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A simple ray tracer works by performing the following operations: 

How Ray Tracing Works 

define some objects 

specify a material for each object 

define some light sources 

define a window whose surface is covered with pixels 

for each pixel 

    shoot a ray towards the objects from the center of the pixel  

    compute the nearest hit point of the ray with the objects (if any) 

 

    if the ray hits an object 

 use the object’s material and the lights to compute the pixel color 

    else 

        set the pixel color to black 



3 

How Ray Tracing Works 

The pixels are on a 
plane called the 
view plane, which 
is perpendicular to 
the rays.  
 
The rays are 
parallel to each 
other and produce 
an orthographic 
projection of the 
objects.  
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How Ray Tracing Works 

When a ray hits an object, the color of its pixel is computed from the way the 
object’s material reflects light, a process that’s known as shading. Although 
the pixels on the view plane are just mathematical abstractions, like 
everything else in the ray tracer, each one is associated with a real pixel in a 
window on a computer screen. 
 
The process of working out where a ray hits an object is known as the ray 
object intersection calculation. This is a fundamental process in ray tracing 
and usually takes most of the time. The intersection calculation is different for 
each type of object; some objects are easy to intersect, while others are 
difficult. All intersection calculations require some mathematics. 
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How Ray Tracing Works 

6x4 12x8 24x16 

60x40 150x100 120x80 
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How Ray Tracing Works 
 
The World 
Ray tracers render scenes that contain the geometric objects, lights, a camera, 
a view plane, a tracer, and a background color. In this course, the world will 
only store the objects and view plane.  
 
The locations and orientations of all scene elements are specified in world 
coordinates, which is a 3D Cartesian coordinate system. 
 
 



How Ray Tracing Works 
 
Rays 
A ray is an infinite straight line that’s defined by a point o, called the origin, 
and a unit vector d, called the direction. A ray is parametrized with the ray 
parameter t, where t = 0 at the ray origin, so that an arbitrary point p on a ray 
can be expressed as p = o + td. 
 Ray tracing uses the following types of rays: 
 • primary rays; 
 • secondary rays; 
 • shadow rays; 
 • light rays. 
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How Ray Tracing Works 
 
Primary rays start at the centers of the pixels for parallel viewing, and at the 
camera location for perspective viewing.  
 
Secondary rays are reflected and transmitted rays that start on object 
surfaces.  
 
Shadow rays are used for shading and start at object surfaces.  
 
Light rays start at the lights and are used to simulate certain aspects of global 
illumination, such as caustics. 
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Ray-Object Intersections 
 
The basic operation we perform with a ray is to 
intersect it with all geometric objects in the 
scene. This finds the nearest hit point, if any, 
along the ray from o in the direction d. 
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Sphere (1) is behind the origin of all rays that intersect it (t < 0) and will not 
appear in the image. 
Sphere (2) will be rendered with ray 1 and with all rays that hit it. 
Sphere (3) will only be rendered with rays like ray 2 that don't hit any other 
spheres. 
Sphere (4) will only be rendered with rays like ray 3 that start inside it 



Ray-Object Intersections:  Primary rays   
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Primary rays  



PHONG  - LAMBERT - NO LIGHTING   
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Lambert Lighting   

Diffuse and specular reflection from a glossy surface. The rays represent luminous 
intensity, which varies according to Lambert's cosine law for an ideal diffuse 
reflector. 
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Lambert's Cosine Law  
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The ambient component 
of light is simply an offset 
from black generated by 
the shader. 



3D Intersection 
Apply same model for each pixel of an image plane as the origin and the ray 
direction is based on the perspective camera model 
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3D Intersection 
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import matplotlib.pyplot as plt 

import numpy as np 

 
N, M = 256j, 512j 

O = np.ones((int(N.imag), int(M.imag), 3))             # Init image plane origin 

O[..., 1], O[..., 0] = np.mgrid[0.5:-0.5:N, 1:-1:M]    # Image plane uvw coordinates 

e_ = O/np.linalg.norm(O, axis=2)[:,:,np.newaxis]       # Normalized ray directon e_ 

 

# Sphere 

Cs = np.array([0, 0, 4])                               # Center of sphere 

r = 1.5                                                # Radius of sphere 

 

OC_ = Cs - O                    # Oriented segment from origin to center of the sphere 

 

vec_dot = np.vectorize(np.dot, signature='(n),(m)->()')# Vectorize dot product function 

t = vec_dot(OC_, e_)                                   # Pixelwise dot product 

Pe = O + e_*t[:,:,np.newaxis]       # Point on vector e_ projected from OC_ 

d = np.linalg.norm(Pe - Cs, axis=2)# Distance from the point Pe and the center of the 

sphere 



3D Intersection 
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# Find intersection position 

i = (r**2 - d**2)**0.5 

Ps = O + e_*(t - i)[:,:,np.newaxis]  

