
1

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

Ray Tracing

#7

2

A simple ray tracer works by performing the following operations:

How Ray Tracing Works

define some objects

specify a material for each object

define some light sources

define a window whose surface is covered with pixels

for each pixel

 shoot a ray towards the objects from the center of the pixel

 compute the nearest hit point of the ray with the objects (if any)

 if the ray hits an object

 use the object’s material and the lights to compute the pixel color

 else

 set the pixel color to black

3

How Ray Tracing Works

The pixels are on a
plane called the
view plane, which
is perpendicular to
the rays.

The rays are
parallel to each
other and produce
an orthographic
projection of the
objects.

4

How Ray Tracing Works

When a ray hits an object, the color of its pixel is computed from the way the
object’s material reflects light, a process that’s known as shading. Although
the pixels on the view plane are just mathematical abstractions, like
everything else in the ray tracer, each one is associated with a real pixel in a
window on a computer screen.

The process of working out where a ray hits an object is known as the ray
object intersection calculation. This is a fundamental process in ray tracing
and usually takes most of the time. The intersection calculation is different for
each type of object; some objects are easy to intersect, while others are
difficult. All intersection calculations require some mathematics.

5

How Ray Tracing Works

6x4 12x8 24x16

60x40 150x100 120x80

6

How Ray Tracing Works

The World
Ray tracers render scenes that contain the geometric objects, lights, a camera,
a view plane, a tracer, and a background color. In this course, the world will
only store the objects and view plane.

The locations and orientations of all scene elements are specified in world
coordinates, which is a 3D Cartesian coordinate system.

How Ray Tracing Works

Rays
A ray is an infinite straight line that’s defined by a point o, called the origin,
and a unit vector d, called the direction. A ray is parametrized with the ray
parameter t, where t = 0 at the ray origin, so that an arbitrary point p on a ray
can be expressed as p = o + td.
 Ray tracing uses the following types of rays:
 • primary rays;
 • secondary rays;
 • shadow rays;
 • light rays.

7

How Ray Tracing Works

Primary rays start at the centers of the pixels for parallel viewing, and at the
camera location for perspective viewing.

Secondary rays are reflected and transmitted rays that start on object
surfaces.

Shadow rays are used for shading and start at object surfaces.

Light rays start at the lights and are used to simulate certain aspects of global
illumination, such as caustics.

8

Ray-Object Intersections

The basic operation we perform with a ray is to
intersect it with all geometric objects in the
scene. This finds the nearest hit point, if any,
along the ray from o in the direction d.

9

Sphere (1) is behind the origin of all rays that intersect it (t < 0) and will not
appear in the image.
Sphere (2) will be rendered with ray 1 and with all rays that hit it.
Sphere (3) will only be rendered with rays like ray 2 that don't hit any other
spheres.
Sphere (4) will only be rendered with rays like ray 3 that start inside it

Ray-Object Intersections: Primary rays

10

Primary rays

PHONG - LAMBERT - NO LIGHTING

11

Lambert Lighting

Diffuse and specular reflection from a glossy surface. The rays represent luminous
intensity, which varies according to Lambert's cosine law for an ideal diffuse
reflector.

12

13

Lambert's Cosine Law

14

The ambient component
of light is simply an offset
from black generated by
the shader.

3D Intersection
Apply same model for each pixel of an image plane as the origin and the ray
direction is based on the perspective camera model

15

3D Intersection

16

import matplotlib.pyplot as plt

import numpy as np

N, M = 256j, 512j

O = np.ones((int(N.imag), int(M.imag), 3)) # Init image plane origin

O[..., 1], O[..., 0] = np.mgrid[0.5:-0.5:N, 1:-1:M] # Image plane uvw coordinates

e_ = O/np.linalg.norm(O, axis=2)[:,:,np.newaxis] # Normalized ray directon e_

Sphere

Cs = np.array([0, 0, 4]) # Center of sphere

r = 1.5 # Radius of sphere

OC_ = Cs - O # Oriented segment from origin to center of the sphere

vec_dot = np.vectorize(np.dot, signature='(n),(m)->()')# Vectorize dot product function

t = vec_dot(OC_, e_) # Pixelwise dot product

Pe = O + e_*t[:,:,np.newaxis] # Point on vector e_ projected from OC_

d = np.linalg.norm(Pe - Cs, axis=2)# Distance from the point Pe and the center of the

sphere

3D Intersection

17

Find intersection position

i = (r**2 - d**2)**0.5

Ps = O + e_*(t - i)[:,:,np.newaxis]

