
1

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

Linear Momentum, Impulse and Collision

#6

2

http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjt5ZWPm-3KAhWI8RQKHTLxCYMQjRwIBw&url=http://www.amazon.com/Funny-Physics-Science-Unisex-T-shirt/dp/B00TG30VBA&psig=AFQjCNHvMBwGSTxTnMndPyJ0iW6ScJj4qQ&ust=1455194215125320

3

Linear Momentum

The linear momentum, 𝑝 , of an object is simply the mass of the object, m,
multiplied by its velocity, 𝑣 .

𝑝 = 𝑚𝑣

𝐹 = 𝑚𝑎 = 𝑚
𝑑𝑣

𝑑𝑡
=
𝑑𝑝

𝑑𝑡

 𝐹 𝑑𝑡
𝑡1

𝑡0

= 𝑝 1 − 𝑝 0

In the equation, 𝑝 0 is the initial value of linear momentum and 𝑝 1 is the
momentum at the end of the time interval being considered. Equation
indicates that a change in momentum of an object is equal to the integral of
the net external force on the object as a function of time. The integration of
the force with respect to time is known as the linear impulse of force.

𝐹 = 𝐹 𝑑𝑡

linear impulse of force

𝐹 = 𝑝 1 − 𝑝 0 = 𝑚 𝑣 1 − 𝑣 0

The force due to collision is known as an impulsive force. The magnitude of
the impulsive force is usually so much larger than any other forces (gravity,
drag, etc.) acting on the object during the collision, that all other forces can be
ignored during the collision.

An important feature of impulsive force and linear impulse of force is that
they act normal to the point of impact. As we shall see in a little while, the
change in velocity due to a collision occurs normal to the point of impact as
well. Newton’s third law applies to linear impulses. If one object exerts a
linear impulse on another, the second object will exert an equal and opposite
impulse on the first object.

4

5

An analysis of the collision between two objects depends on the momentum
of the objects, but collisions can also be analyzed in terms of energy. Energy
and momentum are always conserved in a collision, no matter what happens.
Momentum is easy to deal with because there is only “one form” of
momentum, but you do have to remember that momentum is a vector.
Energy is tricky because it has many forms, the most troublesome being heat,
but also sound and light. If kinetic energy is conserved in a collision, it is called
an elastic collision. In an elastic collision, the total kinetic energy is conserved
because the objects in question “bounce perfectly” like an ideal elastic. An
inelastic collision is one where some of the of the total kinetic energy is
transformed into other forms of energy, such as sound and heat. Generally
speaking, the harder the objects are that collide, the closer the collision will
be to being elastic.

6

The collision of two marbles, for instance, will be a nearly elastic collision.
On the other hand, the collision of a beanbag on the floor will be an
inelastic collision. The coefficient, e, is known as the coefficient of
restitution and has a value between 0 and 1. If e = 1, the pre- and post-
collision relative velocities are equal, meaning that the collision is elastic.
On the other hand, if e = 0, the post-collision relative velocity is zero
(meaning that the objects are stuck together) and the collision is
completely inelastic.

7

Figure below shows a general two-body collision in the x-y plane. The objects
have some initial velocities 𝑣 1 and 𝑣 2 and masses 𝑚1 and 𝑚2.

When they collide, the two objects will experience an impulse of force due to
the collision. The magnitude of the impulse will be equal for both objects but
will act in opposing directions. The geometric line along which the impulse
acts is called the line of action for the collision.

𝑚2 𝑚1

8

𝑚2 𝑚1

The line of action of the collision is a line
drawn normal, or perpendicular, to the
tangential plane at the point of collision.

9

10

The linear impulse of force caused by the collision changes the velocity of the
objects. Since the line of action for the collision is parallel to the x-axis, the
linear impulse in the y direction is equal to zero.

𝐹𝑥 = 𝑚 𝑣 ′1𝑥 − 𝑣 1𝑥

0 = 𝑚 𝑣 ′1𝑦 − 𝑣 1𝑦

In Equation, the pre-collision velocity components of object 1 are 𝑣 1𝑥 and 𝑣 1𝑦,

and the post-collision velocity components are 𝑣 ′1𝑥 and 𝑣 ′1𝑦. The collision

produces an equal-but opposite linear impulse applied to object 2.

