
1

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

Motion in Two Dimensions and Gravity

#4

Numerical Representation of Vectors

In Python a vector is represented by its component form. The vector a:

is generated by the following command:
 >>> import numpy as np

 >>> a = np.array([1,2,0])

 >>> b = np.array([2,-4,0])

Addition and Subtraction
 >>> c = a + b

 >>> print(c)

 [3 -2 0]

𝒂 = 1𝒊 + 2𝒋 + 0𝒌 = 1 , 2 , 0

2

𝒃 = 2𝒊 − 4𝒋 + 0𝒌 = 2 , −4 , 0

3

You can decide if you want to use a vector in two - or three dimensions. For
example, you could instead have defined the vector a as:

 >>> a = np.array([1,2])

But notice that you can not add two vectors that do not have the same
number of components.

Scalar Multiplication

Scalar multiplication is similarly naturally implemented:

>>> d = 3*a

>>> print(d)

[3 6]

Componentwise Operations

Notice that there is room for error because of the way commands are
interpreted. For example, if you add a scalar to a vector, this is interpreted as
a componentwise addition: The scalar is added to each of the components:

 >>> a = np.array([1,2,0])

 >>> e = a + 3

 >>> print(e)

 [4 5 3]

4

5

Dot Product

The dot product is found by applying the function dot, which returns a
scalar:

>>> f = np.dot(a, b)

>>> print(f)

-6

A common application of the dot product is to find the component of a

vector 𝒂 along the direction given by a vector 𝒃. In general, 𝒃, is not a unit

vector. We therefore first need to find a unit vector in the direction of 𝒃:

𝒖𝒃 =
𝒃

𝒃

6

Dot Product

and the component of a in this direction is given by the dot product:

Numerically, this is done in exactly the same way:

>>> ab = np.dot(a,b)/np.sqrt(np.dot(b,b))

>>> print(ab)

-1.3416407865

Notice that we use the relation:

for the magnitude of b.

𝒂𝒃 = 𝒂.𝒖𝒃 = 𝒂.
𝒃

𝒃

𝒃 = 𝒃. 𝒃

7

Time Sequences of Vectors

We will often work with a sequence of vectors, corresponding to the time
evolution of a vector. For example, we may be interested in the position, 𝒓,
or the force, F, as a function of time, t:

Numerically, we will have a corresponding sequence of positions or forces at
discrete times, ti :

𝒓 𝒕 𝒂𝒏𝒅 𝑭 𝒕

𝒓𝒊 = 𝒓 𝒕𝒊 𝒂𝒏𝒅 𝑭𝒊 = 𝑭 𝒕𝒊

We generate a sequence of n vectors ri with x, y, and z coordinates by:

n = 10

r = np.zeros((n, 3),float)

We can use mathematical vector operations directly on element in the
sequence, as shown in the following example:
>>> v = np.array([1.0,-2.0,2.0]) # constant speed

>>> n = 10 # number of step

>>> r = np.zeros((n,3),float)

>>> r[0] = np.array([0,0,0]) # initial position

>>> dt = 0.1 # time step

>>> r[1] = r[0] + v*dt # new position

8

Motion Diagram and Position Vector

9

4.0 s

3.5 s

3.0 s
2.5 s

2.0 s

1.5 s

1.0 s

0.5 s 0.0 s

x [m]

y
[m

]

We mark the position of the soccer ball regular time intervals and record the
positions 𝒓 𝑡 of the ball relative to the origin at time ti . We are free to
choose the origin and the axes of the coordinate system. The origin
determines where we measure the positions from. The position can be
decomposed along the x, y, and z-axes respectively

where x(t), y(t), and z(t) are lengths along the axes and hence have units of
length.