Facing ratio (incidence value)

i_ = i[:,:,np.newaxis]/r

Calculate the normal vector for each point

n = Ps - Cs # Calculate vector n

n_ = n/np.linalg.norm(n, axis=2)[:,:,np.newaxis] # Normalize n

Simple directional light model

Cd = np.array([0.9, 0.15, 0.35])**(1/0.455) # Sphere diffuse color with gamma

Key light

l = np.array([-1.5, 1.5, -1]) # Key light vector

l_ = l/np.linalg.norm(l) # Key light vector normalization

Kd = vec_dot(l_, n_)[:,:,np.newaxis] # Calculate light incidence

Kd[Kd < 0] = 0 # clamp negative values

diff = Cd*Kd # Writes to diffuse

3D Intersection

18

3D Intersection

18

Back light

l = np.array([1.5, -1, 1]) # Back light vector

l_ = l/np.linalg.norm(l) # Back light vector normalization

Kd = vec_dot(l_, n_)[:,:,np.newaxis] # Calculate light incidence

Kd[Kd < 0] = 0 # clamp negative values

diff += Cd*Kd*0.25 # Adds to diffuse

output = np.zeros((int(N.imag), int(M.imag), 3)) # Init output image

output[d < r] = (diff*i_)[d < r] # Shades diffuse and fr

output[output < 0] = 0; output[output > 1] = 1 # Clamp values before visualization

Visualization

fig, ax = plt.subplots(figsize=(16, 10))

ax.imshow(output**(1/2.2)) # View the resulting image with gamma adjustment (sRGB)

plt.show()

19

20

21

import matplotlib.pyplot as plt

import numpy as np

N, M = 256j, 512j

O = np.ones((int(N.imag), int(M.imag), 3)) # Init image plane origin

O[..., 1], O[..., 0] = np.mgrid[0.5:-0.5:N, 1:-1:M] # Image plane uvw coordinates

e_ = O/np.linalg.norm(O, axis=2)[:,:,np.newaxis] # Normalized ray directon e_

Triangle

A = np.array([0 , 2.2 , 5]) # Point A

B = np.array([6.7 , -3 , 8]) # Point B

C = np.array([-1.5, -0.5, 2]) # Point C

AB = B - A # Oriented segment A to B

AC = C - A # Oriented segment A to C

n = np.cross(AB, AC) # Normal vector

n_ = n/np.linalg.norm(n) # Normalized normal

Using the point A to find d

d = - np.dot(n_, A)

22

Finding parameter t

vec_dot = np.vectorize(np.dot, signature='(n),(m)->()') # Vectorize dot product

function

t = - (vec_dot(n_, O) + d)/vec_dot(n_, e_) # Get t for each pixel

Finding P

P = O + t[..., np.newaxis]*e_

Get the resulting vector for each vertex

following the construction order

Pa = vec_dot(np.cross(B - A, P - A), n_) # Resulting vector of A

Pb = vec_dot(np.cross(C - B, P - B), n_) # Resulting vector of B

Pc = vec_dot(np.cross(A - C, P - C), n_) # Resulting vector of C

output = np.zeros((int(N.imag), int(M.imag), 3)) # Init output image

Inside the triangle conditionals

cond = np.logical_and(np.logical_and(Pa >= 0, Pb >= 0), Pc >= 0)

fr = vec_dot(n_, -e_)[..., np.newaxis] # Compute the facing ratio

output[cond] = (0.15, 0.35, 0.9)*fr[cond] # Shade with color and fr

Visualization

fig, ax = plt.subplots(figsize=(16, 10))

ax.imshow(output)

plt.show()

23

Barycentric coordinates

The barycentric coordinates of a point can be
interpreted as masses placed at the vertices of
the simplex, such that the point is the center of
mass (or barycenter) of these masses. These
masses can be zero or negative; they are all
positive if and only if the point is inside the
simplex. Generalized barycentric coordinates
have applications in computer graphics and more
specifically in geometric modelling.

