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Contact Forces 
 
The spring force was introduced as an approximative model for the force due 
to deformation. It is based on experimental evidence: We find the law by 
measuring the force as a function of the deformation. And the law is 
surprisingly versatile: We can use it as a model for almost any contact force 
between solid objects. 
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we use the spring model 
as an approximative model 
for the contact force. 
Generally, we do not know 
what the spring constant 
will be for such a model. 
We need either to 
measure the spring 
constant or to find the 
spring constant from 
a theoretical consideration 
based on for example 
elasticity theory. 



Motion of a Hanging Block 
 
A block of mass m = 1 kg is hanging from a spring with spring constant k = 
100 N/m. The other end of the spring is attached to the ceiling. We apply the 
structured problem-solving approach to find the motion of the block after it is 
released. 

𝐹 = ±𝑘∆𝐿 

For simplicity, we place 
the coordinate system so 
that the spring is in 
equilibrium when y = 0 m 

𝐹 𝑦 = −𝑘𝑦𝐣 
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𝐹𝑛𝑒𝑡 = 𝐹 − 𝐺  
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𝐹𝑛𝑒𝑡 = 𝐹 − 𝐺  

𝑚𝑎 = −𝑘𝑦 − 𝑚𝑔 

Equilibrium model: First, let us consider the 
equilibrium situation—where the block does 
not move when released. a = 0 

𝑚𝑎 = −𝑘𝑦 −𝑚𝑔 = 0 

𝑚𝑎 + 𝑘𝑦 +𝑚𝑔 = 0 

𝑘𝑦 = −𝑚(𝑎 + 𝑔) 

𝑦 = −
𝑚𝑔

𝑘
 

𝑦 = −
𝑚𝑔

𝑘
 

𝑚 

𝑘 
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Numerical solution: We can find the motion of the block using an Euler 
scheme. Generally, we advice you to use a fourth-order Runge-Kutta 
method for oscillator problems, but we use Euler here to make the 
programming transparent. 
import numpy as np 

import matplotlib.pyplot as plt 

# Initialize 

m = 1.0     # kg 

k = 100.0   # N/m 

v0 = 1.0    # m/s 

time = 2.0  # s 

g = 9.8     # m/sˆ2 

# Numerical setup 

dt = 0.0001 # s              time step: please try 60 Hz (1/60) 

n = int(round(time/dt)) 

t = np.zeros(n, float) 

y = np.zeros(n, float) 

v = np.zeros(n, float) 



# Initial values 

y[0] = 0.0 

v[0] = v0 

 

# Simulation loop  

for i in range(n-1): 

    F = -k*y[i] - m*g 

    a = F/m 

    v[i+1] = v[i] + a*dt 

    y[i+1] = y[i] + v[i+1]*dt 

    t[i+1] = t[i] + dt 

 

fig, (ax1, ax2) = plt.subplots(2, 1) 

ax1.plot(t,y,'-b') 

ax2.plot(t,v,'-b') 

ax1.set_ylabel('y [m]') 

ax2.set_ylabel('v [m/s]') 

ax2.set_xlabel('t [s]') 

plt.show()  
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Spring and Damper 
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Spring and Damper 
 
Spring: an ideal elastic element 

Will immediately change and return to its original shape upon loading and unloading. 

 
 
Damper: a viscous fluid 

Will change its original shape upon loading, depending on time (and temperature). 
May slowly return to or may not return to its original shape upon unloading. 
 partial or complete recovery 
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complete recovery 

partial recovery 

no recovery 
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Mass–Spring–Damper (MSD) 
 
An ideal mass–spring–damper system with mass m, spring constant k, and 
viscous damper of damping coefficient c is subject to an oscillatory force. 

𝑚 

𝑘 𝑐 

𝐹𝑛𝑒𝑡 = −𝑘𝑦 + −𝑐
𝑑𝑦

𝑑𝑡
 

𝑚𝑎 = −𝑘𝑦 − 𝑐
𝑑𝑦

𝑑𝑡
 

𝐹 = −𝑐𝑣 = −𝑐
𝑑𝑦

𝑑𝑡
 𝐹𝑠 = −𝑘𝑦 

𝑑2𝑦

𝑑𝑡2
+

𝑐

𝑚

𝑑𝑦

𝑑𝑡
+

𝑘

𝑚
𝑦 = 0 

2. Order Differential Equation 

𝑎 = −
𝑘

𝑚
𝑦 −

𝑐

𝑚

𝑑𝑦

𝑑𝑡
 



𝜁 =
𝑐

2 𝑘𝑚
 

𝜔0 =
𝑘

𝑚
 the natural frequency of the system 

the damping ratio 

𝑚 

𝑘 𝑐 

𝑑2𝑦

𝑑𝑡2
+ 2𝜁𝜔0

𝑑𝑦

𝑑𝑡
+ 𝜔0

2𝑦 = 0 
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The first parameter, ω0, is called the (undamped) natural frequency of the system. 
The second parameter, ζ, is called the damping ratio. The natural frequency 
represents an angular frequency, expressed in radians per second. The damping ratio 
is a dimensionless quantity. 
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By choosing appropriate parameters we can “tune” the behavior of the 
system 
 

We can classify the system into three distinct categories. 
 
