.plot(r[i,0], r[i,1],'o') 

    v[i,:] = (r[i+1,:] - r[i,:])/dt 

    ax.quiver(r[i,0], r[i,1], v[i,0], v[i,1], angles='xy', 

           scale_units='xy', scale=1) 

ax.set_xlabel(‘vx [m/s]') 

ax.set_ylabel(‘vy [m/s]') 

plt.show() 
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𝒗 𝟎 =
∆𝒓

∆𝑡
==

16.2 𝒊 − 0.05 𝒋 

0.5
= 32.4

𝑚

𝑠
𝒊 − 0.1

𝑚

𝑠
𝒋  
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fig, ax = plt.subplots() 

a = zeros((n-2, 2), float) 

for i in range(n-2): 

    ax.plot(r[i+1,0], r[i+1,1],'o') 

    a[i,:] = (v[i+1,:] - v[i,:])/dt 

    ax.quiver(r[i+1,0],r[i+1,1],a[i,0],a[i,1],\ 

    color='r',angles='xy',\ 

    scale_units='xy', scale=1)) 

ax.set_xlabel(‘ax [m/s/s]') 

ax.set_ylabel(‘ay [m/s/s]') 

plt.show() 
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v = zeros((n-1, 2), float) 
for i in range(n-1): 

    plot(r[i,0], r[i,1],'o') 

    v[i,:] = (r[i+1,:] - r[i,:])/dt 

    quiver(r[i,0], r[i,1], v[i,0], v[i,1], angles = 'xy', scale_units = 'xy', scale = 1) 

xlabel(‘vx [m/s]') 

ylabel(‘vy [m/s]') 

# NO SHOW() 

a = zeros((n-2, 2), float) 

for i in range(n-2): 

    plot(r[i+1,0], r[i+1,1],'o') 

    a[i,:] = (v[i+1,:] - v[i,:])/dt 

    quiver(r[i+1,0], r[i+1,1], a[i,0], a[i,1],  

 color='r', angles='xy', 

          scale_units='xy', scale=1)) 

show() 
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𝒗𝟏 

𝒂𝟏 =
𝒗𝟐 − 𝒗𝟏
𝟎. 𝟓
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𝒗𝟏 

−𝒗𝟏 

𝒂𝟏 =
𝒗𝟐 − 𝒗𝟏

∆𝒕
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Classwork 
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Classwork 



Classwork 
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Classwork 



X Y

0.000 0.000

2.105 6.502

4.211 12.325

6.316 17.469

8.421 21.934

10.526 25.718

12.632 28.824

14.737 31.250

16.842 32.997

18.947 34.065

21.053 34.453

23.158 34.162

25.263 33.191

27.368 31.541

29.474 29.212

31.579 26.203

33.684 22.515

35.789 18.148

37.895 13.101

40.000 7.375
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Classwork 

p
ro

je
ct

ile
 

Noise 

0.002 0.022 

0.050 0.061 

0.067 0.002 

0.001 0.049 

0.006 0.098 

0.065 0.045 

0.045 0.013 

0.023 0.047 

0.051 0.037 

0.070 0.099 

0.059 0.066 

0.068 0.059 

0.020 0.072 

0.047 0.089 

0.012 0.035 

0.042 0.023 

0.035 0.067 

0.072 0.008 

0.095 0.077 

0.065 0.021 

X Y 

0.002 0.022 

2.155 6.564 

4.278 12.327 

6.317 17.518 

8.427 22.032 

10.591 25.763 

12.677 28.837 

14.760 31.297 

16.893 33.034 

19.017 34.164 

21.112 34.519 

23.226 34.221 

25.283 33.263 

27.415 31.630 

29.486 29.247 

31.621 26.226 

33.719 22.582 

35.861 18.156 

37.990 13.178 

40.065 7.396 
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Plot the displacement and the velocity values of tennis ball experiment 



36 

Plot the displacement and the velocity values of tennis ball experiment 



Gravitational Force 
 
Another of Newton’s great accomplishments is his discovery of the law of 
gravity. According to Newton’s law of gravity, there are attractive, 
gravitational forces between all objects. The gravitational force on object A 
from object B is:  
 
 
 
The force is proportional to the product 
of the two masses and inversely proportional 
to the square of the distance between them. 
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𝑭𝑓𝑟𝑜𝑚 𝐵 𝑜𝑛 𝐴 = 𝐺
𝑚.𝑀

𝑟2𝐴𝐵
 



Constant Gravity 
The acceleration of gravity on the surface of various objects in the Solar 
system. 
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The distance to the Earth-
sun Lagrange point 1 is 
about 932,000 miles (1.5 
million kilometers) from 
Earth. 

Lagrange Point 2 is the 
same distance in the 
opposite direction.  

Both L4 and L5 are about 19 million 
miles (30 million km) from Earth. 