24

25

𝐴𝑅𝐸𝐴𝐴𝐵𝐶 =
𝐵 − 𝐴 x 𝐶 − 𝐴

2

∝=
𝐴𝑅𝐸𝐴𝐵𝐶𝑃

𝐴𝑅𝐸𝐴𝐴𝐵𝐶
=

𝐶 − 𝐵 x 𝑃 − 𝐵

𝐵 − 𝐴 x 𝐶 − 𝐴

𝛽 =
𝐴𝑅𝐸𝐴𝐶𝐴𝑃

𝐴𝑅𝐸𝐴𝐴𝐵𝐶
=

𝐴 − 𝐶 x 𝑃 − 𝐶

𝐵 − 𝐴 x 𝐶 − 𝐴

𝛾 =
𝐴𝑅𝐸𝐴𝐴𝐵𝑃

𝐴𝑅𝐸𝐴𝐴𝐵𝐶
=

𝐵 − 𝐴 x 𝑃 − 𝐴

𝐵 − 𝐴 x 𝐶 − 𝐴

import matplotlib.pyplot as plt

import numpy as np

N, M = 256j, 512j

O = np.ones((int(N.imag), int(M.imag), 3)) # Init image plane origin

O[..., 1], O[..., 0] = np.mgrid[0.5:-0.5:N, 1:-1:M] # Image plane uvw coordinates

e_ = O/np.linalg.norm(O, axis=2)[:,:,np.newaxis] # Normalized ray directon e_

Triangle

A = np.array([0 , 1.25 , 3]) # Point A

B = np.array([2 , -1.25, 3]) # Point B

C = np.array([-2, -1.25, 3]) # Point C

AB = B - A # Oriented segment A to B

AC = C - A # Oriented segment A to C

n = np.cross(AB, AC) # Normal vector

n_ = n/np.linalg.norm(n) # Normalized normal

Using the point A to find d

d = - np.dot(n_, A)

26

27 27

Finding parameter t

vec_dot = np.vectorize(np.dot, signature='(n),(m)->()') # Vectorize dot product

function

t = - (vec_dot(n_, O) + d)/vec_dot(n_, e_) # Get t for each pixel

Finding P

P = O + t[..., np.newaxis]*e_

Get the resulting vector for each vertex

following the construction order

Pa = vec_dot(np.cross(B - A, P - A), n_) # Resulting vector of A

Pb = vec_dot(np.cross(C - B, P - B), n_) # Resulting vector of B

Pc = vec_dot(np.cross(A - C, P - C), n_) # Resulting vector of C

cond = np.logical_and(np.logical_and(Pa >= 0, Pb >= 0), Pc >= 0)

Calculate barycentric coordinates

Aa = np.cross(B - A, P - A) # Resulting vector of A and P

Aa = np.linalg.norm(Aa, axis=2) # Area of triangle ABP

Ab = np.cross(C - B, P - B) # Resulting vector of B and P

Ab = np.linalg.norm(Ab, axis=2) # Area of triangle BCP

Ac = np.cross(A - C, P - C) # Resulting vector of C and P

Ac = np.linalg.norm(Ac, axis=2) # Area of triangle CAP

At = np.cross(C - A, B - A) # Resulting vector of triangle

At = np.linalg.norm(At) # Area of triangle ABC

28

Getting the barycenter weights

alpha = (Ab/At)[..., np.newaxis]

beta = (Ac/At)[..., np.newaxis]

gamma = (Aa/At)[..., np.newaxis]

Output image

output = np.zeros((int(N.imag), int(M.imag), 3)) # Init output image

Ca = np.array([1, 0, 0.4]) # Color vertex A

Cb = np.array([0.4, 1, 0]) # Color vertex B

Cc = np.array([0, 0.4, 1]) # Color vertex C

Interpolated color based on barycentric coordinates

Cd = (alpha*Ca + beta*Cb + gamma*Cc)/(alpha + beta + gamma)

output[cond] = Cd[cond] # Shade with the interpolated colors

Visualization

fig, ax = plt.subplots(figsize=(16, 10))

ax.imshow(output)

plt.show()# Area of triangle ABC

29

30

import numpy as np

import matplotlib.pyplot as plt

w = 800

h = 600

def normalize(x):

 x /= np.linalg.norm(x)

 return x

31

32

33

Ray Tracing Homework

Apply the collision calculation between the plane and sphere

we want to simulate the Sun–Earth system. The semi major
axis of the Earth is a =1 AU. For simplicity, let’s just assume
that the Earth orbits the Sun on a circular orbit, and so the
distance between the Earth and the Sun is a constant r = 1
AU. The mass of the Sun and that of the Earth are M and m,
respectively. Let G be the universal gravitational constant
and r be the position vector of the Earth relative to the Sun.
So the gravitational acceleration between the Sun and the
Earth is

2-Body Problem

34

𝑎 = −𝐺
𝑀𝒓

𝑟3

where the minus sign in the beginning of the equation
indicates that the gravitational acceleration is pointing
towards the opposite direction of r (i.e., the origin).

