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Linear Momentum  
 
The linear momentum, 𝑝 , of an object is simply the mass of the object, m, 
multiplied by its velocity, 𝑣 . 

𝑝 = 𝑚𝑣  

𝐹 = 𝑚𝑎 = 𝑚
𝑑𝑣 

𝑑𝑡
=
𝑑𝑝 

𝑑𝑡
 

 𝐹 𝑑𝑡
𝑡1

𝑡0

= 𝑝 1 − 𝑝 0 

In the equation, 𝑝 0 is the initial value of linear momentum and 𝑝 1 is the 
momentum at the end of the time interval being considered. Equation 
indicates that a change in momentum of an object is equal to the integral of 
the net external force on the object as a function of time. The integration of 
the force with respect to time is known as the linear impulse of force. 

𝐹 =  𝐹 𝑑𝑡 

linear impulse of force 



𝐹 = 𝑝 1 − 𝑝 0 = 𝑚 𝑣 1 − 𝑣 0  
 
The force due to collision is known as an impulsive force. The magnitude of 
the impulsive force is usually so much larger than any other forces (gravity, 
drag, etc.) acting on the object during the collision, that all other forces can be 
ignored during the collision.  
 
An important feature of impulsive force and linear impulse of force is that 
they act normal to the point of impact. As we shall see in a little while, the 
change in velocity due to a collision occurs normal to the point of impact as 
well. Newton’s third law applies to linear impulses. If one object exerts a 
linear impulse on another, the second object will exert an equal and opposite 
impulse on the first object. 
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An analysis of the collision between two objects depends on the momentum 
of the objects, but collisions can also be analyzed in terms of energy. Energy 
and momentum are always conserved in a collision, no matter what happens. 
Momentum is easy to deal with because there is only “one form” of 
momentum, but you do have to remember that momentum is a vector. 
Energy is tricky because it has many forms, the most troublesome being heat, 
but also sound and light. If kinetic energy is conserved in a collision, it is called 
an elastic collision. In an elastic collision, the total kinetic energy is conserved 
because the objects in question “bounce perfectly” like an ideal elastic. An 
inelastic collision is one where some of the of the total kinetic energy is 
transformed into other forms of energy, such as sound and heat. Generally 
speaking, the harder the objects are that collide, the closer the collision will 
be to being elastic.  
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The collision of two marbles, for instance, will be a nearly elastic collision. 
On the other hand, the collision of a beanbag on the floor will be an 
inelastic collision. The coefficient, e, is known as the coefficient of 
restitution and has a value between 0 and 1. If e = 1, the pre- and post-
collision relative velocities are equal, meaning that the collision is elastic. 
On the other hand, if e = 0, the post-collision relative velocity is zero 
(meaning that the objects are stuck together) and the collision is 
completely inelastic. 
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Figure below shows a general two-body collision in the x-y plane. The objects 
have some initial velocities 𝑣 1 and 𝑣 2 and masses 𝑚1 and 𝑚2. 
 
 
 
 
 
 
 
When they collide, the two objects will experience an impulse of force due to 
the collision. The magnitude of the impulse will be equal for both objects but 
will act in opposing directions. The geometric line along which the impulse 
acts is called the line of action for the collision.  

𝑚2 𝑚1 
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𝑚2 𝑚1 

The line of action of the collision is a line 
drawn normal, or perpendicular, to the 
tangential plane at the point of collision. 
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The linear impulse of force caused by the collision changes the velocity of the 
objects. Since the line of action for the collision is parallel to the x-axis, the 
linear impulse in the y direction is equal to zero. 
 

𝐹𝑥 = 𝑚 𝑣 ′1𝑥 − 𝑣 1𝑥  

0 = 𝑚 𝑣 ′1𝑦 − 𝑣 1𝑦  

 
In Equation, the pre-collision velocity components of object 1 are 𝑣 1𝑥 and 𝑣 1𝑦, 

and the post-collision velocity components are 𝑣 ′1𝑥 and 𝑣 ′1𝑦. The collision 

produces an equal-but opposite linear impulse applied to object 2. 
 