−𝐹𝑥 = 𝑚 𝑣 ′2𝑥 − 𝑣 2𝑥

0 = 𝑚 𝑣 ′2𝑦 − 𝑣 2𝑦

𝑚2 𝑚1

11

𝑚 𝑣 ′1𝑥 − 𝑣 1𝑥 +𝑚 𝑣 ′1𝑥 − 𝑣 1𝑥 = 0
𝑣 ′1𝑦 = 𝑣 1𝑦

𝑣 ′2𝑦 = 𝑣 2𝑦

If you look at Equation, you will see that momentum is conserved in both the
x- and y-directions, but only the velocities in the x-direction change as a result
of the collision. Looking more closely at the velocity expressions in Equation,
there is still a problem. There are four unknowns, 𝑣 ′1𝑥, 𝑣 ′1𝑦, 𝑣 ′2𝑥, 𝑣 ′2𝑦 but

only three equations. In order to solve for the post-collision velocities, an
additional equation is introduced that relates the relative pre- and post-
collision velocities of the two spheres along the line of action of the collision.

𝑒 𝑣 1𝑥 − 𝑣 2𝑥 = − 𝑣 ′1𝑥 − 𝑣 ′2𝑥
The coefficient, e, is known as the coefficient of restitution and has a value
between 0 and 1.

three equations

Combining Equations, expressions can be obtained for the post-collision
velocities along the line of action.

𝑣 ′1𝑥 =
𝑚1 − 𝑒𝑚2
𝑚1 +𝑚2

𝑣 1𝑥 +
1 + 𝑒 𝑚2
𝑚1 +𝑚2

𝑣 2𝑥

𝑣 ′2𝑥 =
1 + 𝑒 𝑚1
𝑚1 +𝑚2

𝑣 1𝑥 +
𝑚2 − 𝑒𝑚1
𝑚1 +𝑚2

𝑣 2𝑥

We can see from Equation that the post-collision velocities along the line of
action of the collision are a function of the pre-collision velocities along the
line of action, the masses of the two objects, and the coefficient of
restitution. The velocities in the y-direction, perpendicular to the line of
action of the collision, are unaffected by the collision.

12

Equations in matrix form.

𝑣 ′1𝑥
𝑣 ′2𝑥

=

𝑚1 − 𝑒𝑚2
𝑚1 +𝑚2

1 + 𝑒 𝑚2
𝑚1 +𝑚2

1 + 𝑒 𝑚1
𝑚1 +𝑚2

𝑚2 − 𝑒𝑚1
𝑚1 +𝑚2

𝑣 1𝑥
𝑣 2𝑥

𝑣 ′1𝑥
𝑣 ′2𝑥

=
1

𝑚1 +𝑚2

𝑚1 − 𝑒𝑚2 1 + 𝑒 𝑚2
1 + 𝑒 𝑚1 𝑚2 − 𝑒𝑚1

𝑣 1𝑥
𝑣 2𝑥

13

A General Two-Dimensional Collision

This problem, like all linear collision problems, can be broken down into four
steps.

1. Determine the line-of-action vector for the collision.
2. Use a rotation matrix to determine the velocity components along the

line of action and normal to it.
3. Compute the post-collision velocities.
4. Rotate the post-collision velocities back to the original Cartesian

coordinate system.

14

A General Two-Dimensional Collision
Use a rotation matrix to determine the velocity components along the line of action and normal to it.

15

Translation

import matplotlib.pyplot as plt

import numpy as np

X, Y = np.mgrid[0:1:5j, 0:1:5j]

x, y = X.ravel(), Y.ravel()

def trans_translate(x, y, tx, ty):

 T = [[1, 0, tx],

 [0, 1, ty],

 [0, 0, 1]]

 T = np.array(T)

 P = np.array([x, y, [1]*x.size])

 return np.dot(T, P)

fig, ax = plt.subplots(1, 4)

T_ = [[0, 0], [2.3, 0], [0, 1.7], [2, 2]]

for i in range(4):

 tx, ty = T_[i]

 x_, y_, _ = trans_translate(x, y, tx, ty)

 ax[i].scatter(x_, y_)

 ax[i].set_title(r'$t_x={0:.2f}$, $t_y={1:.2f}$'.format(tx, ty))

 ax[i].set_xlim([-0.5, 4])

 ax[i].set_ylim([-0.5, 4])

 ax[i].grid(alpha=0.5)

 ax[i].axhline(y=0, color='k')

 ax[i].axvline(x=0, color='k')

plt.show()
16

17

18

Translation

19

Scaling

def trans_scale(x, y, px, py, sx, sy):

 T = [[sx, 0 , px*(1 - sx)],

 [0 , sy, py*(1 - sy)],

 [0 , 0 , 1]]

