
1

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

Forces in One and Two Dimensions

#5

2

The structured problem solving approach

3

Identifying Forces

First, we need to discern between the object, also called the system, and the
environment, which is everything else. In this case, the system is the ball, and
the environment is everything else, such as the floor, the air surrounding the
ball, and the Earth.

Newton’s Second Law of Motion

The force, F, in Newton’s second law is the net external force acting on the
object. By external we mean that the force has a cause outside the system, as
we insisted when we drew a free-body diagram of an object. By net force we
mean that if there are several forces acting on an object, it is the sum of all
the external forces that causes the acceleration. We call this sum the net
force:

𝑭𝑛𝑒𝑡 = 𝑭𝑗
𝑗

= 𝑚𝒂

𝑭𝑛𝑒𝑡 = 𝑭𝒋
𝒋

= 𝑮 +𝑵+ 𝑭𝑫 + 𝑩 = 𝑚𝒂

4

Free Fall of an Object: An Experiment by Galileo

5

Galileo didn't know calculus (because Newton and
Leibniz hadn't discovered it yet) so he couldn't derive
the equation mathematically. Since we do know
calculus we know that acceleration is the variation of
velocity with time.

𝑭𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝒈.

𝐹 𝑛𝑒𝑡 = 𝐹 𝑗𝑗 = 𝑚𝒂.

𝑭𝑎𝑖𝑟 𝑑𝑟𝑎𝑔 =
1

2
𝜌𝐴𝐶 𝒗 𝟐𝒗

Numerical integration

6

 𝒇 𝒙 𝒅𝒙
𝒃

𝒂

 𝒇 𝒙 𝒅𝒙
𝒃

𝒂

≈ 𝒃 − 𝒂 𝒇
𝒂 + 𝒃

𝟐

 𝒇 𝒙 𝒅𝒙
𝒃

𝒂

≈ 𝒃 − 𝒂
𝒇 𝒂 + 𝒇 𝒃

𝟐

Rectangle rule

Trapezoidal rule

Comparison of Analytical vs Numerical Methods

𝒚𝒕 = 𝒚𝟎 + 𝒗𝟎𝒔𝒊𝒏 𝜶 𝒕 −
𝟏

𝟐
𝒈𝒕𝟐 𝒙𝒕 = 𝒙𝟎 + 𝒗𝟎 cos 𝛼 𝒕

7

Comparison of Analytical vs Numerical Methods

8

Comparison of Analytical vs Numerical Methods

9

The vector field plot for the differential equation

𝒅𝒚

𝒅𝒙
= 𝒚 + 𝒙

𝒙𝟎 = 𝟎. 𝟒

𝒚𝟎 = 𝟎. 𝟖

Initial-Value Problem :
An IVP is a differential
equation together with
a place for a solution to
start.

10

 There are infinitely many integral curves, each corresponding to an integral curve.

11

12

Motion of a Bouncing Ball with Air Resistance

A ball is thrown from a height h above the ground with an initial velocity v0.
Find the velocity and position of the ball as a function of time t. Include the
normal force from the floor while the ball is in contact with the floor. We
describe the position of the ball by 𝐫 (t), measured in a coordinate system
with origin at the floor. The initial position and velocity of the projectile is
𝐫 t0 = h 𝐣 and 𝐯 t0 = vx0 𝐢 + vy0 𝐣.

The motion of the ball is determined by the forces

acting: air resistance, 𝑭𝑫, the normal force 𝑵 from

the floor, and gravity, 𝐆 = −mg𝐣, as illustrated in
the free-body diagram. We use a square law for air

resistance: 𝑭𝑫 = −𝐷𝑣2

13

The normal force from the floor on the ball is represented by a spring force.
This is a strong simplification of the actual deformation process occurring at
the contact between the ball and the floor due to the deformation of both the
ball and the floor.

Since the projectile will be moving fast, we use the square-law force model for
the air resistance. For a spherical object we have that the pre-factor is
𝑫 ≅ 𝟑. 𝟎𝝆𝒅𝟐, where d is the diameter of the sphere and ρ is the density of the
surrounding air. At sea level and at 15 °C air has a density of approximately
1.225 kg/m3. Here, we will assume that the density of the surrounding air does
not change significantly. We will use ρ = 1.225 kg/m3. Let us also assume that
the projectile has a diameter of d = 0.02 m, and that its mass is m = 0.2 kg.