−𝐹𝑥 = 𝑚 𝑣 ′2𝑥 − 𝑣 2𝑥  

0 = 𝑚 𝑣 ′2𝑦 − 𝑣 2𝑦  

𝑚2 𝑚1 
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𝑚 𝑣 ′1𝑥 − 𝑣 1𝑥 +𝑚 𝑣 ′1𝑥 − 𝑣 1𝑥 = 0 
𝑣 ′1𝑦 = 𝑣 1𝑦 

𝑣 ′2𝑦 = 𝑣 2𝑦 

If you look at Equation, you will see that momentum is conserved in both the 
x- and y-directions, but only the velocities in the x-direction change as a result 
of the collision. Looking more closely at the velocity expressions in Equation, 
there is still a problem. There are four unknowns, 𝑣 ′1𝑥, 𝑣 ′1𝑦, 𝑣 ′2𝑥, 𝑣 ′2𝑦  but 

only three equations. In order to solve for the post-collision velocities, an 
additional equation is introduced that relates the relative pre- and post-
collision velocities of the two spheres along the line of action of the collision. 

𝑒 𝑣 1𝑥 − 𝑣 2𝑥 = − 𝑣 ′1𝑥 − 𝑣 ′2𝑥  
The coefficient, e, is known as the coefficient of restitution and has a value 
between 0 and 1. 

three equations 



Combining Equations, expressions can be obtained for the post-collision 
velocities along the line of action. 
 

𝑣 ′1𝑥 =
𝑚1 − 𝑒𝑚2
𝑚1 +𝑚2

𝑣 1𝑥 +
1 + 𝑒 𝑚2
𝑚1 +𝑚2

𝑣 2𝑥 

𝑣 ′2𝑥 =
1 + 𝑒 𝑚1
𝑚1 +𝑚2

𝑣 1𝑥 +
𝑚2 − 𝑒𝑚1
𝑚1 +𝑚2

𝑣 2𝑥 

 
We can see from Equation that the post-collision velocities along the line of 
action of the collision are a function of the pre-collision velocities along the 
line of action, the masses of the two objects, and the coefficient of 
restitution. The velocities in the y-direction, perpendicular to the line of 
action of the collision, are unaffected by the collision. 
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Equations in matrix form. 
 

𝑣 ′1𝑥
𝑣 ′2𝑥

=

𝑚1 − 𝑒𝑚2
𝑚1 +𝑚2

1 + 𝑒 𝑚2
𝑚1 +𝑚2

1 + 𝑒 𝑚1
𝑚1 +𝑚2

𝑚2 − 𝑒𝑚1
𝑚1 +𝑚2

𝑣 1𝑥
𝑣 2𝑥

 

 

𝑣 ′1𝑥
𝑣 ′2𝑥

=
1

𝑚1 +𝑚2

𝑚1 − 𝑒𝑚2 1 + 𝑒 𝑚2
1 + 𝑒 𝑚1 𝑚2 − 𝑒𝑚1

𝑣 1𝑥
𝑣 2𝑥
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A General Two-Dimensional Collision 
 
This problem, like all linear collision problems, can be broken down into four 
steps. 
 
1. Determine the line-of-action vector for the collision. 
2. Use a rotation matrix to determine the velocity components along the 

line of action and normal to it. 
3. Compute the post-collision velocities. 
4. Rotate the post-collision velocities back to the original Cartesian 

coordinate system. 
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A General Two-Dimensional Collision 
Use a rotation matrix to determine the velocity components along the line of action and normal to it. 
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Translation 



import matplotlib.pyplot as plt 

import numpy as np 

 

X, Y = np.mgrid[0:1:5j, 0:1:5j] 

x, y = X.ravel(), Y.ravel() 

 

def trans_translate(x, y, tx, ty): 

    T = [[1, 0, tx], 

         [0, 1, ty], 

         [0, 0, 1 ]] 

    T = np.array(T) 