 

# Facing ratio (incidence value) 

i_ = i[:,:,np.newaxis]/r 

 

# Calculate the normal vector for each point 

n = Ps - Cs                                            # Calculate vector n 

n_ = n/np.linalg.norm(n, axis=2)[:,:,np.newaxis]       # Normalize n 

 

# Simple directional light model 

Cd = np.array([0.9, 0.15, 0.35])**(1/0.455) # Sphere diffuse color with gamma 

# Key light 

l = np.array([-1.5, 1.5, -1])                          # Key light vector 

l_ = l/np.linalg.norm(l)                               # Key light vector normalization 

Kd = vec_dot(l_, n_)[:,:,np.newaxis]                   # Calculate light incidence 

Kd[Kd < 0] = 0                                         # clamp negative values 

diff = Cd*Kd                                           # Writes to diffuse 



3D Intersection 
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3D Intersection 
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# Back light 

l = np.array([1.5, -1, 1])                            # Back light vector 

l_ = l/np.linalg.norm(l)                              # Back light vector normalization 

Kd = vec_dot(l_, n_)[:,:,np.newaxis]                  # Calculate light incidence 

Kd[Kd < 0] = 0                                        # clamp negative values 

diff += Cd*Kd*0.25                                    # Adds to diffuse 

 

output = np.zeros((int(N.imag), int(M.imag), 3))      # Init output image 

output[d < r] = (diff*i_)[d < r]                      # Shades diffuse and fr 

 

output[output < 0] = 0; output[output > 1] = 1      # Clamp values before visualization 

 

# Visualization 

fig, ax = plt.subplots(figsize=(16, 10)) 

ax.imshow(output**(1/2.2))      # View the resulting image with gamma adjustment (sRGB) 

plt.show() 
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import matplotlib.pyplot as plt 

import numpy as np 

 

N, M = 256j, 512j 

O = np.ones((int(N.imag), int(M.imag), 3))           # Init image plane origin 

O[..., 1], O[..., 0] = np.mgrid[0.5:-0.5:N, 1:-1:M]  # Image plane uvw coordinates 

e_ = O/np.linalg.norm(O, axis=2)[:,:,np.newaxis]     # Normalized ray directon e_ 

 

# Triangle  

A = np.array([0   , 2.2 , 5])                               # Point A 

B = np.array([6.7 , -3  , 8])                               # Point B 

C = np.array([-1.5, -0.5, 2])                               # Point C 

 

AB = B - A                                              # Oriented segment A to B 

AC = C - A                                              # Oriented segment A to C 

n = np.cross(AB, AC)                                    # Normal vector 

n_ = n/np.linalg.norm(n)                                # Normalized normal 

 

# Using the point A to find d 

d = - np.dot(n_, A) 
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# Finding parameter t 

vec_dot = np.vectorize(np.dot, signature='(n),(m)->()') # Vectorize dot product 

function 

t = - (vec_dot(n_, O) + d)/vec_dot(n_, e_)              # Get t for each pixel 

 

# Finding P 

P = O + t[..., np.newaxis]*e_ 

 

# Get the resulting vector for each vertex 

# following the construction order 

Pa = vec_dot(np.cross(B - A, P - A), n_)                # Resulting vector of A 

Pb = vec_dot(np.cross(C - B, P - B), n_)                # Resulting vector of B 

Pc = vec_dot(np.cross(A - C, P - C), n_)                # Resulting vector of C 

 

output = np.zeros((int(N.imag), int(M.imag), 3))        # Init output image 

# Inside the triangle conditionals 

cond = np.logical_and(np.logical_and(Pa >= 0, Pb >= 0), Pc >= 0)  

fr = vec_dot(n_, -e_)[..., np.newaxis]                  # Compute the facing ratio 

output[cond] = (0.15, 0.35, 0.9)*fr[cond]               # Shade with color and fr 

# Visualization 

fig, ax = plt.subplots(figsize=(16, 10)) 

ax.imshow(output) 

plt.show() 
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Barycentric coordinates 
 
The barycentric coordinates of a point can be 
interpreted as masses placed at the vertices of 
the simplex, such that the point is the center of 
mass (or barycenter) of these masses. These 
masses can be zero or negative; they are all 
positive if and only if the point is inside the 
simplex. Generalized barycentric coordinates 
have applications in computer graphics and more 
specifically in geometric modelling. 
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𝐴𝑅𝐸𝐴𝐴𝐵𝐶 =
𝐵 − 𝐴  x 𝐶 − 𝐴

