
Collisions

Video Games Technologies
11498: MSc in Computer Science and Engineering
11156: MSc in Game Design and Development

Chap. 8 — Collisions

Chapter 8: Collisions

Outline
…:

– Introduction

– Touching and perception

– Collision detection

– Broad phase

– Narrow phase

– Point & mesh relationship

Self-Introduction
Collision Detection

Let’s Play a Game!
Collision Detection

Backtracking

Fangkai Yang Collision Detection in Computer Games

Chapter 8: Collisions

Collision detection: introduction

Definition:

– Collision detection concerns the detection of collisions between objects in the
virtual environment.

Goal:

– To stop objects moving through each other and the environment (see below).

Why:

– Collisions are everywhere in computer games: between characters and
characters, between characters and terrain, etc.

Remember:
- Physical laws do not exist in the virtual world by default.
-You must model and program them on computer.

Chapter 8: Collisions

Modeling perception in games:

Examples:

– You approach a bot silently, from the rear but it immediately turns around and frags
you with a chain gun. Game bots do not really perceive!

– You run and hide. It is impossible for an enemy to know where you are, but it
nevertheless proceeds directly to your location.

– You notice a guard in a guard tower. It sweeps the ground with a search light. You
follow a path that avoids the search light, but the guard still sees you.

Why? It helps to create the illusion of intelligence.

Senses in games? Sound, Touch, Sight, Smell, Taste.

Chapter 8: Collisions

Touch & collisions

Goal:

– Detecting when two 3D objects
collide.

Examples:

– The player collides with the
walls.

– The player walks up stairs.

– A projectile hits a game entity.

– A projectile hits a wall.

– The player collides with a game
entity.

– The player goes somewhere they
are not supposed to.

Chapter 8: Collisions

Two major issues in collision detection

Large scale or object scale
collisions:

– If you have n objects, object #1
may collide with (n-1) objects,
object #2 may collide with the
remaining (n-2) objects, and so
forth. Thus, we end up having n!
collisions potentially.

Narrow scale or polygon scale
collisions :

– True collision detection require
computing the intersection
between arbitrarily complex
polygons.

Chapter 8: Collisions

Collision detection between two objects: 2 phases

Broad phase:

– Collision detection takes place
with proxies (bounding volumes).

Narrow phase:

– Collision detection takes place
using polygon-polygon
intersection.

ht
tp

://
w

w
w

.o
pe

ng
l-t

ut
or

ia
l.o

rg
/m

is
ce

lla
ne

ou
s/

cl
ic

ki
ng

-o
n-

ob
je

ct
s/

pi
ck

in
g-

w
ith

-a
-p

hy
si

cs
-li

br
ar

y/

Chapter 8: Collisions

Collision detection algorithms: categories

Broad Phase:

– Point & bounding box

– Point & bounding sphere

– Bounding box & bounding box

– Bounding sphere & bounding sphere

– Box & sphere

– Ray & sphere

– Ray & bounding box

Narrow phase:
– Point & plane (triangle)

– Ray & plane (triangle)

– Plane & plane (triangle & triangle)

-We use bounding boxes/spheres to determine which meshes are colliding (broad phase)

-At some point we need to compare each triangle of each mesh whose bounding box/sphere
collides to check for a true collision (narrow phase)

Chapter 8: Collisions

Broad Phase

Chapter 8: Collisions

Point & bounding sphere

𝑃
𝑄

𝑅𝑟

𝐶

𝑃 − 𝐶 < 𝑟	 ⟹ 𝑃
𝑄 − 𝐶 = 𝑟	 ⟹ 𝑄
𝑅 − 𝐶 > 𝑟	 ⟹ 𝑅

is inside sphere
is on sphere
is outside sphere

Euclidean distance: ,

ht
tp

s:
//d

ev
el

op
er

.m
oz

illa
.o

rg
/e

n-
U

S/
do

cs
/G

am
es

/T
ec

hn
iq

ue
s/

3D
_c

ol
lis

io
n_

de
te

ct
io

n

Chapter 8: Collisions

Point & AABB

(𝑥. ≥ 𝑥012) ∧ (𝑥. ≤ 𝑥056)	 ∧ (𝑦. ≥ 𝑦012) ∧ (𝑦. ≤ 𝑦056) ⟹ 𝑃
(𝑥8 ≥ 𝑥012) ∧ (𝑥8 ≤ 𝑥056)	 ∧ (𝑦8 ≥ 𝑦012) ∧ (𝑦8 ≤ 𝑦056) ⟹ 𝑄
(𝑥9 ≥ 𝑥012) ∧ (𝑥9 ≥ 𝑥056)	 ∧ (𝑦9 ≥ 𝑦012) ∧ (𝑦. ≤ 𝑦056) ⟹ 𝑅	

is inside AABB
is on AABB
is outside AABB

Comparison operators:	≥ and ≤
Boolean operators: ∧	and ∨

𝑄
𝑅

(𝑥012, 𝑦012)