    P = np.array([x, y, [1]*x.size]) 

    return np.dot(T, P) 

 

fig, ax = plt.subplots(1, 4) 

T_ = [[0, 0], [2.3, 0], [0, 1.7], [2, 2]] 

 

for i in range(4): 

    tx, ty = T_[i] 

    x_, y_, _ = trans_translate(x, y, tx, ty) 

    ax[i].scatter(x_, y_) 

    ax[i].set_title(r'$t_x={0:.2f}$ , $t_y={1:.2f}$'.format(tx, ty)) 

    ax[i].set_xlim([-0.5, 4]) 

    ax[i].set_ylim([-0.5, 4]) 

    ax[i].grid(alpha=0.5) 

    ax[i].axhline(y=0, color='k') 

    ax[i].axvline(x=0, color='k') 

 

plt.show() 
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Translation 
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Scaling 



def trans_scale(x, y, px, py, sx, sy): 

    T = [[sx, 0 , px*(1 - sx)], 

         [0 , sy, py*(1 - sy)], 

         [0 , 0 , 1          ]] 

    T = np.array(T) 

    P = np.array([x, y, [1]*x.size]) 

    return np.dot(T, P) 

 

fig, ax = plt.subplots(1, 4) 

 

S_ = [[1, 1], [1.8, 1], [1, 1.7], [2, 2]] 

P_ = [[0, 0], [0, 0], [0.45, 0.45], [1.1, 1.1]] 

 

for i in range(4): 

    sx, sy = S_[i]; px, py = P_[i] 

    x_, y_, _ = trans_scale(x, y, px, py, sx, sy) 

    ax[i].scatter(x_, y_) 

    ax[i].scatter(px, py) 

    ax[i].set_title(r'$p_x={0:.2f}$ , $p_y={1:.2f}$'.format(px, py) + '\n' 

                    r'$s_x={0:.2f}$ , $s_y={1:.2f}$'.format(sx, sy)) 

     

    ax[i].set_xlim([-2, 2]) 

    ax[i].set_ylim([-2, 2]) 

    ax[i].grid(alpha=0.5) 

    ax[i].axhline(y=0, color='k') 

    ax[i].axvline(x=0, color='k') 

 

plt.show() 
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Scaling 
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Scaling 
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Rotation 



def trans_rotate(x, y, px, py, beta): 

    beta = np.deg2rad(beta) 

    T = [[np.cos(beta), -np.sin(beta), px*(1 - np.cos(beta)) + py*np.sin(beta)], 

         [np.sin(beta),  np.cos(beta), py*(1 - np.cos(beta)) - px*np.sin(beta)], 

         [0           ,  0           , 1                                      ]] 

    T = np.array(T) 

    P = np.array([x, y, [1]*x.size]) 

    return np.dot(T, P) 

 

fig, ax = plt.subplots(1, 4) 

 

R_ = [0, 225, 40, -10] 

P_ = [[0, 0], [0, 0], [0.5, -0.5], [1.1, 1.1]] 

 

for i in range(4): 

    beta = R_[i]; px, py = P_[i] 

    x_, y_, _ = trans_rotate(x, y, px, py, beta) 

    ax[i].scatter(x_, y_) 

    ax[i].scatter(px, py) 

    ax[i].set_title(r'$\beta={0}°$ , $p_x={1:.2f}$ , $p_y={2:.2f}$'.format(beta, px, py)) 

     

    ax[i].set_xlim([-2, 2]) 

    ax[i].set_ylim([-2, 2]) 

    ax[i].grid(alpha=0.5) 

    ax[i].axhline(y=0, color='k') 

    ax[i].axvline(x=0, color='k') 

 

plt.show() 
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Rotation 
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Rotation 
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Shearing 
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def trans_shear(x, y, px, py, lambdax, lambday): 

    T = [[1      , lambdax, -lambdax*px], 

         [lambday, 1      , -lambday*py], 

         [0      , 0      ,  1         ]] 

    T = np.array(T) 