𝐹 𝐷 = −D v2

14

 Values of Air Density As a Function of Altitude

15

From one-dimensional experiments, we expect the force from a spring on the
object attached to the spring to depend on the elongation of the spring and
act in the direction of the spring. A spring is characterized by its equilibrium
length, L0, and its spring constant, k. The force from the spring on the object is:

where L is the length of the spring, and the unit vector 𝒖 𝑟 points from the
spring towards the object.

16

𝑭 = −k L − 𝐿0 𝒖 𝑟

𝐿 = 𝑟 − 𝑅
𝑢 𝑟 =

𝑟 − 𝑅

𝑟 − 𝑅

17

Often, we will place the origin at the attachment point of the spring, so that
R = 0, and the full model simplifies to:

where the length of the spring, L = r = |r|, is the distance from the origin to
the particle. We have named this model the “full model” because it most
closely represents the behavior of a real, physical spring. This force model is
versatile and general and can be widely applied. For example, it can be used
to model the deformation of an elastic body. This model will be our preferred
model for contact forces such as forces due to deformation in two- and three-
dimensional systems.

𝑭 = −k r − 𝐿0
𝒓

𝑟

18

Notice that the force model has a spherical symmetry: When we choose the
origin at the attachment point (R = 0), the force from the spring on the
attached object always acts along a line through the origin, and the
magnitude of the force depends on the distance r to the origin. This means
that force on the particle from the spring in the x-direction is:

That is, the force in the x-direction, depends not only on the x-position, but
also on the y coordinate. If we apply Newton’s second law of motion to such a
system, the acceleration of the object in the x-direction, will depend on the x,
y, and z coordinates of the object: We call such a system coupled.

𝑭𝒙 = −k r − 𝐿0
𝑥

𝑟
= −k 𝑥2 + 𝑦2 − 𝐿0

𝑥

𝑥2 + 𝑦2

The deformed region corresponds roughly to the region of “overlap” between
the ball and the floor. The depth of this region is ∆𝑦 = 𝑅 − 𝑦 𝑡 , where 𝑅 is the
radius of the ball, which corresponds to the compression ∆𝐿 of the spring:

𝐍 = −k R − y t 𝐣

we must also ensure that the normal force only acts
when the ball is in contact with the floor, otherwise the
normal force is zero.

𝐍 =
−k R − y t 𝐣 when y 𝑡 < 𝑅

 0 when y 𝑡 ≥ 𝑅

19

20

Newton’s second law: Newton’s second law is now

 𝐅 𝐣
𝐣

= 𝑮+ 𝑭𝐷 + 𝐍 = G = −mg𝐣 − D v2 + 𝐍 = m𝒂

which gives

𝒂 = −
D

m
v2 − g 𝐣 + 𝐍/m

with the initial conditions: r(t0) = r(0) = r0 and v(t0) = v(0) = v0. While it is
difficult to determine the motion analytically, we may be able to find
analytical solutions for parts of the motion. However, we can determine the
motion numerically by integrating using Euler’s method.

21

22

𝐯 ti + ∆t ≅ 𝐯 ti + ∆t 𝐚 ti, 𝐫 ti , 𝐯 ti

𝐫 ti + ∆t ≅ 𝐫 ti + ∆t 𝐯 ti + ∆t

The implementation is straight-forward:

may be able to find analytical solutions for parts of the motion. However, we
can determine the motion numerically by integrating using Euler’s method.

Normalization using NumPy norm

Normalization of a vector or a matrix is a common operation performed in a
variety of scientific, mathematical, and programming applications. NumPy has
a dedicated submodule called linalg for functions related to Linear
Algebra.

import numpy as np

a = np.array([1, 2, 3, 4, 5])

a_norm = np.linalg.norm(a)

print(a_norm)

23

24

import matplotlib.pyplot as plt

import numpy as np

Physical variables

m = 0.2 # mass of the ball in kg

g = 9.81 # gravitational acceleration of the Earth in m/sˆ2

alpha = np.radians(75) # Initial angle in radian

v0 = 30 # Initial velocity in m/s

y0 = 0 # Initial position in meters

diam = 0.02 # diameter of the ball in meters

rho = 1.225 # air density in kg/m^3

D = 3.0*rho*diam**2 # drag coefficient

R = (diam/2) # ball contact starts - equilibrium length of Spring

k = 1000.0 # stiffnes of the spring N/m

time = 10.0 # simulation time

dt = 0.01 # time step

25

Numerical initialization

n = int(np.ceil(time/dt))

a = np.zeros((n, 2),float)

v = np.zeros((n, 2),float)

r = np.zeros((n, 2),float)

t = np.zeros((n, 2),float)