Lagrange Point 3 is about 
186 million miles (300 
million km) from us.  
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Joseph-Louis Lagrange (born Giuseppe Lodovico 
[Luigi] Lagrangia, Turin, Piedmont, 25 January 1736 
– Paris, 10 April 1813) was a mathematician and 
astronomer.  
 
Lagrange's treatise on analytical mechanics, first 
published in 1788, was the best treatment of 
classical mechanics since Newton, and helped the 
development of mathematical physics in the 
nineteenth century. 

Lagrange  
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Diagram of the Lagrange Points associated with the Sun-Earth system. WEBB orbits 
around L2, which is about 1.5 million km from the Earth. Lagrange Points are positions 
in space where the gravitational forces of a two body system like the Sun and the Earth 
produce enhanced regions of attraction and repulsion. These can be used by spacecraft 
to reduce fuel consumption needed to remain in position. 

WEBB 

Webb is not located at L2, but 
instead orbits L2, completing one 
circuit every 168 days. This "halo 
orbit" around L2 is highly 
elliptical and is roughly 
perpendicular to its orbital path 
around the Sun. 



The James Webb Space Telescope orbits the 
Sun near Sun-Earth Lagrange point 2 (L2), 
approximately 1.5 million kilometers (1 million 
miles) from Earth. L2 is one of five Sun-Earth 
Lagrange points, positions in space where the 
gravitational pull of the Sun and Earth combine 
such that small objects in that region have the 
same orbital period (length of year) as Earth. 
This makes it possible for Webb to remain in 
constant communication with Earth.  



Gravitational Field Inside the Earth 
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Free Fall of an Object: An Experiment by Galileo 

Galileo didn't know calculus (because Newton and 
Leibniz hadn't discovered it yet) so he couldn't derive 
the equation mathematically. Since we do know 
calculus (SymPy) we know that acceleration is the 
variation of velocity with time. 

𝑭𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝒈. 
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We assume no drag/air resistance 

−𝒈 =
𝒅𝒗

𝒅𝒕
=
𝒅𝟐𝒙

𝒅𝒕𝟐
 

𝒅𝒗 = −𝒈𝒅𝒕 

𝒗 =  −𝒈𝒅𝒕  

𝒗 = −𝒈𝒕 

𝑭𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝒈 

𝒎𝒈. 
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Free Fall of an Object: An Experiment by Galileo 



We assume no drag/air resistance 
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𝒎𝒈. 

 𝒗𝒅𝒕 =  −𝒈𝒕𝒅𝒕 

𝒙 = −
𝟏

𝟐
𝒈𝒕𝟐 

Free Fall of an Object: An Experiment by Galileo 



Free Fall of an Object: Analytical Solution 

We assume no drag/air resistance 
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𝒎𝒈. 𝒗𝒕 = 𝒗𝟎 − 𝒈𝒕 

𝒅𝒙

𝒅𝒕
= 𝒗𝟎 − 𝒈𝒕 

 
𝒅𝒙

𝒅𝒕
𝒅𝒕 =  𝒗𝟎 − 𝒈𝒕 𝒅𝒕 

𝒙𝒕 − 𝒙𝟎 = 𝒗𝟎𝒕 −
𝟏

𝟐
𝒈𝒕𝟐 

𝒙𝒕 = 𝒙𝟎 + 𝒗𝟎𝒕 −
𝟏

𝟐
𝒈𝒕𝟐 



Symbolic computation deals with the computation of mathematical 
objects symbolically. This means that the mathematical objects are 
represented exactly, not approximately, and mathematical expressions 
with unevaluated variables are left in symbolic form. 

>>> import math 

>>> math.sqrt(9) 

>>> 3 

 9 is a perfect square, so we got the exact answer, 3. But suppose we 
computed the square root of a number that isn’t a perfect square. 
>>> math.sqrt(8) 

>>> 2.82842712475 

Here we got an approximate result. 2.82842712475 is not the exact square 
root of 8 (indeed, the actual square root of 8 cannot be represented by a 
finite decimal, since it is an irrational number). 
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suppose we want to go further. Recall that √8 = √4⋅2 = 2 √2. We would 
have a hard time deducing this from the above result. This is where 
symbolic computation comes in. With a symbolic computation system like 
SymPy, square roots of numbers that are not perfect squares are left 
unevaluated by default 

>>> import sympy 

>>> sympy.sqrt(9) 

>>> 3 
>>> symp.sqrt(8) 

>>> 2*sqrt(2) 
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The real power of a symbolic computation system such as SymPy is the 
ability to do all sorts of computations symbolically. SymPy can simplify 
expressions, compute derivatives, integrals, and limits, solve equations, 
work with matrices, and much, much more, and do it all symbolically. 
>>> from sympy import * 