1. Under-damped: ζ< 1. In this case the system oscillates with a 

frequency equal to 𝜔𝑑 = 𝜔0 1 − 𝜁2  
 

2. Over-damped: ζ > 1. The system slowly returns to equilibrium 
 

3. Critically Damped: ζ=1. The system returns to equilibrium 



MSD-like Systems are found throughout engineering  
 

• Human Running 
 
• Circuit Design: RLC circuits 
 
• Robotics (PD control) 

 
• Automotive (Cruise control, car suspensions etc.) 
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import numpy as np 

import matplotlib.pyplot as plt 

# Initialize 

timeFinal= 16.0   # Simulation time in seconds 

steps = 10000     # Number of steps 

dt = timeFinal/steps      # Step length => 0.0016 s 

t = np.linspace(0, timeFinal, steps+1)    

# Creates an array with steps+1 values from 0 to timeFinal 

# Allocating arrays for velocity and position 

v = np.zeros(steps+1) 

y = np.zeros(steps+1) 

# Setting constants and initial values for vel. and pos. 

k = 0.1 

m = 0.01 

v0 = 0.05 

y0 = 0.01 

freqNatural = (k/m)**0.5 

c = 0.00     #Undampened 

v[0] = v0    #Sets the initial velocity 

y[0] = y0    #Sets the initial position 
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# Simulation loop  

# Numerical solution using Euler's 

# v'(t) = -(k/m)*x(t) - (c/m)*v(t) 

# x'(t) = v(t) 

for i in range(0, steps): 

    v[i+1] = (-k/m)*dt*y[i] + v[i]*(1-dt*c/m) 

    y[i+1] = y[i] + v[i+1]*dt  

fig, ax = plt.subplots() 

ax.plot(t, y,'-g', label='Undampened') 

# Damping set to 10% of critical damping 

c = (2*(k*m)**0.5)*0.10  

for i in range(0, steps): 

    v[i+1] = (-k/m)*dt*y[i] + v[i]*(1-dt*c/m) 

    y[i+1] = y[i] + v[i+1]*dt  

 

ax.plot(t, y, 'b-', label = '10% of crit. damping') 

ax.xlabel('t [s]') 

ax.set_ylabel('y [m]') 

ax.legend(loc = 'upper right') 

plt.show() 
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c = (2*(k*m)**0.5)*0.10  
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c = (2*(k*m)**0.5)*0.25  
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c = (2*(k*m)**0.5)*0.50  
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c = (2*(k*m)**0.5)*1.00  
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𝑚 

𝑘 𝑐 

𝐹 𝑡 = 𝐹0 sin𝜔𝑡 

External Forcing 

External Forcing models the behavior of a system 
which has a time varying force acting on it.  An 
example might be a suspended bridge subjected to 
wind loading. 
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Natural frequency is the frequency at which a system tends to oscillate 
in the absence of any driving or damping force. 
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𝐹 𝑡 = 𝐹0 cos𝜔𝑡 

𝐹0 = 0.01 

𝜔 = 𝑘
𝑚  
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import numpy as np 

import matplotlib.pyplot as plt 

# Initialize 

timeFinal= 16.0   # Simulation time in seconds 

steps = 10000     # Number of steps 

dt = timeFinal/steps      # Step length  

t = np.linspace(0, timeFinal, steps+1)    

# Creates an array with steps+1 values from 0 to timeFinal 

v = np.zeros(steps+1) 

y = np.zeros(steps+1) 

# Setting constants and initial values for vel. and pos. 

k = 0.1 

m = 0.01 

v0 = 0.01 

y0 = 2.00 

freqNatural = (k/m)**0.5 

c = 0.00     #Undampened 

F0 = 0.010 

Wd = freqNatural 

v[0] = v0    #Sets the initial velocity 

y[0] = y0    #Sets the initial position 



# Simulation loop  

for i in range(0, steps): 

    v[i+1] = (-k/m)*y[i]*dt + v[i]*(1-dt*c/m) + F0/m*np.cos(Wd*i*dt)*dt 

    y[i+1] = y[i] + v[i+1]*dt  

 

fig, ax = plt.subplots() 

ax.plot(t, y,'-g', label='Undampened') 