 T = np.array(T)

 P = np.array([x, y, [1]*x.size])

 return np.dot(T, P)

fig, ax = plt.subplots(1, 4)

S_ = [[1, 1], [1.8, 1], [1, 1.7], [2, 2]]

P_ = [[0, 0], [0, 0], [0.45, 0.45], [1.1, 1.1]]

for i in range(4):

 sx, sy = S_[i]; px, py = P_[i]

 x_, y_, _ = trans_scale(x, y, px, py, sx, sy)

 ax[i].scatter(x_, y_)

 ax[i].scatter(px, py)

 ax[i].set_title(r'$p_x={0:.2f}$, $p_y={1:.2f}$'.format(px, py) + '\n'

 r'$s_x={0:.2f}$, $s_y={1:.2f}$'.format(sx, sy))

 ax[i].set_xlim([-2, 2])

 ax[i].set_ylim([-2, 2])

 ax[i].grid(alpha=0.5)

 ax[i].axhline(y=0, color='k')

 ax[i].axvline(x=0, color='k')

plt.show()

20

21

Scaling

22

Scaling

23

Rotation

def trans_rotate(x, y, px, py, beta):

 beta = np.deg2rad(beta)

 T = [[np.cos(beta), -np.sin(beta), px*(1 - np.cos(beta)) + py*np.sin(beta)],

 [np.sin(beta), np.cos(beta), py*(1 - np.cos(beta)) - px*np.sin(beta)],

 [0 , 0 , 1]]

 T = np.array(T)

 P = np.array([x, y, [1]*x.size])

 return np.dot(T, P)

fig, ax = plt.subplots(1, 4)

R_ = [0, 225, 40, -10]

P_ = [[0, 0], [0, 0], [0.5, -0.5], [1.1, 1.1]]

for i in range(4):

 beta = R_[i]; px, py = P_[i]

 x_, y_, _ = trans_rotate(x, y, px, py, beta)

 ax[i].scatter(x_, y_)

 ax[i].scatter(px, py)

 ax[i].set_title(r'$\beta={0}°$, $p_x={1:.2f}$, $p_y={2:.2f}$'.format(beta, px, py))

 ax[i].set_xlim([-2, 2])

 ax[i].set_ylim([-2, 2])

 ax[i].grid(alpha=0.5)

 ax[i].axhline(y=0, color='k')

 ax[i].axvline(x=0, color='k')

plt.show()

24

Rotation

25

Rotation

26

27

Shearing

28

def trans_shear(x, y, px, py, lambdax, lambday):

 T = [[1 , lambdax, -lambdax*px],

 [lambday, 1 , -lambday*py],

 [0 , 0 , 1]]

 T = np.array(T)

 P = np.array([x, y, [1]*x.size])

 return np.dot(T, P)

fig, ax = plt.subplots(1, 4)

L_ = [[0, 0], [2, 0], [0, -2], [-2, -2]]

P_ = [[0, 0], [0, 0], [0, 1.5], [1.1, 1.1]]

for i in range(4):

 lambdax, lambday = L_[i]; px, py = P_[i]

 x_, y_, _ = trans_shear(x, y, px, py, lambdax, lambday)

 ax[i].scatter(x_, y_)

 ax[i].scatter(px, py)

 ax[i].set_title(r'$p_x={0:.2f}$, $p_y={1:.2f}$'.format(px, py) + '\n'

 r'$\lambda_x={0:.2f}$, $\lambda_y={1:.2f}$'.format(lambdax, lambday))

 ax[i].set_xlim([-3, 3])

 ax[i].set_ylim([-3, 3])

 ax[i].grid(alpha=0.5)

 ax[i].axhline(y=0, color='k')

 ax[i].axvline(x=0, color='k')

plt.show()

29

Shearing

Shearing

30

31

𝑣𝑝 = 𝑣𝑥 cos 𝜃 + 𝑣𝑦 sin 𝜃

Determine the line-of-action
vector for the collision

Normal

𝑣𝑛 = −𝑣𝑥 sin 𝜃 + 𝑣𝑦 𝑐𝑜𝑠 𝜃

32

𝑅 𝜃 =
𝑥′
𝑦′
=
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑥
𝑦

The direction of vector rotation is
counterclockwise if θ is positive (e.g. 90°),
and clockwise if θ is negative (e.g. -90°).