>>> x, t, z, nu = symbols('x t z nu') 

>>> init_printing(use_unicode=True) 

>>> diff(sin(x)*exp(x), x) 

 x           x        

ℯ ⋅sin(x) + ℯ ⋅cos(x) 
>>> integrate(exp(x)*sin(x) + exp(x)*cos(x), x) 

 x        

ℯ ⋅sin(x) 
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Take the derivative of sin(x)ex. 
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from sympy import * 

v, x, t, g = symbols('v x t g', real = True) 

m= symbols('m', constant = True) 

init_printing(use_unicode = True)  

 

v = integrate(-m*g, t) 

print('Velocity : ', v) 

x = integrate(v, t) 

print('Position : ', x) 

 

Velocity :  -g*m*t 

Position :  -g*m*t**2/2 

Note that SymPy does not include the constant of integration like mass [m] 



Numerical integration 
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 𝒇 𝒙 𝒅𝒙
𝒃

𝒂

 

 𝒇 𝒙 𝒅𝒙
𝒃

𝒂

≈ 𝒃 − 𝒂 𝒇
𝒂 + 𝒃

𝟐
 

 𝒇 𝒙 𝒅𝒙
𝒃

𝒂

≈ 𝒃 − 𝒂
𝒇 𝒂 + 𝒇 𝒃

𝟐
 

Rectangle rule 

Trapezoidal rule 



Euler method  
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Euler method : It’s ancient ….. but  it's works  
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Euler method  



Free Fall of an Object: Numerical Solution 

The Euler method is a numerical procedure 
for solving ordinary differential equations 
(ODEs) with a given initial value. It is the most 
basic explicit method for numerical 
integration of ordinary differential equations 
and is the simplest Runge–Kutta method. The 
Euler method is named after Leonhard Euler, 
who treated it in his book Institutionum 
calculi integralis (published 1768–70). 
 
xo is the height of the Pisa tower  ~ 80 m 
And initial velocity v0 is zero. 

57 

8
0

 𝒎
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Free Fall of an Object: Euler method  
 
Given the initial value problem 
 
 
 we would like to use the Euler method to approximate y(4) using step size 
equal to 1 (h = 1) that we can consider as a time step. 
 
The Euler method is 

𝒅𝒚

𝒅𝒕
= 𝒚 y 𝟎 = 𝟏 

𝒚𝒏+𝟏 = 𝒚𝒏 + 𝒉𝒇 𝒕𝒏, 𝒚𝒏  

𝒇 𝒕𝟎, 𝒚𝟎 = 𝒇 𝟎, 𝟏 = 𝟏 

𝒉𝒇 𝒕𝟎, 𝒚𝟎 = 𝒉𝒇 𝟎, 𝟏 = 𝟏. 𝟏 = 𝟏 
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Free Fall of an Object: Euler method  
 
Since the step size is the change in t, when we multiply the step size and the 
slope of the tangent, we get a change in y value. This value is then added to 
the initial y value to obtain the next value to be used for computations. 

𝒚𝒏+𝟏 = 𝒚𝒏 + 𝒉𝒇 𝒕𝒏, 𝒚𝒏  

𝒚𝟏 = 𝒚𝟎 + 𝒉𝒇 𝒚𝟎 = 𝟏 + 𝟏. 𝟏 = 𝟐 

𝒚𝟐 = 𝒚𝟏 + 𝒉𝒇 𝒚𝟏 = 𝟐 + 𝟏. 𝟐 = 𝟒 

𝒚𝟑 = 𝒚𝟐 + 𝒉𝒇 𝒚𝟐 = 𝟒 + 𝟏. 𝟑 = 𝟖 

𝒚𝟒 = 𝒚𝟑 + 𝒉𝒇 𝒚𝟑 = 𝟒 + 𝟏. 𝟒 = 𝟏𝟔 
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Free Fall of an Object: Euler method  
 
the Euler method is more accurate if the step size h is smaller. The table 
below shows the result with different step sizes. The top row corresponds to 
the example in the previous section, and the second row is illustrated in the 
figure. 

h = 1 

h = 0.25 

t 

y 

16 

3 
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import numpy as np 

import matplotlib.pyplot as plt 

# Physical variables 

g = 9.81        # gravity 

time = 20.0     # Simulation Time 

dt = 0.1        # (h) time step 

# Numerical initialization 

n = int(np.ceil(time/dt)) 

a = np.zeros(n,float) 

v = np.zeros(n,float) 

r = np.zeros(n,float) 

t = np.zeros(n,float) 

