
1 

Biomechanics Research Group, 
Faculty of Sports Sciences, and 
Department of Computer Graphics 
Hacettepe University, Ankara, Turkey 

Serdar ARITAN 

Forces in One and Two Dimensions 

#5 



2 

The structured problem solving approach 
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Identifying Forces 
 
First, we need to discern between the object, also called the system, and the 
environment, which is everything else. In this case, the system is the ball, and 
the environment is everything else, such as the floor, the air surrounding the 
ball, and the Earth. 



Newton’s Second Law of Motion 
 
The force, F, in Newton’s second law is the net external force acting on the 
object. By external we mean that the force has a cause outside the system, as 
we insisted when we drew a free-body diagram of an object. By net force we 
mean that if there are several forces acting on an object, it is the sum of all 
the external forces that causes the acceleration. We call this sum the net 
force: 

𝑭𝑛𝑒𝑡 = 𝑭𝑗
𝑗

= 𝑚𝒂 

𝑭𝑛𝑒𝑡 = 𝑭𝒋
𝒋

= 𝑮 +𝑵+ 𝑭𝑫 + 𝑩 = 𝑚𝒂 
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Free Fall of an Object: An Experiment by Galileo 
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Galileo didn't know calculus (because Newton and 
Leibniz hadn't discovered it yet) so he couldn't derive 
the equation mathematically. Since we do know 
calculus we know that acceleration is the variation of 
velocity with time. 

𝑭𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝒈. 

𝐹 𝑛𝑒𝑡 =  𝐹 𝑗𝑗 = 𝑚𝒂. 

𝑭𝑎𝑖𝑟 𝑑𝑟𝑎𝑔 =
1

2
𝜌𝐴𝐶 𝒗 𝟐𝒗  



Numerical integration 
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 𝒇 𝒙 𝒅𝒙
𝒃

𝒂

 

 𝒇 𝒙 𝒅𝒙
𝒃

𝒂

≈ 𝒃 − 𝒂 𝒇
𝒂 + 𝒃

𝟐
 

 𝒇 𝒙 𝒅𝒙
𝒃

𝒂

≈ 𝒃 − 𝒂
𝒇 𝒂 + 𝒇 𝒃

𝟐
 

Rectangle rule 

Trapezoidal rule 



Comparison  of Analytical vs Numerical Methods 

𝒚𝒕 = 𝒚𝟎 + 𝒗𝟎𝒔𝒊𝒏 𝜶 𝒕 −
𝟏

𝟐
𝒈𝒕𝟐 𝒙𝒕 = 𝒙𝟎 + 𝒗𝟎 cos 𝛼 𝒕 
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Comparison  of Analytical vs Numerical Methods 
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Comparison  of Analytical vs Numerical Methods 
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The vector field plot for the differential equation 

𝒅𝒚

𝒅𝒙
= 𝒚 + 𝒙 

𝒙𝟎 = 𝟎. 𝟒 

𝒚𝟎 = 𝟎. 𝟖 

Initial-Value Problem :  
An IVP is a differential 
equation together with 
a place for a solution to 
start.  
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 There are infinitely many integral curves, each corresponding to an integral curve.  
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Motion of a Bouncing Ball with Air Resistance 
 
A ball is thrown from a height h above the ground with an initial velocity v0. 
Find the velocity and position of the ball as a function of time t. Include the 
normal force from the floor while the ball is in contact with the floor. We 
describe the position of the ball by 𝐫 (t), measured in a coordinate system 
with origin at the floor. The initial position and velocity of the projectile is 
𝐫 t0 = h 𝐣  and  𝐯 t0 = vx0  𝐢 + vy0  𝐣. 

The motion of the ball is determined by the forces 

acting: air resistance, 𝑭𝑫, the normal force 𝑵 from 

the floor, and gravity, 𝐆 = −mg𝐣, as illustrated in 
the free-body diagram. We use a square law for air 

resistance: 𝑭𝑫 = −𝐷𝑣2 
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The normal force from the floor on the ball is represented by a spring force. 
This is a strong simplification of the actual deformation process occurring at 
the contact between the ball and the floor due to the deformation of both the 
ball and the floor. 