35

The centrifugal force per unit mass of the Earth is

where v is the linear velocity of the Earth. In order to have the Earth moving on a
circular orbit, 𝑎 = 𝑎𝑐 must hold everywhere along the orbit.

Equating for gravitational acceleration and centrifugal force 𝑣 =
𝐺𝑀

𝑟
 we have

This is often called the circular velocity.

𝑎𝑐 =
𝑣2

𝑟

36

we have the initial conditions ready. If M=1,then m=3 10 6 (the mass ratio
between the Sun and the Earth is 3.10-6). Since it is just a toy model, let’s
assume that G = 1, in which case we have v = 1. It is convenient to assume that
the Sun is at the origin of a Cartesian coordinate system with position vector
X=[0, 0, 0] and zero velocity, V=[0, 0, 0], then we have x=[1, 0, 0], v=[0, 1, 0].

import numpy as np

import matplotlib.pyplot as plt

M = 1.0

m = 3.0e-6

G = 1.0

xS = np.array([0., 0., 0.]) # the position vector of the Sun

xE = np.array([1., 0., 0.]) # the position vector of the Earth

vS = np.array([0., 0., 0.]) # the velocity vector of the Sun

vE = np.array([0., 1., 0.]) # the velocity vector of the Earth

dt = 0.1

t_end = 100

xE_vec = [] # x of the Earth

yE_vec = [] # y of the Earth

xS_vec = [] # x of the Sun

yS_vec = [] # y of the Sun

for t in np.linspace(0, t_end, int(t_end/dt)):

 # acc Sun--> Earth

 aE =-G * M * (xE- xS) / np.linalg.norm(xE - xS) ** 3

 # acc Earth--> Sun

 aS =-G * m * (xS- xE) / np.linalg.norm(xS- xE) ** 3

 # advance the positions and velocities

 xE = xE + vE * dt

 xS = xS + vS * dt

 vE = vE + aE * dt

 vS = vS + aS * dt

 # store the data for plotting

 xE_vec.append(xE[0])

 yE_vec.append(xE[1])

 xS_vec.append(xS[0])

 yS_vec.append(xS[1])

 37

make the plot

fig, axs = plt.subplots()

plt.plot(xE_vec, yE_vec, 'b')

plt.plot(xS_vec, yS_vec, '.',color='tab:orange')

axs.axis('equal')

plt.xlabel('x')

plt.ylabel('y')

plt.show()

38

Looks like the Earth is escaping from the Sun!

39

Decrease the time step by a factor of 10. Now with dt = 0.01

40

Decrease the time step by a factor of 100. Now with dt = 0.0001

Getting better and better. But, the code is becoming so slow!

Forward Euler

 xE = xE + vE * dt

 xS = xS + vS * dt

 vE = vE + aE * dt

 vS = vS + aS * dt

41

dt = 0.1
42

dt = 0.1

Forward Euler

 xE = xE + vE * dt

 xS = xS + vS * dt

 vE = vE + aE * dt

 vS = vS + aS * dt

Backward Euler

vE = vE + aE * dt

vS = vS + aS * dt

xE = xE + vE * dt

xS = xS + vS * dt

43

In this configuration, the Sun is much heavier than the Earth. Out of curiosity, let’s
try another system. As shown in the figure below, let’s assume a binary system
with two equal-mass particles.

M = 1.0 # P1

m = 1.0 # P2

xS = np.array([-1, 0, 0]) # position vector of P1

xE = np.array([1, 0, 0]) # position vector of P2

vS = np.array([0, -0.5, 0])# velocity vector of P1

vE = np.array([0, 0.5, 0]) # velocity vector of P2

44

dt = 0.00001 dt = 0.0001

45

In classical mechanics, the three-body problem is the
problem of taking the initial positions and velocities (or
momenta) of three point masses and solving for their
subsequent motion according to Newton's laws of
motion and Newton's law of universal gravitation.

THE THREE-BODY PROBLEM