    P = np.array([x, y, [1]*x.size]) 

    return np.dot(T, P) 

 

fig, ax = plt.subplots(1, 4) 

 

L_ = [[0, 0], [2, 0], [0, -2], [-2, -2]] 

P_ = [[0, 0], [0, 0], [0, 1.5], [1.1, 1.1]] 

 

for i in range(4): 

    lambdax, lambday = L_[i]; px, py = P_[i] 

    x_, y_, _ = trans_shear(x, y, px, py, lambdax, lambday) 

    ax[i].scatter(x_, y_) 

    ax[i].scatter(px, py) 

    ax[i].set_title(r'$p_x={0:.2f}$ , $p_y={1:.2f}$'.format(px, py) + '\n' 

                    r'$\lambda_x={0:.2f}$ , $\lambda_y={1:.2f}$'.format(lambdax, lambday)) 

 

    ax[i].set_xlim([-3, 3]) 

    ax[i].set_ylim([-3, 3]) 

    ax[i].grid(alpha=0.5) 

    ax[i].axhline(y=0, color='k') 

    ax[i].axvline(x=0, color='k') 

 

plt.show() 
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Shearing 



Shearing 
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𝑣𝑝 = 𝑣𝑥 cos 𝜃 + 𝑣𝑦 sin 𝜃 

Determine the line-of-action 
vector for the collision 

Normal  

𝑣𝑛 = −𝑣𝑥 sin 𝜃 + 𝑣𝑦 𝑐𝑜𝑠 𝜃 
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𝑅 𝜃 =
𝑥′
𝑦′
=
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑥
𝑦  

The direction of vector rotation is 
counterclockwise if θ is positive (e.g. 90°), 
and clockwise if θ is negative (e.g. -90°). 

𝑅 −𝜃 =
𝑥′
𝑦′
=

cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

𝑥
𝑦  
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𝑣𝑝
𝑣𝑛

=
cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

𝑣𝑥
𝑣𝑦
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Two spheres collide. Sphere 1 has a mass of 10 kg and is traveling horizontally 
with a velocity v1x = 8 m/s. Sphere 2 is stationary and has a mass of 5 kg. The 
line of action for the collision is at an angle of 30 degrees with respect to the 
x-axis. The coefficient of restitution between the two spheres is 0.9. What 
will be the post-collision velocities of the two spheres? 
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𝑣𝑝
𝑣𝑛

=
cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

𝑣𝑥
𝑣𝑦

 

𝑣1𝑝
𝑣1𝑛

=
cos 30 sin 30
−sin 30 cos 30

𝑣1𝑥
𝑣1𝑦

 

𝑣1𝑝
𝑣1𝑛

=
cos 30 sin 30
−sin 30 cos 30

8
0

 

𝑣1𝑝=8 cos 30 + 0 sin 30 = 6.93 𝑚𝑠−1 

𝑣1𝑛=-8 sin 30 + 0 cos 30 = −4.00 𝑚𝑠−1 

The velocity components parallel and 
normal to the line of action can be 
computed. Sphere 2 is initially not moving, 
so its velocity components will be zero. 
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Compute the post-collision velocities for the two spheres 
 

𝑣 ′1𝑥
𝑣 ′2𝑥

=
1

𝑚1 +𝑚2

𝑚1 − 𝑒𝑚2 1 + 𝑒 𝑚2
1 + 𝑒 𝑚1 𝑚2 − 𝑒𝑚1

𝑣 1𝑝
𝑣 2𝑝

 

 

𝑣 ′1𝑥
𝑣 ′2𝑥

=
1

10 + 5

10 − 0.9x5 1 + 0.9 5
1 + 0.9 10 5 − 0.9x10

6.93
0

 

 

𝑣 ′1𝑥 =
10 − 4.5

15
6.93 = 2.54 𝑚𝑠−1 

 

𝑣 ′2𝑥 =
19

15
6.93 = 8.78 𝑚𝑠−1 
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The final step in the process is to rotate the post-collision velocities back to 
the standard Cartesian coordinate system. 
 