Since the projectile will be moving fast, we use the square-law force model for 
the air resistance. For a spherical object we have that the pre-factor is 
𝑫 ≅ 𝟑. 𝟎𝝆𝒅𝟐, where d is the diameter of the sphere and ρ is the density of the 
surrounding air. At sea level and at 15 °C air has a density of approximately 
1.225 kg/m3. Here, we will assume that the density of the surrounding air does 
not change significantly. We will use ρ = 1.225 kg/m3. Let us also assume that 
the projectile has a diameter of d = 0.02 m, and that its mass is m = 0.2 kg.  

𝐹 𝐷 = −D v2 
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 Values of Air Density As a Function of Altitude 
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From one-dimensional experiments, we expect the force from a spring on the 
object attached to the spring to depend on the elongation of the spring and 
act in the direction of the spring. A spring is characterized by its equilibrium 
length, L0, and its spring constant, k. The force from the spring on the object is: 
 
where L is the length of the spring, and the unit vector 𝒖 𝑟 points from the  
spring towards the object. 
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𝑭 = −k L − 𝐿0 𝒖 𝑟  

𝐿 = 𝑟 − 𝑅  
𝑢 𝑟 =

𝑟 − 𝑅

𝑟 − 𝑅
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Often, we will place the origin at the attachment point of the spring, so that 
R = 0, and the full model simplifies to: 
 
 
 
 
where the length of the spring, L = r = |r|, is the distance from the origin to 
the particle. We have named this model the “full model” because it most 
closely represents the behavior of a real, physical spring. This force model is 
versatile and general and can be widely applied. For example, it can be used 
to model the deformation of an elastic body. This model will be our preferred 
model for contact forces such as forces due to deformation in two- and three-
dimensional systems. 

𝑭 = −k r − 𝐿0
𝒓

𝑟
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Notice that the force model has a spherical symmetry: When we choose the 
origin at the attachment point (R = 0), the force from the spring on the 
attached object always acts along a line through the origin, and the 
magnitude of the force depends on the distance r to the origin. This means 
that force on the particle from the spring in the x-direction is: 
 
 
 
 
That is, the force in the x-direction, depends not only on the x-position, but 
also on the y coordinate. If we apply Newton’s second law of motion to such a 
system, the acceleration of the object in the x-direction, will depend on the x, 
y, and z coordinates of the object: We call such a system coupled. 

𝑭𝒙 = −k r − 𝐿0
𝑥

𝑟
= −k 𝑥2 + 𝑦2 − 𝐿0

𝑥

𝑥2 + 𝑦2
 



The deformed region corresponds roughly to the region of “overlap” between 
the ball and the floor. The depth of this region is ∆𝑦 = 𝑅 − 𝑦 𝑡 , where 𝑅 is the 
radius of the ball, which corresponds to the compression ∆𝐿 of the spring: 
 

𝐍 = −k R − y t  𝐣 

 
we must also ensure that the normal force only acts 
when the ball is in contact with the floor, otherwise the 
normal force is zero. 
 

𝐍 =
−k R − y t  𝐣 when y 𝑡 < 𝑅

    0                        when y 𝑡 ≥ 𝑅
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Newton’s second law: Newton’s second law is now 
 

 𝐅 𝐣
𝐣

= 𝑮+ 𝑭𝐷 + 𝐍 = G = −mg𝐣 − D v2 + 𝐍 = m𝒂 

which gives 
 

𝒂 = −
D

m
v2 − g 𝐣 + 𝐍/m 

 
with the initial conditions: r(t0) = r(0) = r0 and v(t0) = v(0) = v0. While it is 
difficult to determine the motion analytically, we may be able to find 
analytical solutions for parts of the motion. However, we can determine the 
motion numerically by integrating using Euler’s method. 
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𝐯 ti + ∆t ≅ 𝐯 ti + ∆t 𝐚 ti, 𝐫 ti , 𝐯 ti  
 
𝐫 ti + ∆t ≅ 𝐫 ti + ∆t 𝐯 ti + ∆t  

 
The implementation is straight-forward: 
 
may be able to find analytical solutions for parts of the motion. However, we 
can determine the motion numerically by integrating using Euler’s method. 
 