𝑅 −𝜃 =
𝑥′
𝑦′
=

cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

𝑥
𝑦

33

𝑣𝑝
𝑣𝑛

=
cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

𝑣𝑥
𝑣𝑦

34

Two spheres collide. Sphere 1 has a mass of 10 kg and is traveling horizontally
with a velocity v1x = 8 m/s. Sphere 2 is stationary and has a mass of 5 kg. The
line of action for the collision is at an angle of 30 degrees with respect to the
x-axis. The coefficient of restitution between the two spheres is 0.9. What
will be the post-collision velocities of the two spheres?

35

𝑣𝑝
𝑣𝑛

=
cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

𝑣𝑥
𝑣𝑦

𝑣1𝑝
𝑣1𝑛

=
cos 30 sin 30
−sin 30 cos 30

𝑣1𝑥
𝑣1𝑦

𝑣1𝑝
𝑣1𝑛

=
cos 30 sin 30
−sin 30 cos 30

8
0

𝑣1𝑝=8 cos 30 + 0 sin 30 = 6.93 𝑚𝑠−1

𝑣1𝑛=-8 sin 30 + 0 cos 30 = −4.00 𝑚𝑠−1

The velocity components parallel and
normal to the line of action can be
computed. Sphere 2 is initially not moving,
so its velocity components will be zero.

36

Compute the post-collision velocities for the two spheres

𝑣 ′1𝑥
𝑣 ′2𝑥

=
1

𝑚1 +𝑚2

𝑚1 − 𝑒𝑚2 1 + 𝑒 𝑚2
1 + 𝑒 𝑚1 𝑚2 − 𝑒𝑚1

𝑣 1𝑝
𝑣 2𝑝

𝑣 ′1𝑥
𝑣 ′2𝑥

=
1

10 + 5

10 − 0.9x5 1 + 0.9 5
1 + 0.9 10 5 − 0.9x10

6.93
0

𝑣 ′1𝑥 =
10 − 4.5

15
6.93 = 2.54 𝑚𝑠−1

𝑣 ′2𝑥 =
19

15
6.93 = 8.78 𝑚𝑠−1

37

The final step in the process is to rotate the post-collision velocities back to
the standard Cartesian coordinate system.

After the collision, both spheres are moving in the positive x-direction, but
sphere 1 has slowed down because part of its momentum was transferred to
sphere 2 during the collision. Sphere 2 is traveling in the positive y-direction
and sphere 1 is traveling in the negative y-direction.

𝑣′′1𝑥
𝑣′′1𝑦

=
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑣′1𝑥
𝑣′1𝑛

𝑣′′2𝑥
𝑣′′2𝑦

=
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑣′2𝑥
𝑣′2𝑛

𝑣′′1𝑥
𝑣′′1𝑦

=
cos 30 − sin 30
sin 30 cos 30

2.54
−4

𝑣′′2𝑥
𝑣′′2𝑦

=
cos 30 − sin 30
sin 30 cos 30

8.78
0

𝑣′′1𝑥=2.45 cos 30 + 4 sin 30 = 4.1 𝑚𝑠−1

𝑣′′1𝑦=2.45 sin 30 − 4 cos 30 = −2.24 𝑚𝑠−1

𝑣′′2𝑥=8.78 cos 30 = 7.60 𝑚𝑠−1

𝑣′′2𝑦=8.78 sin 30 = 4.39 𝑚𝑠−1

38

import numpy as np

theta = np.radians(30) # Line of action

m1 = 10 # Sphere 1 has a mass of 10 kg

m2 = 5 # Sphere 2 has a mass of 5 kg

e = 0.9 # the coefficient of restitution

v1pre = np.matrix([[8], # Sphere 1 moving horizontally with a velocity 8 m/s.

 [0]])

v2pre = np.matrix([[0], # Sphere 2 is stationary

 [0]])

R1 = np.matrix([[np.cos(theta), np.sin(theta)],

 [-np.sin(theta), np.cos(theta)]])

R2 = np.matrix([[np.cos(theta), -np.sin(theta)],

 [np.sin(theta), np.cos(theta)]])

v1p, v1n = R1*v1pre

v2p, v2n = R1*v2pre

39

Compute the post-collision velocities for the two spheres

v1pt, v2pt = np.multiply((1.0/(m1+m2)),\

np.matrix([[(m1-e*m2),m2*(1+e)],[m1*(1+e),(m2-e*m1)]])*np.vstack((v1p, v2p)))

The final step in the process is to rotate the post-collision velocities

back to the standard Cartesian coordinate system

v1post = R2*np.vstack((v1pt, v1n))

v2post = R2*np.vstack((v2pt, v2n))

40

Circle-Circle Collision Detection

Circle1 with center (x1,y1) and radius r1;
Circle2 with center (x2,y2) and radius r2.