# Set initial values 

r[0] = 80   # meters  

v[0] = 0    # initial velocity 

a[:] = -g   # constant acceleretion 

# Integration loop 

for i in range(n-1): 

    v[i+1] = v[i] + a[i]*dt 

    r[i+1] = r[i] + v[i+1]*dt 

    t[i+1] = t[i] + dt 

𝒗 𝑡0 + ∆𝑡 ≈ 𝒗 𝑡0 + 𝒂 𝑡0, 𝒓 𝑡0 , 𝒗 𝑡0 ∆𝒕 

r 𝑡0 + ∆𝑡 ≈ 𝒓 𝑡0 + 𝒗 𝑡0 + ∆𝑡 ∆𝑡 
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# Acceleration Plotting 

fig, ax = plt.subplots() 

ax.plot(t, a,'-r') 

ax.set_xlabel('time [s]') 

ax.set_ylabel(r'$g [m/s^2]$') 

plt.show() 

# Velocity Plotting 

fig, ax = plt.subplots() 

ax.plot(t, v,'-r') 

ax.set_xlabel('time [s]') 

ax.set_ylabel(r'$v [m/s]$') 

plt.show() 

# Position Plotting 

fig, ax = plt.subplots() 

ax.plot(t, r, '-r') 

ax.set_xlabel('time [s]') 

ax.set_ylabel('r [m]') 

plt.show() 
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Illustration of (a) two hands pulling on a rubber band, (b) a rubber band 
attached to a wall, (c) a spring attached to a wall, (d) a rope attached to a wall, 
(e) a book above a table, (f) a book on a table 
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We could define a force as an interaction—a pull or a push on an object—that 
can be measured by the deformation of a spring. In this case the magnitude of 
the force increases with the deformation of the spring. This definition is not 
altogether satisfactory, but it illustrates a particular type of force— what we 

call a contact force. Contact forces occur where an object is in contact with 

other objects. 
 
What about the book—where are the forces acting on the book? First, there is 
one force we have not discussed so far, the force of gravity. This is one of the 

fundamental forces in nature: There are gravitation forces between any 

two objects pulling the objects toward each other. There is a gravitational 
force from the Earth on the book, which pulls the book downward. 
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If we zoom further in on the contact between one surface irregularity and the 
table, we realize that the contact force really is a sum of electromagnetic 
forces between the atoms on the surface of the book and the atoms on the 
surface of the table. The atoms are never in actual contact, but as the book 
and the table are pressed toward each other, electromagnetic forces will act 
from the table on the book. The electromagnetic force has been shown to be 
part of the electromagnetic and the weak nuclear force, which is one of three 
fundamental forces. The other two are gravity and the strong nuclear force, 
which is responsible for the interactions between subatomic particles and for 
the interactions in the nucleus. These are the three main forces in nature, and 
all forces are reducible to these forces. In practice, we cannot find the sum of 
the forces from all the individual atoms to find the magnitude of the force, 
but we will instead develop simplified models for the macroscopic forces we 
encounter. 
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Identifying Forces 
 
First, we need to discern between the object, also called the system, and the 
environment, which is everything else. In this case, the system is the ball, and 
the environment is everything else, such as the floor, the air surrounding the 
ball, and the Earth. 
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Identifying Forces 
 
Divide the problem into system and environment. In order to find the forces 
acting, we must realize a fundamental characteristic of a force:  
 
All forces acting on the system must have a source—an identifiable cause in 
the environment. 
We have claimed that there are only three types of forces: gravity, the 
electromagnetic and weak nuclear force, and the strong nuclear force. 
However, this is not very helpful for our analysis of a macroscopic object such 
as the ball. Instead, we will divide forces into two main types: 
 

Forces are either contact forces or long-range forces. 
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Identifying Forces 
 
What is the contact force at this contact? The force on the ball is from the 
floor, and we call this force the normal force that must be a vector, and we 

introduce the symbol 𝐍 for the normal force. Again, we simplify by assuming 

that all these small forces sum to a single force, the air resistance, 𝐅𝐃, there 
are differences in the pressure in the air, which would give rise to a buoyancy 

force, 𝐁, which we again assume to be acting on the surface of the ball. 
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Identifying Forces 
 
Finally, we must also look for the long-range forces affecting the ball. The only 
long-range force is the gravitational force acting from the Earth on the ball. 

We call this force, 𝑮, and draw it as acting in the center of the ball, in the 
direction toward the center of the Earth. 
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Newton’s Second Law of Motion 
 
We are now able to find and identify the forces acting on an object. However, 
we still need a connection between the forces and the motion of an object. 
This connection can be found through Newton’s second law of motion, which 
relates the acceleration of an object to the forces acting on the object: 
 

Newton’s second law of motion: The force 𝑭 on an object of inertial mass m 

is related to the acceleration  𝒂 of the object through 𝑭 = 𝑚𝒂. 
 
Newton’s second law is a vector equation: The acceleration is in the direction 
of the force, and the acceleration is proportional to the force. We determine 
the inertial mass of an object by measuring the acceleration for a given 
applied force. 