Normalization using NumPy norm 
 
Normalization of a vector or a matrix is a common operation performed in a 
variety of scientific, mathematical, and programming applications. NumPy has 
a dedicated submodule called linalg for functions related to Linear 
Algebra. 
  
import numpy as np 

 

a = np.array([1, 2, 3, 4, 5]) 

 

a_norm = np.linalg.norm(a) 

 

print(a_norm) 
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import matplotlib.pyplot as plt 

import numpy as np 

# Physical variables 

m = 0.2                # mass of the ball in kg 

g = 9.81               # gravitational acceleration of the Earth in m/sˆ2 

alpha = np.radians(75) # Initial angle in radian 

v0 = 30                # Initial velocity in m/s 

y0 = 0                 # Initial position in meters 

diam = 0.02            # diameter of the ball in meters 

rho = 1.225            # air density in kg/m^3 

D = 3.0*rho*diam**2    # drag coefficient 

R = (diam/2)           # ball contact starts - equilibrium length of Spring 

k = 1000.0             # stiffnes of the spring N/m 

time = 10.0            # simulation time 

dt = 0.01              # time step 
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# Numerical initialization 

n = int(np.ceil(time/dt)) 

a = np.zeros((n, 2),float) 

v = np.zeros((n, 2),float) 

r = np.zeros((n, 2),float) 

t = np.zeros((n, 2),float) 

# Set initial values 

r[0,1] = y0                                  # initial position of the ball 

v[0,:] = v0*np.cos(alpha), v0*np.sin(alpha)  # initial velocity in i, j 
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# Integration loop 

for i in range(n-1): 

    if (r[i,1] < R): 

        N = k*(R-r[i,1])*np.array([0,1]) 

    else: 

        N = np.array([0,0]) 

    FD = - D*np.linalg.norm(v[i,:])*v[i,:] 

    G = -m*g*np.array([0,1]) 

    Fnet = N + FD + G 

    a = Fnet/m 

    v[i+1,:] = v[i] + a*dt 

    r[i+1,:] = r[i] + v[i+1]*dt 

    t[i+1] = t[i] + dt 

𝐍 =
−k R − y t  𝐣 when y 𝑡 < 𝑅

    0                        when y 𝑡 ≥ 𝑅
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# Plotting the results, 

fig, ax = plt.subplots() 

ax.plot(r[:,0],r[:,1], 'ro') 

ax.axis([0, 50, 0, 50]), ax.axis('equal') 

ax.set_xlabel('x [m]'), ax.set_ylabel('y [m]'), ax.grid(True) 
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Classworks 
 
Use different values for; 
 mass – m [kg], 
 diameter – diam [m], 
 air density – rho [kg/m3], 
 gravity – g [m/s2]  
   and plot the results. 
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Flock of Birds with the mass and the diameters 

mass 12 8 7 5 5 4 4 2 1 

size Large 
Large 

Medium 
 

Large 
Medium 

 
Medium Medium Medium 

Medium 
Small 

Small 
 

Small 
 



Boundary Value Problems 
 
In mathematics, in the field of differential equations, a boundary value 
problem is a differential equation together with a set of additional 
constraints, called the boundary conditions. A solution to a boundary value 
problem is a solution to the differential equation which also satisfies the 
boundary conditions. 
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Boundary Value Problems - The Shooting Methods 
 