2
 

∝=
𝐴𝑅𝐸𝐴𝐵𝐶𝑃

𝐴𝑅𝐸𝐴𝐴𝐵𝐶
=

𝐶 − 𝐵  x 𝑃 − 𝐵

𝐵 − 𝐴  x 𝐶 − 𝐴
 

𝛽 =
𝐴𝑅𝐸𝐴𝐶𝐴𝑃

𝐴𝑅𝐸𝐴𝐴𝐵𝐶
=

𝐴 − 𝐶  x 𝑃 − 𝐶

𝐵 − 𝐴  x 𝐶 − 𝐴
 

𝛾 =
𝐴𝑅𝐸𝐴𝐴𝐵𝑃

𝐴𝑅𝐸𝐴𝐴𝐵𝐶
=

𝐵 − 𝐴  x 𝑃 − 𝐴

𝐵 − 𝐴  x 𝐶 − 𝐴
 



import matplotlib.pyplot as plt 

import numpy as np 

 

N, M = 256j, 512j 

O = np.ones((int(N.imag), int(M.imag), 3))           # Init image plane origin 

O[..., 1], O[..., 0] = np.mgrid[0.5:-0.5:N, 1:-1:M]  # Image plane uvw coordinates 

e_ = O/np.linalg.norm(O, axis=2)[:,:,np.newaxis]     # Normalized ray directon e_ 

 

# Triangle  

A = np.array([0 , 1.25 , 3])        # Point A 

B = np.array([2 , -1.25, 3])        # Point B 

C = np.array([-2, -1.25, 3])        # Point C 

 

AB = B - A                                              # Oriented segment A to B 

AC = C - A                                              # Oriented segment A to C 

n = np.cross(AB, AC)                                    # Normal vector 

n_ = n/np.linalg.norm(n)                                # Normalized normal 

 

# Using the point A to find d 

d = - np.dot(n_, A) 
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# Finding parameter t 

vec_dot = np.vectorize(np.dot, signature='(n),(m)->()') # Vectorize dot product 

function 

t = - (vec_dot(n_, O) + d)/vec_dot(n_, e_)              # Get t for each pixel 

 

# Finding P 

P = O + t[..., np.newaxis]*e_ 

 

# Get the resulting vector for each vertex 

# following the construction order 

Pa = vec_dot(np.cross(B - A, P - A), n_)          # Resulting vector of A 

Pb = vec_dot(np.cross(C - B, P - B), n_)          # Resulting vector of B 

Pc = vec_dot(np.cross(A - C, P - C), n_)          # Resulting vector of C 

cond = np.logical_and(np.logical_and(Pa >= 0, Pb >= 0), Pc >= 0) 

# Calculate barycentric coordinates 

Aa = np.cross(B - A, P - A)                       # Resulting vector of A and P 

Aa = np.linalg.norm(Aa, axis=2)                   # Area of triangle ABP 

Ab = np.cross(C - B, P - B)                       # Resulting vector of B and P 

Ab = np.linalg.norm(Ab, axis=2)                   # Area of triangle BCP 

Ac = np.cross(A - C, P - C)                       # Resulting vector of C and P 

Ac = np.linalg.norm(Ac, axis=2)                   # Area of triangle CAP 

At = np.cross(C - A, B - A)                       # Resulting vector of triangle 

At = np.linalg.norm(At)                           # Area of triangle ABC 
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# Getting the barycenter weights 

alpha = (Ab/At)[..., np.newaxis] 

beta = (Ac/At)[..., np.newaxis] 

gamma = (Aa/At)[..., np.newaxis] 

 

# Output image 

output = np.zeros((int(N.imag), int(M.imag), 3))              # Init output image 

Ca = np.array([1, 0, 0.4])                                    # Color vertex A 

Cb = np.array([0.4, 1, 0])                                    # Color vertex B 

Cc = np.array([0, 0.4, 1])                                    # Color vertex C 

# Interpolated color based on barycentric coordinates 

Cd = (alpha*Ca + beta*Cb + gamma*Cc)/(alpha + beta + gamma) 

 

output[cond] = Cd[cond]                      # Shade with the interpolated colors 

 

# Visualization 

fig, ax = plt.subplots(figsize=(16, 10)) 

ax.imshow(output) 

plt.show()# Area of triangle ABC 
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import numpy as np 

import matplotlib.pyplot as plt 

 

w = 800 

h = 600 

 

def normalize(x): 

    x /= np.linalg.norm(x) 

    return x 
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Ray Tracing Homework 
 
Apply the collision calculation between the plane and sphere  
 



we want to simulate the Sun–Earth system. The semi major 
axis of the Earth is a =1 AU. For simplicity, let’s just assume 
that the Earth orbits the Sun on a circular orbit,  and so the 
distance between the Earth and the Sun is a constant r = 1 
AU. The mass of the  Sun and that of the Earth are M and m, 
respectively. Let G be the universal gravitational constant 
and r be the position vector of the Earth relative to the Sun. 
So the gravitational  acceleration between the Sun and the 
Earth is 