10

𝒓 𝑡 = 𝑥 𝑡 𝒊 + 𝑦 𝑡 𝒋 + 𝑧 𝑡 𝒌

For example, the position at t = 0.5 s is:

Positions of the soccer ball

11

𝒓 𝑡 = 𝑥 𝑡 𝒊 + 𝑦 𝑡 𝒋 + 𝑧 𝑡 𝒌

𝒓 0.5 = 𝑥 0.5 𝒊 + 𝑦 0.5 𝒋 + 𝑧 0.5 𝒌 = 16.2 𝒊 + 14.95 𝒋 + 0 𝒌

𝒓 0.5 = 16.2 𝒊 + 14.95 𝒋

Velocity Vector

The change in position is also a vector and is called the displacement. The
displacement from t = 1.0 s to t = 2.0 s is denoted Δr(1.0 s):

The displacement depends on a difference between two positions, it does
not depend on the choice of origin. The rate of change of the displacement,
the velocity, must therefore also be a vector:

12

∆𝒓 1.0 = 𝒓 2.0 − 𝒓 1.0 = 46.6 𝒊 + 31.3 𝒋 − 29.9 𝒊 + 19.0 𝒋

∆𝒓 1.0 = 16.7 𝒊 + 12.3 𝒋

Velocity Vector

The average velocity from a time t = t0 to a time t = t0 + Δt is defined as:

13

𝒗 𝑡0 =
𝒓 𝑡0 + ∆𝑡 − 𝒓 𝑡0

∆𝑡
=
∆𝒓

∆𝑡

𝒗 𝑡0 =
∆𝒓

∆𝑡
=
∆𝒓 1.0 𝑠

1.0 𝑠
=
16.7 𝒊 + 12.3 𝒋

1.0
= 16.7

𝑚

𝑠
𝒊 + 12.3

𝑚

𝑠
𝒋

14

Velocity Vector

If we instead use a time interval Δt = 0.5 s to find the average velocity at t =
1.0 s we find:

𝒗 𝑡0 =
∆𝒓

∆𝑡
=
∆𝒓 1.0 𝑠

0.5 𝑠
=
9.0 𝒊 + 7.1 𝒋

0.5
= 18.0

𝑚

𝑠
𝒊 + 14.2

𝑚

𝑠
𝒋

∆𝒓 1.0 = 𝒓 1.5 − 𝒓 1.0 = 38.9 𝒊 + 26.1 𝒋 − 29.9 𝒊 + 19.0 𝒋

∆𝒓 1.0 = 9.0 𝒊 + 7.1 𝒋

15

16

The instantaneous velocity at the time t is defined as the limit of the average
velocity when the time interval Δt goes to zero, that is, the time derivative of
the position vector, r(t).

𝒗 𝑡 = lim
∆𝑡→0

𝒓 𝑡 + ∆𝑡 − 𝒓 𝑡

∆𝑡
= lim

∆𝑡→0

∆𝒓

∆𝑡
=
𝑑𝒓

𝑑𝑡

Speed
The magnitude of the velocity vector is called the speed, v, defined as:

 𝒗 𝒕 = 𝒗 𝒕

17

Decreasing time intervals Δt for the motion of the cheetah

𝑑𝒓

𝑑𝑡

∆𝒓

4∆𝑡

∆𝒓

3∆𝑡

∆𝒓

2∆𝑡

∆𝒓

∆𝑡

Time Derivatives of Vector Functions

The velocity vector can therefore also be written:

18

𝒗 𝑡 =
𝑑

𝑑𝑡
𝒓 𝑡 =

𝑑

𝑑𝑡
𝑥 𝑡 𝒊 + 𝑦 𝑡 𝒋 + 𝑧 𝑡 𝒌 =

𝑑𝑥

𝑑𝑡
𝒊 +

𝑑𝑦

𝑑𝑡
𝒋 +

𝑑𝑧

𝑑𝑡
𝒌

𝑣𝑥 𝑡 =
𝑑𝑥

𝑑𝑡
, 𝑣𝑦 𝑡 =

𝑑𝑦

𝑑𝑡
, 𝑣𝑧 𝑡 =

𝑑𝑧

𝑑𝑡

𝒗 𝑡 = 𝑣𝑥 𝑡 𝒊 + 𝑣𝑦 𝑡 𝒋 + 𝑣𝑧 𝑡 𝒌 = 𝑣𝑥 𝑡 , 𝑣𝑦 𝑡 , 𝑣𝑧 𝑡

The average acceleration over a time interval Δt from t to t + Δt is:

𝑎 𝑡𝑖 =
𝒗 𝑡 + ∆𝑡 − 𝒗 𝑡

∆𝑡
=
∆𝒗 𝑡1
∆𝑡

We define the instantaneous acceleration vector, or simply the
instantaneous acceleration, as the limit of the average acceleration vector
when the time interval approaches zero:

The acceleration vector is the time derivative of the velocity vector.