The shooting methods are developed with the goal of transforming the ODE 
boundary value problems to an equivalent initial value problems (IVP), then 
we can solve it using the methods that we learned. In the IVP, we can start at 
the initial value and march forward to get the solution. But this method is 
not working for the boundary value problems, because there are not enough 
initial value conditions to solve the ODE to get a unique solution. Therefore, 
the shooting methods was developed to overcome this difficulty. 
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The Shooting Methods 
 
We are going out to launch a rocket, and let y(t) is the altitude (meters from 
the surface) of the rocket at time t. We know the gravity g = 9.8 m/s2. If we 
want to have the rocket at 50 m off the ground after 5 seconds after 
launching, what should be the velocity at launching? (we ignore the drag of 
the air resistance). The problem is a boundary value problem for a second-
order ODE. The ODE is: 
 

 

with the two boundary conditions are: y(0)=0 and y(5)=50 
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𝑑2𝑦

𝑑𝑡2
= −𝑔 



𝑑2𝑦

𝑑𝑡2
= −𝑔 

boundary conditions are: y(0)=0 and y(5)=50 

y(0)=0 m  

y(5)=50 m  

V0= ?  
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Equation of Motion 



import numpy as np 

import matplotlib.pyplot as plt 

# Physical variables 

g = 9.81        # gravity 

time = 5.0      # Simulation Time 

dt = 0.1        # (h) time step 

# Numerical initialization 

n = int(np.ceil(time/dt)) 

a = np.zeros(n, float) 

v = np.zeros(n, float) 

r = np.zeros(n, float) 

t = np.zeros(n, float) 

# Set initial values 

r[0] = 0     # meters  

v[0] = 25    # initial velocity 

a[:] = -g    # constant acceleretion 

# Integration loop 

for i in range(n-1): 

    v[i+1] = v[i] + a[i]*dt 

    r[i+1] = r[i] + v[i+1]*dt 

    t[i+1] = t[i] + dt 

# Position Plotting 

fig, ax = plt.subplots() 

ax.plot(t, r, '-r') 

ax.set_xlabel('time [s]') 

ax.set_ylabel('r [m]') 

plt.show() 
34 
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v[0] = 30    # initial velocity v[0] = 40    # initial velocity 
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import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import solve_ivp 

 

F = lambda t, s: np.dot(np.array([[0,1],[0,-9.8/s[1]]]), s) 

 

t_span = np.linspace(0, 5, 100) 

y0 = 0 

v0 = 25 

t_eval = np.linspace(0, 5, 100) 

sol = solve_ivp(F, [0, 5], [y0, v0], t_eval = t_eval) 

 

# Position Plotting 

fig, ax = plt.subplots() 

ax.plot(sol.t, sol.y[0], '-r') 

ax.plot(5, 50, 'ro') 

ax.set_xlabel('time [s]') 

ax.set_ylabel('r [m]') 

plt.show()  

scipy.integrate.solve_ivp 

Solve an initial value problem for a system of ODEs. 
This function numerically integrates a system of ordinary differential 
equations given an initial value 
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import numpy as np 

from scipy.integrate import solve_ivp 

from scipy.optimize import fsolve 

 

f = lambda t, s: np.dot(np.array([[0,1],[0,-9.8/s[1]]]),s) 

 

y0 = 0 

v0 = 40 

t_eval = np.linspace(0, 5, 100) 

 

def objective(v0): 

    sol = solve_ivp(f, [0, 5], [y0, v0], t_eval = t_eval) 

    y = sol.y[0] 

    return y[-1] - 50 

 

v0, = fsolve(objective, 10) 

print(v0) 

>>> 34.49999999999999 
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import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import solve_ivp 

 

f = lambda t, s: np.dot(np.array([[0,1],[0,-9.8/s[1]]]), s) 

 

t_span = np.linspace(0, 5, 100) 

y0 = 0 

v0 = 25 

t_eval = np.linspace(0, 5, 100) 

sol = solve_ivp(f, [0, 5], \ 

                [y0, v0], t_eval = t_eval) 

