
1

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

Spring and Damper in Modelling

#8

2

Contact Forces

The spring force was introduced as an approximative model for the force due
to deformation. It is based on experimental evidence: We find the law by
measuring the force as a function of the deformation. And the law is
surprisingly versatile: We can use it as a model for almost any contact force
between solid objects.

3

we use the spring model
as an approximative model
for the contact force.
Generally, we do not know
what the spring constant
will be for such a model.
We need either to
measure the spring
constant or to find the
spring constant from
a theoretical consideration
based on for example
elasticity theory.

Motion of a Hanging Block

A block of mass m = 1 kg is hanging from a spring with spring constant k =
100 N/m. The other end of the spring is attached to the ceiling. We apply the
structured problem-solving approach to find the motion of the block after it is
released.

𝐹 = ±𝑘∆𝐿

For simplicity, we place
the coordinate system so
that the spring is in
equilibrium when y = 0 m

𝐹 𝑦 = −𝑘𝑦𝐣

4
𝐹𝑛𝑒𝑡 = 𝐹 − 𝐺

5

𝐹𝑛𝑒𝑡 = 𝐹 − 𝐺

𝑚𝑎 = −𝑘𝑦 − 𝑚𝑔

Equilibrium model: First, let us consider the
equilibrium situation—where the block does
not move when released. a = 0

𝑚𝑎 = −𝑘𝑦 −𝑚𝑔 = 0

𝑚𝑎 + 𝑘𝑦 +𝑚𝑔 = 0

𝑘𝑦 = −𝑚(𝑎 + 𝑔)

𝑦 = −
𝑚𝑔

𝑘

𝑦 = −
𝑚𝑔

𝑘

𝑚

𝑘

6

Numerical solution: We can find the motion of the block using an Euler
scheme. Generally, we advice you to use a fourth-order Runge-Kutta
method for oscillator problems, but we use Euler here to make the
programming transparent.
import numpy as np

import matplotlib.pyplot as plt

Initialize

m = 1.0 # kg

k = 100.0 # N/m

v0 = 1.0 # m/s

time = 2.0 # s

g = 9.8 # m/sˆ2

Numerical setup

dt = 0.0001 # s time step: please try 60 Hz (1/60)

n = int(round(time/dt))

t = np.zeros(n, float)

y = np.zeros(n, float)

v = np.zeros(n, float)

Initial values

y[0] = 0.0

v[0] = v0

Simulation loop

for i in range(n-1):

 F = -k*y[i] - m*g

 a = F/m

 v[i+1] = v[i] + a*dt

 y[i+1] = y[i] + v[i+1]*dt

 t[i+1] = t[i] + dt

fig, (ax1, ax2) = plt.subplots(2, 1)

ax1.plot(t,y,'-b')

ax2.plot(t,v,'-b')

ax1.set_ylabel('y [m]')

ax2.set_ylabel('v [m/s]')

ax2.set_xlabel('t [s]')

plt.show()

7

Spring and Damper

8

Spring and Damper

Spring: an ideal elastic element

Will immediately change and return to its original shape upon loading and unloading.

Damper: a viscous fluid

Will change its original shape upon loading, depending on time (and temperature).
May slowly return to or may not return to its original shape upon unloading.
 partial or complete recovery

9

complete recovery

partial recovery

no recovery

10

Mass–Spring–Damper (MSD)

An ideal mass–spring–damper system with mass m, spring constant k, and
viscous damper of damping coefficient c is subject to an oscillatory force.

𝑚

𝑘 𝑐

𝐹𝑛𝑒𝑡 = −𝑘𝑦 + −𝑐
𝑑𝑦

𝑑𝑡

𝑚𝑎 = −𝑘𝑦 − 𝑐
𝑑𝑦

𝑑𝑡

𝐹 = −𝑐𝑣 = −𝑐
𝑑𝑦

𝑑𝑡
 𝐹𝑠 = −𝑘𝑦

𝑑2𝑦

𝑑𝑡2
+

𝑐

𝑚

𝑑𝑦

𝑑𝑡
+

𝑘

𝑚
𝑦 = 0

2. Order Differential Equation

𝑎 = −
𝑘

𝑚
𝑦 −

𝑐

𝑚

𝑑𝑦

𝑑𝑡

𝜁 =
𝑐

2 𝑘𝑚

𝜔0 =
𝑘

𝑚
 the natural frequency of the system

the damping ratio

𝑚

𝑘 𝑐

𝑑2𝑦

𝑑𝑡2
+ 2𝜁𝜔0

𝑑𝑦

𝑑𝑡
+ 𝜔0

2𝑦 = 0

11

The first parameter, ω0, is called the (undamped) natural frequency of the system.
The second parameter, ζ, is called the damping ratio. The natural frequency
represents an angular frequency, expressed in radians per second. The damping ratio
is a dimensionless quantity.