 
 
 
 
 
 
 
After the collision, both spheres are moving in the positive x-direction, but 
sphere 1 has slowed down because part of its momentum was transferred to 
sphere 2 during the collision. Sphere 2 is traveling in the positive y-direction 
and sphere 1 is traveling in the negative y-direction. 

𝑣′′1𝑥
𝑣′′1𝑦

=
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑣′1𝑥
𝑣′1𝑛

 
𝑣′′2𝑥
𝑣′′2𝑦

=
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑣′2𝑥
𝑣′2𝑛

 

𝑣′′1𝑥
𝑣′′1𝑦

=
cos 30 − sin 30
sin 30 cos 30

2.54
−4

 
𝑣′′2𝑥
𝑣′′2𝑦

=
cos 30 − sin 30
sin 30 cos 30

8.78
0

 

𝑣′′1𝑥=2.45 cos 30 + 4 sin 30 = 4.1 𝑚𝑠−1 

𝑣′′1𝑦=2.45 sin 30 − 4 cos 30 = −2.24 𝑚𝑠−1 

𝑣′′2𝑥=8.78 cos 30 = 7.60 𝑚𝑠−1 

𝑣′′2𝑦=8.78 sin 30 = 4.39 𝑚𝑠−1 
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import numpy as np 

 

theta = np.radians(30)   # Line of action 

m1 = 10        # Sphere 1 has a mass of 10 kg  

m2 = 5        # Sphere 2 has a mass of 5 kg  

e = 0.9        # the coefficient of restitution  

v1pre = np.matrix([[8], # Sphere 1 moving horizontally with a velocity 8 m/s. 

                   [0]]) 

v2pre = np.matrix([[0], # Sphere 2 is stationary  

                   [0]]) 

 

R1 = np.matrix([[np.cos(theta), np.sin(theta)], 

                [-np.sin(theta), np.cos(theta)]]) 

R2 = np.matrix([[np.cos(theta), -np.sin(theta)], 

                [np.sin(theta), np.cos(theta)]]) 

 

v1p, v1n = R1*v1pre 

v2p, v2n = R1*v2pre 
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# Compute the post-collision velocities for the two spheres 

v1pt, v2pt = np.multiply((1.0/(m1+m2)),\ 

np.matrix([[(m1-e*m2),m2*(1+e)],[m1*(1+e),(m2-e*m1)]])*np.vstack((v1p, v2p))) 

 

# The final step in the process is to rotate the post-collision velocities 

# back to the standard Cartesian coordinate system 

 

v1post = R2*np.vstack((v1pt, v1n)) 

v2post = R2*np.vstack((v2pt, v2n)) 
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Circle-Circle Collision Detection 
 
Circle1 with center (x1,y1) and radius r1; 
Circle2 with center (x2,y2) and radius r2. 
 
The most basic way of determining whether or not two circles have collided is 
1. Find the distance between the centers of the two circles using the 

distance formula. 
2. if the edges of the circles touch, the distance between the centers is r1+r2 
 any greater distance and the circles don't touch or collide. 
 any less and then do collide 
 
So you can detect collision if  (x2-x1)2 + (y1-y2)2 <= (r1+r2)2 
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Calculate the point of collision 
 
Circle1 with center (x1,y1) and radius r1; 
Circle2 with center (x2,y2) and radius r2. 

𝑥2 − 𝑥1
2 + 𝑦2 − 𝑦1

2 = 𝑟1 + 𝑟2 
𝑥1, 𝑦1  

𝑥2, 𝑦2  
𝑥1, 𝑦2  

𝜃 

𝑦2 − 𝑦1  

𝑥2 − 𝑥1  

sin 𝜃 =
𝑦2 − 𝑦1
𝑟1 + 𝑟2

 

cos 𝜃 =
𝑥2 − 𝑥1
𝑟1 + 𝑟2

 

tan 𝜃 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

 
𝜃 = atan

𝑦2 − 𝑦1
𝑥2 − 𝑥1
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Calculate the point of collision 𝑥𝑐 , 𝑦𝑐  