 

# Position Plotting 

fig, ax = plt.subplots() 

ax.plot(sol.t, sol.y[0], '-r') 

ax.plot(5, 50, 'ro') 

ax.set_xlabel('time [s]') 

ax.set_ylabel('r [m]') 

plt.show()  

scipy.integrate.solve_ivp 

Solve an initial value problem for a system of ODEs. 
This function numerically integrates a system of ordinary 
differential equations given an initial value 
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Find a solution to the system of equations: 
x0*cos(x1) = 4  
x1*x0  - x1  = 5 

import numpy as np 

from scipy.optimize import fsolve 

 

def func(x): 

    return [x[0] * np.cos(x[1]) - 4, 

            x[1] * x[0] - x[1] - 5] 

 

# The starting estimate [1, 1] for the roots of func(x) = 0. 

root = fsolve(func, [1, 1]) 

print(root) 

print(np.isclose(func(root), [0.0, 0.0]))  # func(root) should be 0.0 

 

[6.50409711 0.90841421] 

[ True  True] 

scipy.optimize.fsolve 

Find the roots of a function. 
Return the roots of the (non-linear) equations defined by 
func(x) = 0 given a starting estimate. 

x0*cos(x1) - 4 = 0  
x1*x0  - x1  - 5 = 0 

numpy.isclose(a, b, rtol=1.0000000000000001e-05, atol=1e-08, equal_nan=False) 
 
 Returns a boolean array where two arrays are element-wise equal within a tolerance. 
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import numpy as np 

from scipy.integrate import solve_ivp 

from scipy.optimize import fsolve 

 

f = lambda t, s: np.dot(np.array([[0,1],[0,-9.8/s[1]]]),s) 

 

y0 = 0 

v0 = 40 

t_eval = np.linspace(0, 5, 100) 

 

def objective(v0): 

    sol = solve_ivp(f, [0, 5], [y0, v0], t_eval = t_eval) 

    y = sol.y[0] 

    return y[-1] - 50 

 

v0, = fsolve(objective, 10) 

print(v0) 

>>> 34.49999999999999 



41 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import solve_ivp 

 

f = lambda t, s: np.dot(np.array([[0,1],[0,-9.8/s[1]]]), s) 

 

t_span = np.linspace(0, 5, 100) 

y0 = 0 

v0 = 34.49999999999999 

t_eval = np.linspace(0, 5, 100) 

sol = solve_ivp(f, [0, 5], \ 

                [y0, v0], t_eval = t_eval) 

 

# Position Plotting 

fig, ax = plt.subplots() 

ax.plot(sol.t, sol.y[0], '-r') 

ax.plot(5, 50, 'ro') 

ax.set_xlabel('time [s]') 

ax.set_ylabel('r [m]') 

plt.show()  



import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import solve_ivp 

 

f = lambda t, s: np.dot(np.array([[0,1],[0,-9.8/s[1]]]), s) 

 

y0 = 0 

t_eval = np.linspace(0, 5, 100) 

 

def objective(v0): 

    sol = solve_ivp(F, [0, 5], \ 

            [y0, v0], t_eval = t_eval) 

    y = sol.y[0] 

    return y[-1] - 50 

 

for v0_guess in range(1, 100, 10): 

    v0, = fsolve(objective, v0_guess) 

    print(f"Init: {v0_guess}, Result: {v0}") 

Init: 1, Result: 34.499999999999986 

Init: 11, Result: 34.499999999999986 

Init: 21, Result: 34.49999999999999 

Init: 31, Result: 34.49999999999998 

Init: 41, Result: 34.49999999999999 

Init: 51, Result: 34.499999999999986 

Init: 61, Result: 34.499999999999986 

Init: 71, Result: 34.499999999999986 

Init: 81, Result: 34.499999999999986 

Init: 91, Result: 34.499999999999986 
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Note that changing the initial guesses does not change 
the result, which means that this method is stable 
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Non-Linear Equations 
 
A Non-linear equation is a type of equation. The degree in non-linear 
equations is two or more than two. The general equation of a linear equation 
is Ax + By + C = 0 is a linear equation. Other than that are a non-linear 
equation. The general equation is : 
 
Ax2 + By2 = C                 Ax2 + By2 - C = 0 
 
Where A, B, and C are constants, x and y are variables. It forms a curve when 
it is plotted on a graph.  