𝒂 𝑡𝑖 = lim
∆𝑡→0

𝒗 𝑡 + ∆𝑡 − 𝒗 𝑡

∆𝑡
=
𝑑𝒗

𝑑𝑡
= 𝒗

19

We find the acceleration in the vector component representation by
componentwise derivation:

Since the velocity vector is the time derivative of the position vector

we can write the acceleration vector as the second time derivative of the
position vector:

20

𝒗 𝑡 =
𝑑

𝑑𝑡
𝒓 = 𝒓

𝒂 𝑡 =
𝑑

𝑑𝑡
𝒗 =

𝑑

𝑑𝑡

𝑑

𝑑𝑡
𝒓 =

𝑑2𝒓

𝑑𝑡2
= 𝒓

𝒂 𝑡 =
𝑑

𝑑𝑡
𝒗 𝒕 =

𝑑

𝑑𝑡
𝑣𝑥 𝑡 𝒊 + 𝑣𝑦 𝑡 𝒋 + 𝑣𝑧 𝑡 𝒌 =

𝑑𝑣

𝑑𝑡
𝒊 +

𝑑𝑣

𝑑𝑡
𝒋 +

𝑑𝑣

𝑑𝑡
𝒌

21

Motion diagrams for the cheetah with Δt = 0.5 s illustrating both the
displacements, interpreted as velocities, and the change in displacements,
interpreted as accelerations. The constructions of the accelerations are
illustrated.

import matplotlib.pyplot as plt

import numpy as np

t,x,y = np.loadtxt(‘soccer.txt', usecols=[0,1,2], unpack=True)

n = len(t)

dt = t[1] - t[0]

r = np.zeros((n, 2), float)

r[:,0] = x

r[:,1] = y

22

This generates the arrays t, x, and y, which we combine to one array to form r.
This provides us with a vector r(ti), which contains the x- and y-components

The vector representation in Python is useful and allows us to make
operations on the whole vector in a very similar way to how we write the
operations mathematically.

𝒓 𝑡 = 𝑥 𝑡 𝒊 + 𝑦 𝑡 𝒋

𝒓 𝑡 = 𝑥 𝑡 𝒊 + 𝑦 𝑡 𝒋

fig, ax = plt.subplots()

ax.plot(r[:,0],r[:,1])

ax.axis('equal')

ax.set_xlabel('x [m]')

ax.set_ylabel('y [m]')

plt.show()

where we have used axis(’equal’) to ensure that the scaling of the x-
and y-axis are the same.

23

fig, ax = plt.subplots()

for i in range(n-1):

 ax.plot(r[i,0], r[i,1],'o')

 dr = r[i+1,:] - r[i,:]

 ax.quiver(r[i,0], r[i,1], dr[0], dr[1], angles='xy',

 scale_units='xy', scale=1)

ax.set_xlabel('x [m]')

ay.set_ylabel('y [m]')

plt.show()

24

quiver(*args, **kw) Plot a 2-D field of arrows.

quiver(X, Y, U, V, C, **kw)

Arguments:
X, Y: The x and y coordinates of the arrow locations (default is
tail of arrow; see pivot kwarg)
U, V: Give the x and y components of the arrow vectors
C: An optional array used to map colors to the arrows

32.4𝒊 − 0.1𝒋

fig, ax = plt.subplots()

v = np.zeros((n-1, 2),float)
for i in range(n-1):

 ax.plot(r[i,0], r[i,1],'o')

 v[i,:] = (r[i+1,:] - r[i,:])/dt

 ax.quiver(r[i,0], r[i,1], v[i,0], v[i,1], angles='xy',

 scale_units='xy', scale=1)

ax.set_xlabel(‘vx [m/s]')

ax.set_ylabel(‘vy [m/s]')

plt.show()

25

𝒗 𝟎 =
∆𝒓

∆𝑡
==

16.2 𝒊 − 0.05 𝒋

0.5
= 32.4

𝑚

𝑠
𝒊 − 0.1

𝑚

𝑠
𝒋

26

fig, ax = plt.subplots()

a = zeros((n-2, 2), float)

for i in range(n-2):

 ax.plot(r[i+1,0], r[i+1,1],'o')

 a[i,:] = (v[i+1,:] - v[i,:])/dt

 ax.quiver(r[i+1,0],r[i+1,1],a[i,0],a[i,1],\

 color='r',angles='xy',\

 scale_units='xy', scale=1))

ax.set_xlabel(‘ax [m/s/s]')

ax.set_ylabel(‘ay [m/s/s]')

plt.show()