Set initial values

r[0,1] = y0 # initial position of the ball

v[0,:] = v0*np.cos(alpha), v0*np.sin(alpha) # initial velocity in i, j

26

Integration loop

for i in range(n-1):

 if (r[i,1] < R):

 N = k*(R-r[i,1])*np.array([0,1])

 else:

 N = np.array([0,0])

 FD = - D*np.linalg.norm(v[i,:])*v[i,:]

 G = -m*g*np.array([0,1])

 Fnet = N + FD + G

 a = Fnet/m

 v[i+1,:] = v[i] + a*dt

 r[i+1,:] = r[i] + v[i+1]*dt

 t[i+1] = t[i] + dt

𝐍 =
−k R − y t 𝐣 when y 𝑡 < 𝑅

 0 when y 𝑡 ≥ 𝑅

27

Plotting the results,

fig, ax = plt.subplots()

ax.plot(r[:,0],r[:,1], 'ro')

ax.axis([0, 50, 0, 50]), ax.axis('equal')

ax.set_xlabel('x [m]'), ax.set_ylabel('y [m]'), ax.grid(True)

28

Classworks

Use different values for;
 mass – m [kg],
 diameter – diam [m],
 air density – rho [kg/m3],
 gravity – g [m/s2]
 and plot the results.

29

Flock of Birds with the mass and the diameters

mass 12 8 7 5 5 4 4 2 1

size Large
Large

Medium

Large
Medium

Medium Medium Medium

Medium
Small

Small

Small

Boundary Value Problems

In mathematics, in the field of differential equations, a boundary value
problem is a differential equation together with a set of additional
constraints, called the boundary conditions. A solution to a boundary value
problem is a solution to the differential equation which also satisfies the
boundary conditions.

30

Boundary Value Problems - The Shooting Methods

The shooting methods are developed with the goal of transforming the ODE
boundary value problems to an equivalent initial value problems (IVP), then
we can solve it using the methods that we learned. In the IVP, we can start at
the initial value and march forward to get the solution. But this method is
not working for the boundary value problems, because there are not enough
initial value conditions to solve the ODE to get a unique solution. Therefore,
the shooting methods was developed to overcome this difficulty.

31

The Shooting Methods

We are going out to launch a rocket, and let y(t) is the altitude (meters from
the surface) of the rocket at time t. We know the gravity g = 9.8 m/s2. If we
want to have the rocket at 50 m off the ground after 5 seconds after
launching, what should be the velocity at launching? (we ignore the drag of
the air resistance). The problem is a boundary value problem for a second-
order ODE. The ODE is:

with the two boundary conditions are: y(0)=0 and y(5)=50

32

𝑑2𝑦

𝑑𝑡2
= −𝑔

𝑑2𝑦

𝑑𝑡2
= −𝑔

boundary conditions are: y(0)=0 and y(5)=50

y(0)=0 m

y(5)=50 m

V0= ?

33

Equation of Motion

import numpy as np

import matplotlib.pyplot as plt

Physical variables

g = 9.81 # gravity

time = 5.0 # Simulation Time

dt = 0.1 # (h) time step

Numerical initialization

n = int(np.ceil(time/dt))

a = np.zeros(n, float)

v = np.zeros(n, float)

r = np.zeros(n, float)

t = np.zeros(n, float)

Set initial values

r[0] = 0 # meters

v[0] = 25 # initial velocity

a[:] = -g # constant acceleretion

Integration loop

for i in range(n-1):

 v[i+1] = v[i] + a[i]*dt

 r[i+1] = r[i] + v[i+1]*dt

 t[i+1] = t[i] + dt

Position Plotting

fig, ax = plt.subplots()

ax.plot(t, r, '-r')

ax.set_xlabel('time [s]')

ax.set_ylabel('r [m]')

plt.show()
34

35

v[0] = 30 # initial velocity v[0] = 40 # initial velocity

36

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve_ivp

F = lambda t, s: np.dot(np.array([[0,1],[0,-9.8/s[1]]]), s)

t_span = np.linspace(0, 5, 100)

y0 = 0

v0 = 25

t_eval = np.linspace(0, 5, 100)

sol = solve_ivp(F, [0, 5], [y0, v0], t_eval = t_eval)