What is fsolve?  
 
It is a function in a scipy module that returns the roots of non-linear 
equations: 
scipy.optimize.fsolve (func, x0, args=(), fprime=None, 

full_output=0, col_deriv=0, xtol=1.49012e-08, maxfev=0, band=None, 

epsfcn=None, factor=100, diag=None) 

 

Parameters 

    func: It is a function that takes an argument and returns the value. 

    x0: ndarray, It is a starting estimate for the root of fun(x)=0. 

    args: Tuple, it is an extra argument to the function, optional. 

 

Returns 

    x: ndarray, It is a solution. 
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To find the roots of an equation y+2cos(y) starting point   – 0.2?  
 
from sympy import * 

 

init_printing(use_unicode=True) 

 

y = symbols('y') 

plot(y+2*cos(y), (y, -5, 5)) 

nsolve(y+2*cos(y), y, 0.2) 

-1.0298665293226 

 

sympy.solvers.solvers.nsolve(*args, dict=False, **kwargs)[source] 

 

Solve a nonlinear equation system numerically: 
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To find the roots of an equation y+2cos(y) starting point – 0.2?  
 
from math import cos 

import scipy.optimize 

 

def fun(y): 

    x = y + 2*cos(y) 

    return x 

 

x = scipy.optimize.fsolve(fun, 0.2) 

 

print (x) 

 

[-1.02986653] 



To solve an equations for x2+y-4 and x+ y2+3 ? 
First plot the equation  x2+y-4 = 0 then x+ y2+3  
 
from sympy import symbols, nsolve 

from sympy.plotting import plot3d 

 

x, y = symbols('x y') 

 

e1 = x**2+y-4 

e2 = x+y**2+3 

 

plot3d(e1) 

plot3d(e2) 

plot3d(e1, e2) 
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x2+y-4 

x+ y2+3  
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To solve an equations for x2+y-4 and x+ y2+3 ? 
 
from sympy import symbols, nsolve 

from sympy.plotting import plot3d 

 

x, y = symbols('x y') 

 

e1 = x**2+y-4 

e2 = x+y**2+3 

 

nsolve((e1, e2), (x, y), (0.1, 1)) 

 

ValueError: Could not find root within given tolerance. 

(0.953441320283561482907 > 2.16840434497100886801e-19) 

Try another starting point or tweak arguments. 



49 

To solve an equations for x2+y-4 and x+ y2+3 ? 
 
import scipy.optimize 

 

def fun(variables) : 

    (x,y)= variables 

    eqn_1 = x**2+y-4 

    eqn_2 = x+y**2+3 

    return [eqn_1,eqn_2] 

 

result = scipy.optimize.fsolve(fun, (0.1, 1))  

print(result) 

 

[-2.08470396 -0.12127194] 
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To solve an equations for x2+y2+z2-1 and x-2y+3z-0.5 and x+y+z ? 
import numpy as np 

import scipy.optimize as opt 

 

def fun(var): 

    x = var[0] 

    y = var[1] 

    z = var[2] 

    Func= np.empty((3)) 

    Func[0] = x**2 + y**2 + z**2 - 1 

    Func[1] = x - 2*y + 3*z - 0.5 

    Func[2] = x + y + z 

    return Func 

 

a= np.array([2,1,3]) 

b= opt.fsolve(fun, a) 

print(b)  

>>>[-0.78990497  0.21596199  0.57394298] 