(𝑥056, 𝑦056)

𝑃

Chapter 8: Collisions

Box-box intersection

Algorithm 1 (box-box intersection):

1) Determine the center of the 2nd box (blue);
2) Add the length of the 2nd box (blue)to the length of

the 1st box (red);
3) Add the height of the 2nd box (blue)to the height of

the 1st box (red);
4) Check whether the center of the 2nd box (blue) is

inside the 1st augmented box (point-box membership)

Algorithm 2 (point-box membership):
IN: point P
IN: left-bottom corner L
IN: right-top corner R
OUT: boolean value (either true or false)
1) if
2) (
3) (p.x > L.x) and (p.x < R.x)
4) and
5) (p.y > L.y) and (p.y < R.y)
6))
7) return TRUE;
8) else
9) return FALSE;

Chapter 8: Collisions

Narrow Phase

Chapter 8: Collisions

Geometry refresher

Point:

– 𝑃	 = 	 (𝑥, 𝑦, 𝑧)
2D Line:

– Start and end points: 𝑃 and 𝑄
– Slope and intercept: 𝑦 = 	𝑚𝑥	 + 	𝑏
– Cartesian: 𝑎𝑥 + 𝑏𝑦 + 𝑑 = 0

Ray:

– point 𝑂 and vector 𝑣⃗
– 𝑃(𝑡) = 𝑂 + 𝑡𝑣⃗, with 𝑡[0,∞[

Plane:

– Point 𝑃 and normal vector 𝑛
– Cartesian: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑦 + 𝑑 = 0
– 𝑛 = (𝑎, 𝑏, 𝑐)

Chapter 8: Collisions

Triangle nomal

Normal vector:

– 𝑛 = (𝐵 − 𝐴)×(𝐶 − 𝐴)
– Length of n is twice the area of the triangle (𝐴𝐵 sin 𝜃)

𝐴
𝐵

𝐶

𝐵 − 𝐴

𝐶 − 𝐴

𝑛

Chapter 8: Collisions

Segment-triangle intersection

Does the segment 𝑃𝑄 intersect the triangle 𝐴𝐵𝐶?

– 𝑛 = (𝐵 − 𝐴)×(𝐶 − 𝐴)
– First, compute signed distances of 𝑃 and 𝑄 to the plane:

𝑑(𝑃, 𝑋) = 𝑃 − 𝐴 , 𝑛 and 𝑑(𝑄, 𝑋) = 𝑄 − 𝐴 , 𝑛
– If both are above or both are below the plane, return NULL.

– Otherwise, return the point 𝑋 = 8.V .,W X..V(8,W)
V .,W XV(8,W)Y

𝐴
𝐵

𝐶

𝐵 − 𝐴

𝐶 − 𝐴

𝑛

𝑃

𝑄

See the proof at:
http://www.di.ubi.pt/~agomes/tjv/proof.pdf

Checking point inside triangle:
http://blogs.msdn.com/b/rezanour/archive/2011/08/07/barycentric-coordinates-and-point-in-triangle-tests.aspx

ht
tp

://
en

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/P

la
ne

_(
ge

om
et

ry
)

ht
tp

://
en

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/L

in
e-

pl
an

e_
in

te
rs

ec
tio

n

Chapter 8: Collisions

Triangle-triangle intersection

Input: triangles ABC and A’B’C’

– Step 1: compute the plane equations for ABC:

𝑛 = (𝐵 − 𝐴)×(𝐶 − 𝐴) and 𝑑 = −𝑛 , 𝐴
– Step 2: compute signed distances from vertices of A’B’C’ to the plane of ABC:

𝑑Z = 𝑛 , 𝐴[+ 𝑑 𝑑\ = 𝑛 , 𝐵[+ 𝑑 𝑑] = 𝑛 , 𝐶[+ 𝑑
§ Return NULL if all 𝑑1 < 0 or all 𝑑1 > 0

– Step 3: repeat Step 2 for vertices of ABC against the plane of A’B’C’

– Step 4: determine intersection points X and Y

– Step 5: Determine if segment XY is inside triangle or intersects triangle edge.

Chapter 8: Collisions

Summary:

…:

– Introduction

– Touching and perception

– Collision detection

– Broad phase

– Narrow phase

– Point & mesh relationship