2-Body Problem 
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𝑎 = −𝐺
𝑀𝒓

𝑟3  

where the minus sign in the beginning of the equation 
indicates that the gravitational acceleration is pointing 
towards the opposite direction of r (i.e., the origin).  
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The centrifugal  force per unit mass of the Earth is 
 
 
 
 
 
where v is the linear velocity of the Earth. In order to have the Earth moving on a 
circular  orbit, 𝑎 = 𝑎𝑐 must hold everywhere along the orbit.  
 

Equating for gravitational  acceleration  and centrifugal  force  𝑣 =
𝐺𝑀

𝑟
   we have 

This is often called the circular velocity. 

𝑎𝑐 =
𝑣2

𝑟
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we have the initial conditions ready. If M=1,then m=3 10 6 (the mass ratio 
between the Sun and the Earth is 3.10-6). Since  it is just a toy model, let’s 
assume that G = 1, in which case we have v = 1. It is convenient  to assume that 
the Sun is at the origin of a Cartesian coordinate system with position vector  
X=[0, 0, 0] and zero velocity, V=[0, 0, 0], then we have x=[1, 0, 0], v=[0, 1, 0]. 

import numpy as np 

import matplotlib.pyplot as plt 

  

M = 1.0 

m = 3.0e-6 

G = 1.0 

 

xS = np.array([0., 0., 0.])      # the position vector of the Sun 

xE = np.array([1., 0., 0.])      # the position vector of the Earth 

vS = np.array([0., 0., 0.])      # the velocity vector of the Sun 

vE = np.array([0., 1., 0.])      # the velocity vector of the Earth 



dt = 0.1 

t_end = 100 

 

xE_vec = [] # x of the Earth 

yE_vec = [] # y of the Earth 

xS_vec = [] # x of the Sun 

yS_vec = [] # y of the Sun 

 

for t in np.linspace(0, t_end, int(t_end/dt)): 

     # acc Sun--> Earth 

     aE =-G * M * (xE- xS) / np.linalg.norm(xE - xS) ** 3 

     # acc Earth--> Sun 

     aS =-G * m * (xS- xE) / np.linalg.norm(xS- xE) ** 3 

     # advance the positions and velocities 

     xE = xE + vE * dt 

     xS = xS + vS * dt 

     vE = vE + aE * dt 

     vS = vS + aS * dt      

     # store the data for plotting 

     xE_vec.append(xE[0]) 

     yE_vec.append(xE[1]) 

     xS_vec.append(xS[0]) 

     yS_vec.append(xS[1]) 
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# make the plot 

fig, axs = plt.subplots() 

plt.plot(xE_vec, yE_vec, 'b') 

plt.plot(xS_vec, yS_vec, '.',color='tab:orange') 

axs.axis('equal') 

plt.xlabel('$x$') 

plt.ylabel('$y$') 

plt.show() 
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Looks like the Earth is escaping from the Sun!  
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Decrease the time step by a factor of 10. Now with dt = 0.01 
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Decrease the time step by a factor of 100. Now with dt = 0.0001 

Getting better and better. But, the code is becoming so slow! 



# Forward Euler 

     xE = xE + vE * dt 

     xS = xS + vS * dt 

     vE = vE + aE * dt 

     vS = vS + aS * dt  
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dt = 0.1 
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dt = 0.1 

# Forward Euler 

     xE = xE + vE * dt 

     xS = xS + vS * dt 

     vE = vE + aE * dt 

     vS = vS + aS * dt  

# Backward Euler 

vE = vE + aE * dt 

vS = vS + aS * dt 

xE = xE + vE * dt 

xS = xS + vS * dt 
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In this configuration, the Sun is much heavier than the Earth. Out of curiosity, let’s 
try another system. As shown in the figure below, let’s assume a binary system 
with two equal-mass particles.  

M = 1.0         # P1 

m = 1.0         # P2 

 

xS = np.array([-1, 0, 0])  # position vector of P1 

xE = np.array([1, 0, 0])   # position vector of P2 

vS = np.array([0, -0.5, 0])# velocity vector of P1 

vE = np.array([0, 0.5, 0]) # velocity vector of P2 
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dt = 0.00001 dt = 0.0001 
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In classical mechanics, the three-body problem is the 
problem of taking the initial positions and velocities (or 
momenta) of three point masses and solving for their 
subsequent motion according to Newton's laws of 
motion and Newton's law of universal gravitation.  

THE THREE-BODY PROBLEM  