27

v = zeros((n-1, 2), float)
for i in range(n-1):

 plot(r[i,0], r[i,1],'o')

 v[i,:] = (r[i+1,:] - r[i,:])/dt

 quiver(r[i,0], r[i,1], v[i,0], v[i,1], angles = 'xy', scale_units = 'xy', scale = 1)

xlabel(‘vx [m/s]')

ylabel(‘vy [m/s]')

NO SHOW()

a = zeros((n-2, 2), float)

for i in range(n-2):

 plot(r[i+1,0], r[i+1,1],'o')

 a[i,:] = (v[i+1,:] - v[i,:])/dt

 quiver(r[i+1,0], r[i+1,1], a[i,0], a[i,1],

 color='r', angles='xy',

 scale_units='xy', scale=1))

show()

28

𝒗𝟏

𝒂𝟏 =
𝒗𝟐 − 𝒗𝟏
𝟎. 𝟓

29

𝒗𝟏

−𝒗𝟏

𝒂𝟏 =
𝒗𝟐 − 𝒗𝟏

∆𝒕

30

Classwork

31

Classwork

Classwork

32

33

Classwork

X Y

0.000 0.000

2.105 6.502

4.211 12.325

6.316 17.469

8.421 21.934

10.526 25.718

12.632 28.824

14.737 31.250

16.842 32.997

18.947 34.065

21.053 34.453

23.158 34.162

25.263 33.191

27.368 31.541

29.474 29.212

31.579 26.203

33.684 22.515

35.789 18.148

37.895 13.101

40.000 7.375

34

Classwork

p
ro

je
ct

ile

Noise

0.002 0.022

0.050 0.061

0.067 0.002

0.001 0.049

0.006 0.098

0.065 0.045

0.045 0.013

0.023 0.047

0.051 0.037

0.070 0.099

0.059 0.066

0.068 0.059

0.020 0.072

0.047 0.089

0.012 0.035

0.042 0.023

0.035 0.067

0.072 0.008

0.095 0.077

0.065 0.021

X Y

0.002 0.022

2.155 6.564

4.278 12.327

6.317 17.518

8.427 22.032

10.591 25.763

12.677 28.837

14.760 31.297

16.893 33.034

19.017 34.164

21.112 34.519

23.226 34.221

25.283 33.263

27.415 31.630

29.486 29.247

31.621 26.226

33.719 22.582

35.861 18.156

37.990 13.178

40.065 7.396

35

Plot the displacement and the velocity values of tennis ball experiment

36

Plot the displacement and the velocity values of tennis ball experiment

Gravitational Force

Another of Newton’s great accomplishments is his discovery of the law of
gravity. According to Newton’s law of gravity, there are attractive,
gravitational forces between all objects. The gravitational force on object A
from object B is:

The force is proportional to the product
of the two masses and inversely proportional
to the square of the distance between them.

37

𝑭𝑓𝑟𝑜𝑚 𝐵 𝑜𝑛 𝐴 = 𝐺
𝑚.𝑀

𝑟2𝐴𝐵

Constant Gravity
The acceleration of gravity on the surface of various objects in the Solar
system.

38

The distance to the Earth-
sun Lagrange point 1 is
about 932,000 miles (1.5
million kilometers) from
Earth.

Lagrange Point 2 is the
same distance in the
opposite direction.

Both L4 and L5 are about 19 million
miles (30 million km) from Earth.

Lagrange Point 3 is about
186 million miles (300
million km) from us.

39

40

41

Joseph-Louis Lagrange (born Giuseppe Lodovico
[Luigi] Lagrangia, Turin, Piedmont, 25 January 1736
– Paris, 10 April 1813) was a mathematician and
astronomer.

Lagrange's treatise on analytical mechanics, first
published in 1788, was the best treatment of
classical mechanics since Newton, and helped the
development of mathematical physics in the
nineteenth century.

Lagrange

42

Diagram of the Lagrange Points associated with the Sun-Earth system. WEBB orbits
around L2, which is about 1.5 million km from the Earth. Lagrange Points are positions
in space where the gravitational forces of a two body system like the Sun and the Earth
produce enhanced regions of attraction and repulsion. These can be used by spacecraft
to reduce fuel consumption needed to remain in position.