# Damping set to 10% of critical damping 

c = (2*(k*m)**0.5)*0.10  

for i in range(0, steps): 

    v[i+1] = (-k/m)*y[i]*dt + v[i]*(1-dt*c/m) + F0/m*np.cos(Wd*i*dt)*dt 

    y[i+1] = y[i] + v[i+1]*dt  

 

ax.plot(t, y, 'b-', label = '10% of crit. damping') 

ax.xlabel('t [s]') 

ax.ylabel('y [m]') 

ax.legend(loc = 'upper right') 

plt.show() 

25 



26 



27 



28 



29 

Viscoelastic Materials 
 

• Viscosity = The resistance to motion of a liquid 
• Viscoelastic materials 
 Properties = Elastic solid + Fluid 
 = Materials that have mechanical properties dependent 
 on time (loading rate or strain rate) and temperature 



Material Modelling 
 

• Kelvin–Voigt material 
A Kelvin–Voigt material, also called a Voigt material, is a 
viscoelastic material having the properties both of elasticity 
and viscosity. It is named after the British physicist and 
engineer Lord Kelvin and after German physicist Woldemar 
Voigt. the Kelvin–Voigt model does not describe stress 
relaxation. 
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Material Modelling 
 

• Maxwell material 
A Maxwell material is a viscoelastic material having the 
properties both of elasticity and viscosity. It is named for 
James Clerk Maxwell who proposed the model in 1867. It is 
also known as a Maxwell fluid. The Maxwell model does not 
describe creep or recovery. 
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Material Modelling 
 

• Standard linear solid material 
The standard linear solid (SLS) model is a method of modeling 
the behavior of a viscoelastic material using a linear 
combination of springs and dashpots to represent elastic and 
viscous components, respectively. SLS is the simplest model 
that predicts creep or recovery, and stress relaxation 
phenomena. 



33 

# Simulation loop  

for i in range(n-1): 

    F = -k*y[i] - m*g 

    a = F/m 

    v[i+1] = v[i] + a*dt 

    y[i+1] = y[i] + v[i+1]*dt 

    t[i+1] = t[i] + dt 

Euler integration 
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𝐹𝑛𝑒𝑡 = 𝐹 − 𝐺  

𝑚𝑎 = −𝑘𝑦 −𝑚𝑔 

def MassSpring(t, state, m, k, g): 

  # unpack the state vector 

  x = state[0] 

  xd = state[1] 

  # compute acceleration xdd 

  F = -k*x - m*g 

  xdd = F/m   # xdd = ((k*x)/m) – g 

  #return the two state derivatives 

  return [xd, xdd] 

𝑎 = −𝑘𝑦/𝑚 − 𝑔 
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import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import solve_ivp 

 

# simulation parameters 

stime = 20.0 # time [s] 

m = 1.0      # mass [kg] 

k = 100.0    # spring stiffness [N/m] 

v0 = 10.0    # initial velocity [m/s] 

g = 9.8      # gravity [m/sˆ2] 

dt = 0.5     # time step [s] 

n = int(round(stime/dt)) 

tspan = np.linspace(0.0, stime, n) 
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# ODE function 

def MassSpring(t, state, m, k, g): 

    x = state[0] 

    xd = state[1] 

    # compute acceleration xdd 

    F = -k*x - m*g 

    xdd = F/m     # xdd = ((k*x)/m) – g 

    # return the two state derivatives 

    return [xd, xdd] 

 

   

sol = solve_ivp(MassSpring,[tspan[0],tspan[-1]], 

    0, v0],  

                              method = "RK45",  

                             t_eval=tspan, args=(m, k, g)) 



# %% Plot states 

fig, ax = plt.subplots() 

ax.plot(sol.t, sol.y[0],'-b') 

ax.plot(sol.t, sol.y[1],'-g') 

ax.set_xlabel('t [s]') 

ax.set_ylabel('y') 

plt.title('Runge-Kutta Solver') 

ax.legend(('$y$ (m)', '$\dot{y}$ (m/sec)')) 