The most basic way of determining whether or not two circles have collided is
1. Find the distance between the centers of the two circles using the

distance formula.
2. if the edges of the circles touch, the distance between the centers is r1+r2
 any greater distance and the circles don't touch or collide.
 any less and then do collide

So you can detect collision if (x2-x1)2 + (y1-y2)2 <= (r1+r2)2

41

Calculate the point of collision

Circle1 with center (x1,y1) and radius r1;
Circle2 with center (x2,y2) and radius r2.

𝑥2 − 𝑥1
2 + 𝑦2 − 𝑦1

2 = 𝑟1 + 𝑟2
𝑥1, 𝑦1

𝑥2, 𝑦2
𝑥1, 𝑦2

𝜃

𝑦2 − 𝑦1

𝑥2 − 𝑥1

sin 𝜃 =
𝑦2 − 𝑦1
𝑟1 + 𝑟2

cos 𝜃 =
𝑥2 − 𝑥1
𝑟1 + 𝑟2

tan 𝜃 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

𝜃 = atan

𝑦2 − 𝑦1
𝑥2 − 𝑥1

42

Calculate the point of collision 𝑥𝑐 , 𝑦𝑐

𝑥2, 𝑦2

𝜃

cos 𝜃 =
𝑎

𝑟2

𝑎
𝑏

𝑎 = 𝑟2 cos 𝜃

𝑎 = 𝑟2
𝑥2 − 𝑥1
𝑟1 + 𝑟2

sin 𝜃 =
𝑏

𝑟2

𝑏 = 𝑟2 sin 𝜃

𝑏 = 𝑟2
𝑦2 − 𝑦1
𝑟1 + 𝑟2

𝑥𝑐 , 𝑦𝑐

𝑥𝑐 , 𝑦𝑐 = 𝑥2 + 𝑎 , 𝑦2 + 𝑏

43

44

𝒙𝟏, 𝒚𝟏

𝒙𝟐, 𝒚𝟐
𝑎 = 𝑟2

𝑥2 − 𝑥1
𝑟1 + 𝑟2

 𝑏 = 𝑟2
𝑦2 − 𝑦1
𝑟1 + 𝑟2

𝑥𝑐 , 𝑦𝑐 = 𝑥2 + 𝑎 , 𝑦2 + 𝑏

𝜃 = atan
𝑦2 − 𝑦1
𝑥2 − 𝑥1

Intersection Testing versus Ray Casting

45

Tim Schroeders's article "Collision
Detection Using Ray Casting", inthe
August 2001 issue of Game Developer
magazine focused on detecting
collisions between spheres and
polygons.

46

This is useful not only for games like pool where accurate
collision of spheres is key, but also in games where characters
and other mobile objects are bounded by spheres, these can be
used to quickly determine if they have bumped into each other.

47

Collision Detection Using Ray Casting

v

48

Ray R, defined by:
point p0
normal d

Sphere S, defined by:
center point c
radius r

R

S

Collision Detection Using Ray Casting

49

An intersection happens at time t, along ray R.

R

To find t, we need to first find a and f. The formula for t = a- f

Collision Detection Using Ray Casting

50

In order to find a and f, we need two more vectors, vector e and vector b.
Vector e is the vector from p0 to c. Vector b is one side of the right triangle formed
by vectors r, f and b.

Triangle f, b, r
Triangle a, e, b

Vector e is a vector going to p0 to c
Vector a is vector e projected onto vector d
Vector b is given by the Pythagorean theorem

Collision Detection Using Ray Casting

51

p0 = np.array([5, 4])

v = np.array([3, 0])

r = 3

c = np.array([12, 2])

Collision Detection Using Ray Casting

52

import numpy as np

p0 = np.array([5, 4]) # Ray Position;

v = np.array([3, 0]) # we will use velocity : d ray

normalized_v = v / np.sqrt(np.sum(v**2))

c = np.array([12, 2]) # Sphere Centre Position

r = 3 # Sphere Radius

e = c - p0

esq = np.square(np.linalg.norm(e))

a = np.dot(e, normalized_v)

b = np.sqrt(esq - (a**2))

f = np.sqrt((r**2) - (b**2))

No collision

if (r**2 - esq + a**2) < 0.0 :

 print(-1) # -1 is invalid

 # Ray is inside

elif esq < r**2:

 print(a + f) # Just reverse direction

else: # Normal intersection

 print(a - f) 4.76393202250021

Collision Detection Using Ray Casting

53

?