𝑥2, 𝑦2  

𝜃 

cos 𝜃 =
𝑎

𝑟2
 

𝑎 
𝑏 

𝑎 = 𝑟2 cos 𝜃 

𝑎 = 𝑟2
𝑥2 − 𝑥1
𝑟1 + 𝑟2

 

sin 𝜃 =
𝑏

𝑟2
 

𝑏 = 𝑟2 sin 𝜃 

𝑏 = 𝑟2
𝑦2 − 𝑦1
𝑟1 + 𝑟2

 

𝑥𝑐 , 𝑦𝑐  

𝑥𝑐 , 𝑦𝑐 = 𝑥2 + 𝑎 , 𝑦2 + 𝑏  
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𝒙𝟏, 𝒚𝟏  

𝒙𝟐, 𝒚𝟐  
𝑎 = 𝑟2

𝑥2 − 𝑥1
𝑟1 + 𝑟2

 𝑏 = 𝑟2
𝑦2 − 𝑦1
𝑟1 + 𝑟2

 

𝑥𝑐 , 𝑦𝑐 = 𝑥2 + 𝑎 , 𝑦2 + 𝑏  

𝜃 = atan
𝑦2 − 𝑦1
𝑥2 − 𝑥1

 



Intersection Testing versus Ray Casting  

45 



Tim Schroeders's article "Collision 
Detection Using Ray Casting", inthe 
August 2001 issue of Game Developer 
magazine focused on detecting 
collisions between spheres and 
polygons.  
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This is useful not only for games like pool where accurate 
collision of spheres is key, but also in games where characters 
and other mobile objects are bounded by spheres, these can be 
used to quickly determine if they have bumped into each other. 
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Collision Detection Using Ray Casting 

v 
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Ray R, defined by: 
point p0 
normal d 

Sphere S, defined by: 
center point c 
radius r 

R 

S 

Collision Detection Using Ray Casting 
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An intersection happens at time t, along ray R. 

R 

To find t, we need to first find a and f. The formula for t = a- f 

Collision Detection Using Ray Casting 
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In order to find a and f, we need two more vectors, vector e and vector b. 
Vector e is the vector from p0 to c. Vector b is one side of the right triangle formed 
by vectors r, f and b.  

Triangle f, b, r 
Triangle a, e, b 

Vector e is a vector going to p0 to c 
Vector a is vector e projected onto vector d 
Vector b is given by the Pythagorean theorem 

Collision Detection Using Ray Casting 
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p0 = np.array([5, 4]) 

v = np.array([3, 0]) 

r = 3  

c = np.array([12, 2])  

Collision Detection Using Ray Casting 
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import numpy as np 

 

p0 = np.array([5, 4])   # Ray Position; 

v = np.array([3, 0])    # we will use velocity : d ray 

normalized_v = v / np.sqrt(np.sum(v**2)) 

c = np.array([12, 2])   # Sphere Centre Position 

r = 3                   # Sphere Radius 

 

e = c - p0 

esq = np.square(np.linalg.norm(e)) 

a = np.dot(e, normalized_v) 

b = np.sqrt(esq - (a**2)) 

f = np.sqrt((r**2) - (b**2)) 

 

# No collision 

if (r**2 - esq + a**2) < 0.0 : 

    print(-1)    # -1 is invalid 

    # Ray is inside 

elif esq < r**2: 

    print(a + f) # Just reverse direction 

else: # Normal intersection 

    print( a - f) 4.76393202250021 

Collision Detection Using Ray Casting 
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? 