Position Plotting

fig, ax = plt.subplots()

ax.plot(sol.t, sol.y[0], '-r')

ax.plot(5, 50, 'ro')

ax.set_xlabel('time [s]')

ax.set_ylabel('r [m]')

plt.show()

scipy.integrate.solve_ivp

Solve an initial value problem for a system of ODEs.
This function numerically integrates a system of ordinary differential
equations given an initial value

37 37

import numpy as np

from scipy.integrate import solve_ivp

from scipy.optimize import fsolve

f = lambda t, s: np.dot(np.array([[0,1],[0,-9.8/s[1]]]),s)

y0 = 0

v0 = 40

t_eval = np.linspace(0, 5, 100)

def objective(v0):

 sol = solve_ivp(f, [0, 5], [y0, v0], t_eval = t_eval)

 y = sol.y[0]

 return y[-1] - 50

v0, = fsolve(objective, 10)

print(v0)

>>> 34.49999999999999

38

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve_ivp

f = lambda t, s: np.dot(np.array([[0,1],[0,-9.8/s[1]]]), s)

t_span = np.linspace(0, 5, 100)

y0 = 0

v0 = 25

t_eval = np.linspace(0, 5, 100)

sol = solve_ivp(f, [0, 5], \

 [y0, v0], t_eval = t_eval)

Position Plotting

fig, ax = plt.subplots()

ax.plot(sol.t, sol.y[0], '-r')

ax.plot(5, 50, 'ro')

ax.set_xlabel('time [s]')

ax.set_ylabel('r [m]')

plt.show()

scipy.integrate.solve_ivp

Solve an initial value problem for a system of ODEs.
This function numerically integrates a system of ordinary
differential equations given an initial value

39

Find a solution to the system of equations:
x0*cos(x1) = 4
x1*x0 - x1 = 5

import numpy as np

from scipy.optimize import fsolve

def func(x):

 return [x[0] * np.cos(x[1]) - 4,

 x[1] * x[0] - x[1] - 5]

The starting estimate [1, 1] for the roots of func(x) = 0.

root = fsolve(func, [1, 1])

print(root)

print(np.isclose(func(root), [0.0, 0.0])) # func(root) should be 0.0

[6.50409711 0.90841421]

[True True]

scipy.optimize.fsolve

Find the roots of a function.
Return the roots of the (non-linear) equations defined by
func(x) = 0 given a starting estimate.

x0*cos(x1) - 4 = 0
x1*x0 - x1 - 5 = 0

numpy.isclose(a, b, rtol=1.0000000000000001e-05, atol=1e-08, equal_nan=False)

 Returns a boolean array where two arrays are element-wise equal within a tolerance.

40

import numpy as np

from scipy.integrate import solve_ivp

from scipy.optimize import fsolve

f = lambda t, s: np.dot(np.array([[0,1],[0,-9.8/s[1]]]),s)

y0 = 0

v0 = 40

t_eval = np.linspace(0, 5, 100)

def objective(v0):

 sol = solve_ivp(f, [0, 5], [y0, v0], t_eval = t_eval)

 y = sol.y[0]

 return y[-1] - 50

v0, = fsolve(objective, 10)

print(v0)

>>> 34.49999999999999

41

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve_ivp

f = lambda t, s: np.dot(np.array([[0,1],[0,-9.8/s[1]]]), s)

t_span = np.linspace(0, 5, 100)

y0 = 0

v0 = 34.49999999999999

t_eval = np.linspace(0, 5, 100)

sol = solve_ivp(f, [0, 5], \

 [y0, v0], t_eval = t_eval)

Position Plotting

fig, ax = plt.subplots()

ax.plot(sol.t, sol.y[0], '-r')

ax.plot(5, 50, 'ro')

ax.set_xlabel('time [s]')

ax.set_ylabel('r [m]')

plt.show()