12

By choosing appropriate parameters we can “tune” the behavior of the
system

We can classify the system into three distinct categories.

1. Under-damped: ζ< 1. In this case the system oscillates with a

frequency equal to 𝜔𝑑 = 𝜔0 1 − 𝜁2

2. Over-damped: ζ > 1. The system slowly returns to equilibrium

3. Critically Damped: ζ=1. The system returns to equilibrium

MSD-like Systems are found throughout engineering

• Human Running

• Circuit Design: RLC circuits

• Robotics (PD control)

• Automotive (Cruise control, car suspensions etc.)

13

https://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjClI6U0obMAhXCOBQKHSfTDNkQjRwIBw&url=https://en.wikipedia.org/wiki/RLC_circuit&psig=AFQjCNG0bddnoPqKPb8oTGeDpamDIwaHYA&ust=1460466036404813
http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjYlJPH0obMAhXE1xQKHSxcA6cQjRwIBw&url=http://www.20sim.com/webhelp/library_signal_control_pid_control_discrete_pd.php&bvm=bv.119028448,d.bGs&psig=AFQjCNEaEaFyODvaEBBplXkmW3fEj_9NMA&ust=1460466110075282
http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwjy-PTz0obMAhUHPxQKHVOxA8oQjRwIBw&url=http://www.mathworks.com/help/simulink/examples/automotive-suspension.html&psig=AFQjCNHjFRgXB_f1guVXnjAtgYgEbAT0gg&ust=1460466253541783
http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiGxKn92YbMAhUDaxQKHbNqAVEQjRwIBw&url=http://engineeronadisk.com/book_plcs/plc_pida4.html&bvm=bv.119028448,d.bGs&psig=AFQjCNG0bZ19oTL04GsEiA47dsjaQNvRww&ust=1460468143159270

14

import numpy as np

import matplotlib.pyplot as plt

Initialize

timeFinal= 16.0 # Simulation time in seconds

steps = 10000 # Number of steps

dt = timeFinal/steps # Step length => 0.0016 s

t = np.linspace(0, timeFinal, steps+1)

Creates an array with steps+1 values from 0 to timeFinal

Allocating arrays for velocity and position

v = np.zeros(steps+1)

y = np.zeros(steps+1)

Setting constants and initial values for vel. and pos.

k = 0.1

m = 0.01

v0 = 0.05

y0 = 0.01

freqNatural = (k/m)**0.5

c = 0.00 #Undampened

v[0] = v0 #Sets the initial velocity

y[0] = y0 #Sets the initial position

15

Simulation loop

Numerical solution using Euler's

v'(t) = -(k/m)*x(t) - (c/m)*v(t)

x'(t) = v(t)

for i in range(0, steps):

 v[i+1] = (-k/m)*dt*y[i] + v[i]*(1-dt*c/m)

 y[i+1] = y[i] + v[i+1]*dt

fig, ax = plt.subplots()

ax.plot(t, y,'-g', label='Undampened')

Damping set to 10% of critical damping

c = (2*(k*m)**0.5)*0.10

for i in range(0, steps):

 v[i+1] = (-k/m)*dt*y[i] + v[i]*(1-dt*c/m)

 y[i+1] = y[i] + v[i+1]*dt

ax.plot(t, y, 'b-', label = '10% of crit. damping')

ax.xlabel('t [s]')

ax.set_ylabel('y [m]')

ax.legend(loc = 'upper right')

plt.show()

16

c = (2*(k*m)**0.5)*0.10

17

c = (2*(k*m)**0.5)*0.25

18

c = (2*(k*m)**0.5)*0.50

19

c = (2*(k*m)**0.5)*1.00

20

21

𝑚

𝑘 𝑐

𝐹 𝑡 = 𝐹0 sin𝜔𝑡

External Forcing

External Forcing models the behavior of a system
which has a time varying force acting on it. An
example might be a suspended bridge subjected to
wind loading.

22

Natural frequency is the frequency at which a system tends to oscillate
in the absence of any driving or damping force.

23

𝐹 𝑡 = 𝐹0 cos𝜔𝑡

𝐹0 = 0.01

𝜔 = 𝑘
𝑚

24

import numpy as np

import matplotlib.pyplot as plt

Initialize

timeFinal= 16.0 # Simulation time in seconds

steps = 10000 # Number of steps

dt = timeFinal/steps # Step length

t = np.linspace(0, timeFinal, steps+1)

Creates an array with steps+1 values from 0 to timeFinal

v = np.zeros(steps+1)

y = np.zeros(steps+1)

Setting constants and initial values for vel. and pos.