WEBB

Webb is not located at L2, but
instead orbits L2, completing one
circuit every 168 days. This "halo
orbit" around L2 is highly
elliptical and is roughly
perpendicular to its orbital path
around the Sun.

The James Webb Space Telescope orbits the
Sun near Sun-Earth Lagrange point 2 (L2),
approximately 1.5 million kilometers (1 million
miles) from Earth. L2 is one of five Sun-Earth
Lagrange points, positions in space where the
gravitational pull of the Sun and Earth combine
such that small objects in that region have the
same orbital period (length of year) as Earth.
This makes it possible for Webb to remain in
constant communication with Earth.

Gravitational Field Inside the Earth

44

Free Fall of an Object: An Experiment by Galileo

Galileo didn't know calculus (because Newton and
Leibniz hadn't discovered it yet) so he couldn't derive
the equation mathematically. Since we do know
calculus (SymPy) we know that acceleration is the
variation of velocity with time.

𝑭𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝒈.

45

We assume no drag/air resistance

−𝒈 =
𝒅𝒗

𝒅𝒕
=
𝒅𝟐𝒙

𝒅𝒕𝟐

𝒅𝒗 = −𝒈𝒅𝒕

𝒗 = −𝒈𝒅𝒕

𝒗 = −𝒈𝒕

𝑭𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝒈

𝒎𝒈.

46

Free Fall of an Object: An Experiment by Galileo

We assume no drag/air resistance

47

𝒎𝒈.

 𝒗𝒅𝒕 = −𝒈𝒕𝒅𝒕

𝒙 = −
𝟏

𝟐
𝒈𝒕𝟐

Free Fall of an Object: An Experiment by Galileo

Free Fall of an Object: Analytical Solution

We assume no drag/air resistance

48

𝒎𝒈. 𝒗𝒕 = 𝒗𝟎 − 𝒈𝒕

𝒅𝒙

𝒅𝒕
= 𝒗𝟎 − 𝒈𝒕

𝒅𝒙

𝒅𝒕
𝒅𝒕 = 𝒗𝟎 − 𝒈𝒕 𝒅𝒕

𝒙𝒕 − 𝒙𝟎 = 𝒗𝟎𝒕 −
𝟏

𝟐
𝒈𝒕𝟐

𝒙𝒕 = 𝒙𝟎 + 𝒗𝟎𝒕 −
𝟏

𝟐
𝒈𝒕𝟐

Symbolic computation deals with the computation of mathematical
objects symbolically. This means that the mathematical objects are
represented exactly, not approximately, and mathematical expressions
with unevaluated variables are left in symbolic form.

>>> import math

>>> math.sqrt(9)

>>> 3

 9 is a perfect square, so we got the exact answer, 3. But suppose we
computed the square root of a number that isn’t a perfect square.
>>> math.sqrt(8)

>>> 2.82842712475

Here we got an approximate result. 2.82842712475 is not the exact square
root of 8 (indeed, the actual square root of 8 cannot be represented by a
finite decimal, since it is an irrational number).

49

suppose we want to go further. Recall that √8 = √4⋅2 = 2 √2. We would
have a hard time deducing this from the above result. This is where
symbolic computation comes in. With a symbolic computation system like
SymPy, square roots of numbers that are not perfect squares are left
unevaluated by default

>>> import sympy

>>> sympy.sqrt(9)

>>> 3
>>> symp.sqrt(8)

>>> 2*sqrt(2)

50

The real power of a symbolic computation system such as SymPy is the
ability to do all sorts of computations symbolically. SymPy can simplify
expressions, compute derivatives, integrals, and limits, solve equations,
work with matrices, and much, much more, and do it all symbolically.
>>> from sympy import *

>>> x, t, z, nu = symbols('x t z nu')

>>> init_printing(use_unicode=True)

>>> diff(sin(x)*exp(x), x)

 x x

ℯ ⋅sin(x) + ℯ ⋅cos(x)
>>> integrate(exp(x)*sin(x) + exp(x)*cos(x), x)

 x

ℯ ⋅sin(x)

51

Take the derivative of sin(x)ex.