Triangle f, b, r
Triangle a, e, b

Vector e is a vector going to p0 to c
Vector a is vector e projected onto vector d
Vector b is given by the Pythagorean theorem

p0 = np.array([5, 4])

v = np.array([3, 0])

r1 = 3

c = np.array([12, 2])

r2 = 1

r1 + r2 = 4

Ray-Object Intersections: Primary rays

54

import matplotlib.pyplot as plt

import numpy as np

Ray

O = np.array([0, 0]) # Origin point

e_ = np.array([0.5, 0.5]) # Ray direction

e_ /= np.linalg.norm(e_) # Unit vector of e_

Ray-Object Intersections: Primary rays

55

Sphere

Cs = np.array([2, 0]) # Center of sphere

r = 1.5 # Radius of sphere

Ray-Object Intersections: Primary rays

56

Sphere

OC_ = Cs-O # Oriented segment from origin to center of the sphere

Ray-Object Intersections: Primary rays

57

find the parameter t which will parametrize the ray segment and

find the intersections from the origin

t = np.dot(OC_, e_) # Vector projection of OC_ on e_

Ray-Object Intersections: Primary rays

58

Pe = O + e_*t # Point on vector e_ projected from OC_

d = np.linalg.norm(Pe - Cs) # Distance from the point Pe and the center

 # of the sphere

Ray-Object Intersections: Primary rays

If d>r then there is no intersections
If d=r then there is 1 intersection (tangent)
if d<r there are 2 intersections.

59

Ray-Object Intersections: Primary rays

60

Position of the intersections

if(d > r):

 print("No intersection!")

elif(d == r):

 Ps = Pe

 print(f'Intersection at {Ps}')

else:

 i = (r**2 - d**2)**0.5

 Ps1 = O + e_*(t - i)

 Ps2 = O + e_*(t + i)

 print(f'Intersections at {Ps1} and {Ps2}')

Intersections at [0.64644661 0.64644661] and [1.35355339 1.35355339]

import matplotlib.pyplot as plt

import numpy as np

Define x points to draw lines

x = np.array([0, 8])

colors = ["red", "green", "blue", "brown","orange"]

Define angular coeficients

M = [0, 0.25, 0.5, 1, 1.5]

Define sphere

Cs = [4, 2]

r = 2

Circle = plt.Circle(Cs, r, color="k", fill=0)

ax.add_artist(Circle)

61

Draw intersections

for index, m in enumerate(M):

 y = m*x

 plt.plot(x, y, color=colors[index])

 plt.xlim([-0.1, 8])

 plt.ylim([-0.1, 5])

 # Define ray

 O = np.array([0, 0])

 e_ = np.array([1, m])

 e_ = e_/np.linalg.norm(e_)

 # Intersection

 OC_ = Cs - O

 t = np.dot(OC_, e_)

 Pe = O + e_*t

 d = np.linalg.norm(Pe - Cs)

62

 # Draw intersections

 if(d == r):

 Ps = Pe

 Circle =plt.Circle(Ps, 0.1, color=colors[index], fill=0)

 ax.add_artist(Circle)

 if(d < r):

 i = (r**2 - d**2)**0.5

 Ps1 = O + e_*(t - i)

 Circle =plt.Circle(Ps1, 0.1, color=colors[index], fill=0)

 ax.add_artist(Circle)

 Ps2 = O + e_*(t + i)

 Circle =plt.Circle(Ps2, 0.1, color=colors[index], fill=0)

 ax.add_artist(Circle)

plt.show()

63

64

65

66

Mid-Term Exam
Using Ray-Tracing Technique is Optional but it is worth it

• Write a collision detection function in python.

• When the collection occurs function returns the angle and the point of
collision

• Write a post-collision velocity calculation function.

• Function returns the post-collision velocities of the bodies as vector values.
• Input arguments of the function is the angle and the point of collision,

masses of the bodies, the coefficient of restitution
YOUR PROGRAM MUST BE RETURN

 NO LATER THAN 18.30 THE TUESDAY, 2nd April 2024
Email To: serdar.aritan@hacettepe.edu.tr and serdar.aritan@gmail.com

Subject: BCO611 Mid-Term <Student No>

mailto:serdar.aritan@hacettepe.edu.tr
mailto:serdar.aritan@gmail.com