Triangle f, b, r 
Triangle a, e, b 

Vector e is a vector going to p0 to c 
Vector a is vector e projected onto vector d 
Vector b is given by the Pythagorean theorem 

p0 = np.array([5, 4]) 

v = np.array([3, 0]) 

r1 = 3  

c = np.array([12, 2])  

r2 = 1  

r1 + r2 = 4  
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import matplotlib.pyplot as plt 

import numpy as np 

 

## Ray 

O = np.array([0, 0])         # Origin point 

e_ = np.array([0.5, 0.5])    # Ray direction 

e_ /= np.linalg.norm(e_)     # Unit vector of e_ 
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# Sphere 

Cs = np.array([2, 0])        # Center of sphere 

r = 1.5                      # Radius of sphere 



Ray-Object Intersections:  Primary rays   
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# Sphere 

OC_ = Cs-O  # Oriented segment from origin to center of the sphere 



Ray-Object Intersections:  Primary rays   
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# find the parameter t which will parametrize the ray segment and 

# find the intersections from the origin 

 

t = np.dot(OC_, e_)   # Vector projection of OC_ on e_ 
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Pe = O + e_*t                 # Point on vector e_ projected from OC_ 

d = np.linalg.norm(Pe - Cs)   # Distance from the point Pe and the center      

     # of the sphere 



Ray-Object Intersections:  Primary rays 
 
If d>r then there is no intersections 
If d=r then there is 1 intersection (tangent) 
if d<r there are 2 intersections. 
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# Position of the intersections 

if(d > r): 

    print("No intersection!") 

elif(d == r): 

    Ps = Pe 

    print(f'Intersection at {Ps}') 

else: 

    i = (r**2 - d**2)**0.5 

    Ps1 = O + e_*(t - i) 

    Ps2 = O + e_*(t + i) 

    print(f'Intersections at {Ps1} and {Ps2}') 

 

 

 

 

Intersections at [0.64644661 0.64644661] and [1.35355339 1.35355339] 



import matplotlib.pyplot as plt 

import numpy as np 

 

# Define x points to draw lines 

x = np.array([0, 8]) 

colors = ["red", "green", "blue", "brown","orange"] 

 

# Define angular coeficients 

M = [0, 0.25, 0.5, 1, 1.5] 

 

# Define sphere 

Cs = [4, 2] 

r = 2 

Circle = plt.Circle(Cs, r, color="k", fill=0) 

ax.add_artist(Circle) 

 

61 



# Draw intersections 

for index, m in enumerate(M): 

    y = m*x 

    plt.plot(x, y, color=colors[index]) 

    plt.xlim([-0.1, 8]) 

    plt.ylim([-0.1, 5]) 

     

    # Define ray 

    O = np.array([0, 0]) 

    e_ = np.array([1, m]) 

    e_ = e_/np.linalg.norm(e_) 

     

    # Intersection 

    OC_ = Cs - O 

    t = np.dot(OC_, e_) 

    Pe = O + e_*t 

    d = np.linalg.norm(Pe - Cs) 
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    # Draw intersections 

    if(d == r): 

        Ps = Pe 

        Circle =plt.Circle(Ps, 0.1, color=colors[index], fill=0) 

        ax.add_artist(Circle) 

    if(d < r): 

        i = (r**2 - d**2)**0.5 

        Ps1 = O + e_*(t - i) 

        Circle =plt.Circle(Ps1, 0.1, color=colors[index], fill=0) 

        ax.add_artist(Circle) 

        Ps2 = O + e_*(t + i) 

        Circle =plt.Circle(Ps2, 0.1, color=colors[index], fill=0) 

        ax.add_artist(Circle) 

 

plt.show() 
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Mid-Term Exam 
Using Ray-Tracing Technique is Optional but it is worth it 

 

• Write  a collision detection function in python. 

• When the collection occurs function returns the angle and the point of 
collision  

• Write a post-collision velocity calculation function. 

• Function returns the post-collision velocities of the bodies as vector values. 
• Input arguments of the function is the angle and the point of collision, 

masses of the bodies, the coefficient of restitution  
YOUR PROGRAM MUST BE RETURN 

 NO LATER THAN 18.30 THE TUESDAY, 2nd April 2024 
Email To: serdar.aritan@hacettepe.edu.tr and serdar.aritan@gmail.com 

Subject: BCO611 Mid-Term <Student No> 
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