52

from sympy import *

v, x, t, g = symbols('v x t g', real = True)

m= symbols('m', constant = True)

init_printing(use_unicode = True)

v = integrate(-m*g, t)

print('Velocity : ', v)

x = integrate(v, t)

print('Position : ', x)

Velocity : -g*m*t

Position : -g*m*t**2/2

Note that SymPy does not include the constant of integration like mass [m]

Numerical integration

53

 𝒇 𝒙 𝒅𝒙
𝒃

𝒂

 𝒇 𝒙 𝒅𝒙
𝒃

𝒂

≈ 𝒃 − 𝒂 𝒇
𝒂 + 𝒃

𝟐

 𝒇 𝒙 𝒅𝒙
𝒃

𝒂

≈ 𝒃 − 𝒂
𝒇 𝒂 + 𝒇 𝒃

𝟐

Rectangle rule

Trapezoidal rule

Euler method

54

55

Euler method : It’s ancient ….. but it's works

56

Euler method

Free Fall of an Object: Numerical Solution

The Euler method is a numerical procedure
for solving ordinary differential equations
(ODEs) with a given initial value. It is the most
basic explicit method for numerical
integration of ordinary differential equations
and is the simplest Runge–Kutta method. The
Euler method is named after Leonhard Euler,
who treated it in his book Institutionum
calculi integralis (published 1768–70).

xo is the height of the Pisa tower ~ 80 m
And initial velocity v0 is zero.

57

8
0

 𝒎

58

Free Fall of an Object: Euler method

Given the initial value problem

 we would like to use the Euler method to approximate y(4) using step size
equal to 1 (h = 1) that we can consider as a time step.

The Euler method is

𝒅𝒚

𝒅𝒕
= 𝒚 y 𝟎 = 𝟏

𝒚𝒏+𝟏 = 𝒚𝒏 + 𝒉𝒇 𝒕𝒏, 𝒚𝒏

𝒇 𝒕𝟎, 𝒚𝟎 = 𝒇 𝟎, 𝟏 = 𝟏

𝒉𝒇 𝒕𝟎, 𝒚𝟎 = 𝒉𝒇 𝟎, 𝟏 = 𝟏. 𝟏 = 𝟏

59

Free Fall of an Object: Euler method

Since the step size is the change in t, when we multiply the step size and the
slope of the tangent, we get a change in y value. This value is then added to
the initial y value to obtain the next value to be used for computations.

𝒚𝒏+𝟏 = 𝒚𝒏 + 𝒉𝒇 𝒕𝒏, 𝒚𝒏

𝒚𝟏 = 𝒚𝟎 + 𝒉𝒇 𝒚𝟎 = 𝟏 + 𝟏. 𝟏 = 𝟐

𝒚𝟐 = 𝒚𝟏 + 𝒉𝒇 𝒚𝟏 = 𝟐 + 𝟏. 𝟐 = 𝟒

𝒚𝟑 = 𝒚𝟐 + 𝒉𝒇 𝒚𝟐 = 𝟒 + 𝟏. 𝟑 = 𝟖

𝒚𝟒 = 𝒚𝟑 + 𝒉𝒇 𝒚𝟑 = 𝟒 + 𝟏. 𝟒 = 𝟏𝟔

60

Free Fall of an Object: Euler method

the Euler method is more accurate if the step size h is smaller. The table
below shows the result with different step sizes. The top row corresponds to
the example in the previous section, and the second row is illustrated in the
figure.

h = 1

h = 0.25

t

y

16

3

Free Fall of an Object: Numerical Solution

61

import numpy as np

import matplotlib.pyplot as plt

Physical variables

g = 9.81 # gravity

time = 20.0 # Simulation Time

dt = 0.1 # (h) time step

Numerical initialization

n = int(np.ceil(time/dt))

a = np.zeros(n,float)

v = np.zeros(n,float)

r = np.zeros(n,float)

t = np.zeros(n,float)

Set initial values

r[0] = 80 # meters

v[0] = 0 # initial velocity

a[:] = -g # constant acceleretion

Integration loop

for i in range(n-1):

 v[i+1] = v[i] + a[i]*dt

 r[i+1] = r[i] + v[i+1]*dt

 t[i+1] = t[i] + dt

𝒗 𝑡0 + ∆𝑡 ≈ 𝒗 𝑡0 + 𝒂 𝑡0, 𝒓 𝑡0 , 𝒗 𝑡0 ∆𝒕

r 𝑡0 + ∆𝑡 ≈ 𝒓 𝑡0 + 𝒗 𝑡0 + ∆𝑡 ∆𝑡

Free Fall of an Object: Numerical Solution

62

Acceleration Plotting

fig, ax = plt.subplots()

ax.plot(t, a,'-r')

ax.set_xlabel('time [s]')

ax.set_ylabel(r'$g [m/s^2]$')

plt.show()