plt.show() 
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            ‘RK45’ (default): Explicit Runge-Kutta method of order 5(4). The error is 
controlled assuming accuracy of the fourth-order method, but steps are taken using 
the fifth-order accurate formula.  
            ‘RK23’: Explicit Runge-Kutta method of order 3(2). The error is controlled 
assuming accuracy of the second-order method, but steps are taken using the third-
order accurate formula.  
            ‘DOP853’: Explicit Runge-Kutta method of order 8. Python implementation of 
the “DOP853” algorithm originally written in Fortran. 
            ‘Radau’: Implicit Runge-Kutta method of the Radau IIA family of order 5. The 
error is controlled with a third-order accurate embedded formula.  
            ‘BDF’: Implicit multi-step variable-order (1 to 5) method based on a backward 
differentiation formula for the derivative approximation. 
            ‘LSODA’: Adams/BDF method with automatic stiffness detection. This is a 
wrapper of the Fortran solver from ODEPACK. 
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Explicit Runge-Kutta methods (‘RK23’, ‘RK45’, ‘DOP853’) should 
be used for non-stiff problems and implicit methods (‘Radau’, 
‘BDF’) for stiff problems. Among Runge-Kutta methods, 
‘DOP853’ is recommended for solving with high precision (low 
values of rtol and atol). 
 
If not sure, first try to run ‘RK45’. If it makes unusually many 
iterations, diverges, or fails, your problem is likely to be stiff and 
you should use ‘Radau’ or ‘BDF’. ‘LSODA’ can also be a good 
universal choice, but it might be somewhat less convenient to 
work with as it wraps old Fortran code. 
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Numerical Integration  

44 
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Euler : Euler's method is first order method. It is a straight-forward method 
that estimates the next point based on the rate of change at the current 
point. It is a single step method. If no dampening is used, particles get more 
and more energy over time. “For example, bouncing particles will bounce 
higher and higher each time”. Use this integrator for short simulations or 
simulations with a lot of dampening where speedy calculations are more 
important than accuracy. 
 
Midpoint : Also known as “2nd order Runge-Kutta”. Slower than Euler but 
much more stable.  
 
RK4 : Short for “4th order Runge-Kutta”. Similar to Midpoint but slower and 
in most cases more accurate. It is energy conservative even if the 
acceleration is not constant.  



Euler method 
 
 Also known as “Forward Euler”. Simplest integrator. Very fast but also with 
less exact results. If no damping is used, particles get more and more energy 
over time. Notably, Forward Euler's method is unconditionally unstable for 
un-damped oscillating systems (such as a spring-mass system or wave 
equations) in space discretization.  
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Euler method 
 
Adding physical damping to the model (e.g. Rayleigh damping). In this case 
the damping will only be applied to the structure and the question is how 
much damping to introduce when physically it is negligible. 
 
Adding numerical damping. This reduces the numerical oscillations, but also 
reduces the physical response which should be solved for, and the question is 
how much numerical damping to introduce in order to obtain acceptable 
results.  
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Carl David Tolme Runge – Martin Wilhelm Kutta 



Runge –Kutta 
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Runge –Kutta 
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1) At time interval t0, calculate slope k1. 
2) Create a triangle by projecting k1 to t0+∆t. 



Runge –Kutta 
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3) Calculate half the height of the triangle, (∆t/2) k1, and draw a horizontal line. 
4) Draw a vertical line at interval t0+(1/2)∆t. 
5) At this intersection point, calculate the slope k2. 



Runge –Kutta 
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6) Starting out with k2, create a triangle by projecting k2 to t+(3/2)∆t. 
7) Calculate half the height of the triangle, (∆t/2)k2. 



Runge –Kutta 
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8) Translate the height to the base of the triangle formed by k1 at t0+(1/2)∆t. 



Runge –Kutta 
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9) At this point, calculate the slope k3. 



Runge –Kutta 
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10) Create the another triangle by projecting k3 to t0+(3/2)∆t 
11) Find half the height of the triangle, (∆t/2)k3 



Runge –Kutta 
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12) Translate this height to the base of the triangle formed by k1 at point t0+∆t 



Runge –Kutta 
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13) Find the slope k4. 



Runge –Kutta 
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The Runga-Kutta uses these slopes as weighted average to better approximate the 
actual slope, velocity, of the object.  



import pygame 

  

WHITE = (255, 255, 255) 

pygame.init() 

icon = pygame.image.load('icon.png')  

pygame.display.set_icon(icon) 

size = (700, 200) 

screen = pygame.display.set_mode(size) 

pygame.display.set_caption("Physics in Game and Animation")  

# Loop until the user clicks the close button. 

done = False  

# Used to manage how fast the screen updates 

clock = pygame.time.Clock()  

# -------- Main Program Loop ----------- 

while not done: 

    # --- Main event loop 

    for event in pygame.event.get(): 

        if event.type == pygame.QUIT: 

            done = True 

  

    screen.fill(WHITE)  

    pygame.display.flip()  

    clock.tick(60) 

# Close the window and quit. 

pygame.quit() 
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How to set an icon in Pygame. 