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve_ivp

f = lambda t, s: np.dot(np.array([[0,1],[0,-9.8/s[1]]]), s)

y0 = 0

t_eval = np.linspace(0, 5, 100)

def objective(v0):

 sol = solve_ivp(F, [0, 5], \

 [y0, v0], t_eval = t_eval)

 y = sol.y[0]

 return y[-1] - 50

for v0_guess in range(1, 100, 10):

 v0, = fsolve(objective, v0_guess)

 print(f"Init: {v0_guess}, Result: {v0}")

Init: 1, Result: 34.499999999999986

Init: 11, Result: 34.499999999999986

Init: 21, Result: 34.49999999999999

Init: 31, Result: 34.49999999999998

Init: 41, Result: 34.49999999999999

Init: 51, Result: 34.499999999999986

Init: 61, Result: 34.499999999999986

Init: 71, Result: 34.499999999999986

Init: 81, Result: 34.499999999999986

Init: 91, Result: 34.499999999999986

42

Note that changing the initial guesses does not change
the result, which means that this method is stable

43

Non-Linear Equations

A Non-linear equation is a type of equation. The degree in non-linear
equations is two or more than two. The general equation of a linear equation
is Ax + By + C = 0 is a linear equation. Other than that are a non-linear
equation. The general equation is :

Ax2 + By2 = C Ax2 + By2 - C = 0

Where A, B, and C are constants, x and y are variables. It forms a curve when
it is plotted on a graph.

What is fsolve?

It is a function in a scipy module that returns the roots of non-linear
equations:
scipy.optimize.fsolve (func, x0, args=(), fprime=None,

full_output=0, col_deriv=0, xtol=1.49012e-08, maxfev=0, band=None,

epsfcn=None, factor=100, diag=None)

Parameters

 func: It is a function that takes an argument and returns the value.

 x0: ndarray, It is a starting estimate for the root of fun(x)=0.

 args: Tuple, it is an extra argument to the function, optional.

Returns

 x: ndarray, It is a solution.

44

45

To find the roots of an equation y+2cos(y) starting point – 0.2?

from sympy import *

init_printing(use_unicode=True)

y = symbols('y')

plot(y+2*cos(y), (y, -5, 5))

nsolve(y+2*cos(y), y, 0.2)

-1.0298665293226

sympy.solvers.solvers.nsolve(*args, dict=False, **kwargs)[source]

Solve a nonlinear equation system numerically:

46

To find the roots of an equation y+2cos(y) starting point – 0.2?

from math import cos

import scipy.optimize

def fun(y):

 x = y + 2*cos(y)

 return x

x = scipy.optimize.fsolve(fun, 0.2)

print (x)

[-1.02986653]

To solve an equations for x2+y-4 and x+ y2+3 ?
First plot the equation x2+y-4 = 0 then x+ y2+3

from sympy import symbols, nsolve

from sympy.plotting import plot3d

x, y = symbols('x y')

e1 = x**2+y-4

e2 = x+y**2+3

plot3d(e1)

plot3d(e2)

plot3d(e1, e2)

47

x2+y-4

x+ y2+3

48

To solve an equations for x2+y-4 and x+ y2+3 ?

from sympy import symbols, nsolve

from sympy.plotting import plot3d

x, y = symbols('x y')

e1 = x**2+y-4

e2 = x+y**2+3

nsolve((e1, e2), (x, y), (0.1, 1))

ValueError: Could not find root within given tolerance.

(0.953441320283561482907 > 2.16840434497100886801e-19)

Try another starting point or tweak arguments.

49

To solve an equations for x2+y-4 and x+ y2+3 ?

import scipy.optimize

def fun(variables) :

 (x,y)= variables

 eqn_1 = x**2+y-4

 eqn_2 = x+y**2+3

 return [eqn_1,eqn_2]

result = scipy.optimize.fsolve(fun, (0.1, 1))

print(result)

[-2.08470396 -0.12127194]

50

To solve an equations for x2+y2+z2-1 and x-2y+3z-0.5 and x+y+z ?
import numpy as np

import scipy.optimize as opt

def fun(var):

 x = var[0]

 y = var[1]

 z = var[2]

 Func= np.empty((3))

 Func[0] = x**2 + y**2 + z**2 - 1

 Func[1] = x - 2*y + 3*z - 0.5

 Func[2] = x + y + z

 return Func

a= np.array([2,1,3])

b= opt.fsolve(fun, a)

print(b)

>>>[-0.78990497 0.21596199 0.57394298]