Velocity Plotting

fig, ax = plt.subplots()

ax.plot(t, v,'-r')

ax.set_xlabel('time [s]')

ax.set_ylabel(r'$v [m/s]$')

plt.show()

Position Plotting

fig, ax = plt.subplots()

ax.plot(t, r, '-r')

ax.set_xlabel('time [s]')

ax.set_ylabel('r [m]')

plt.show()

Homework

63

64

Illustration of (a) two hands pulling on a rubber band, (b) a rubber band
attached to a wall, (c) a spring attached to a wall, (d) a rope attached to a wall,
(e) a book above a table, (f) a book on a table

65

We could define a force as an interaction—a pull or a push on an object—that
can be measured by the deformation of a spring. In this case the magnitude of
the force increases with the deformation of the spring. This definition is not
altogether satisfactory, but it illustrates a particular type of force— what we

call a contact force. Contact forces occur where an object is in contact with

other objects.

What about the book—where are the forces acting on the book? First, there is
one force we have not discussed so far, the force of gravity. This is one of the

fundamental forces in nature: There are gravitation forces between any

two objects pulling the objects toward each other. There is a gravitational
force from the Earth on the book, which pulls the book downward.

66

If we zoom further in on the contact between one surface irregularity and the
table, we realize that the contact force really is a sum of electromagnetic
forces between the atoms on the surface of the book and the atoms on the
surface of the table. The atoms are never in actual contact, but as the book
and the table are pressed toward each other, electromagnetic forces will act
from the table on the book. The electromagnetic force has been shown to be
part of the electromagnetic and the weak nuclear force, which is one of three
fundamental forces. The other two are gravity and the strong nuclear force,
which is responsible for the interactions between subatomic particles and for
the interactions in the nucleus. These are the three main forces in nature, and
all forces are reducible to these forces. In practice, we cannot find the sum of
the forces from all the individual atoms to find the magnitude of the force,
but we will instead develop simplified models for the macroscopic forces we
encounter.

67

Identifying Forces

First, we need to discern between the object, also called the system, and the
environment, which is everything else. In this case, the system is the ball, and
the environment is everything else, such as the floor, the air surrounding the
ball, and the Earth.

68

Identifying Forces

Divide the problem into system and environment. In order to find the forces
acting, we must realize a fundamental characteristic of a force:

All forces acting on the system must have a source—an identifiable cause in
the environment.
We have claimed that there are only three types of forces: gravity, the
electromagnetic and weak nuclear force, and the strong nuclear force.
However, this is not very helpful for our analysis of a macroscopic object such
as the ball. Instead, we will divide forces into two main types:

Forces are either contact forces or long-range forces.

69

Identifying Forces

What is the contact force at this contact? The force on the ball is from the
floor, and we call this force the normal force that must be a vector, and we

introduce the symbol 𝐍 for the normal force. Again, we simplify by assuming

that all these small forces sum to a single force, the air resistance, 𝐅𝐃, there
are differences in the pressure in the air, which would give rise to a buoyancy

force, 𝐁, which we again assume to be acting on the surface of the ball.

70

Identifying Forces

Finally, we must also look for the long-range forces affecting the ball. The only
long-range force is the gravitational force acting from the Earth on the ball.

We call this force, 𝑮, and draw it as acting in the center of the ball, in the
direction toward the center of the Earth.

71

Newton’s Second Law of Motion

We are now able to find and identify the forces acting on an object. However,
we still need a connection between the forces and the motion of an object.
This connection can be found through Newton’s second law of motion, which
relates the acceleration of an object to the forces acting on the object:

Newton’s second law of motion: The force 𝑭 on an object of inertial mass m

is related to the acceleration 𝒂 of the object through 𝑭 = 𝑚𝒂.

Newton’s second law is a vector equation: The acceleration is in the direction
of the force, and the acceleration is proportional to the force. We determine
the inertial mass of an object by measuring the acceleration for a given
applied force.