k = 0.1

m = 0.01

v0 = 0.01

y0 = 2.00

freqNatural = (k/m)**0.5

c = 0.00 #Undampened

F0 = 0.010

Wd = freqNatural

v[0] = v0 #Sets the initial velocity

y[0] = y0 #Sets the initial position

Simulation loop

for i in range(0, steps):

 v[i+1] = (-k/m)*y[i]*dt + v[i]*(1-dt*c/m) + F0/m*np.cos(Wd*i*dt)*dt

 y[i+1] = y[i] + v[i+1]*dt

fig, ax = plt.subplots()

ax.plot(t, y,'-g', label='Undampened')

Damping set to 10% of critical damping

c = (2*(k*m)**0.5)*0.10

for i in range(0, steps):

 v[i+1] = (-k/m)*y[i]*dt + v[i]*(1-dt*c/m) + F0/m*np.cos(Wd*i*dt)*dt

 y[i+1] = y[i] + v[i+1]*dt

ax.plot(t, y, 'b-', label = '10% of crit. damping')

ax.xlabel('t [s]')

ax.ylabel('y [m]')

ax.legend(loc = 'upper right')

plt.show()

25

26

27

28

29

Viscoelastic Materials

• Viscosity = The resistance to motion of a liquid
• Viscoelastic materials
 Properties = Elastic solid + Fluid
 = Materials that have mechanical properties dependent
 on time (loading rate or strain rate) and temperature

Material Modelling

• Kelvin–Voigt material
A Kelvin–Voigt material, also called a Voigt material, is a
viscoelastic material having the properties both of elasticity
and viscosity. It is named after the British physicist and
engineer Lord Kelvin and after German physicist Woldemar
Voigt. the Kelvin–Voigt model does not describe stress
relaxation.

30

Material Modelling

• Maxwell material
A Maxwell material is a viscoelastic material having the
properties both of elasticity and viscosity. It is named for
James Clerk Maxwell who proposed the model in 1867. It is
also known as a Maxwell fluid. The Maxwell model does not
describe creep or recovery.

31

32

Material Modelling

• Standard linear solid material
The standard linear solid (SLS) model is a method of modeling
the behavior of a viscoelastic material using a linear
combination of springs and dashpots to represent elastic and
viscous components, respectively. SLS is the simplest model
that predicts creep or recovery, and stress relaxation
phenomena.

33

Simulation loop

for i in range(n-1):

 F = -k*y[i] - m*g

 a = F/m

 v[i+1] = v[i] + a*dt

 y[i+1] = y[i] + v[i+1]*dt

 t[i+1] = t[i] + dt

Euler integration

34

𝐹𝑛𝑒𝑡 = 𝐹 − 𝐺

𝑚𝑎 = −𝑘𝑦 −𝑚𝑔

def MassSpring(t, state, m, k, g):

 # unpack the state vector

 x = state[0]

 xd = state[1]

 # compute acceleration xdd

 F = -k*x - m*g

 xdd = F/m # xdd = ((k*x)/m) – g

 #return the two state derivatives

 return [xd, xdd]

𝑎 = −𝑘𝑦/𝑚 − 𝑔

35

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve_ivp

simulation parameters

stime = 20.0 # time [s]

m = 1.0 # mass [kg]

k = 100.0 # spring stiffness [N/m]

v0 = 10.0 # initial velocity [m/s]

g = 9.8 # gravity [m/sˆ2]

dt = 0.5 # time step [s]

n = int(round(stime/dt))

tspan = np.linspace(0.0, stime, n)

36

ODE function

def MassSpring(t, state, m, k, g):

 x = state[0]

 xd = state[1]

 # compute acceleration xdd

 F = -k*x - m*g

 xdd = F/m # xdd = ((k*x)/m) – g

 # return the two state derivatives

 return [xd, xdd]

sol = solve_ivp(MassSpring,[tspan[0],tspan[-1]],

 0, v0],

 method = "RK45",

 t_eval=tspan, args=(m, k, g))

%% Plot states

fig, ax = plt.subplots()

ax.plot(sol.t, sol.y[0],'-b')

ax.plot(sol.t, sol.y[1],'-g')

ax.set_xlabel('t [s]')

ax.set_ylabel('y')

plt.title('Runge-Kutta Solver')

ax.legend(('y (m)', '\dot{y} (m/sec)'))

plt.show()

37

 ‘RK45’ (default): Explicit Runge-Kutta method of order 5(4). The error is
controlled assuming accuracy of the fourth-order method, but steps are taken using
the fifth-order accurate formula.
 ‘RK23’: Explicit Runge-Kutta method of order 3(2). The error is controlled
assuming accuracy of the second-order method, but steps are taken using the third-
order accurate formula.
 ‘DOP853’: Explicit Runge-Kutta method of order 8. Python implementation of
the “DOP853” algorithm originally written in Fortran.
 ‘Radau’: Implicit Runge-Kutta method of the Radau IIA family of order 5. The
error is controlled with a third-order accurate embedded formula.
 ‘BDF’: Implicit multi-step variable-order (1 to 5) method based on a backward
differentiation formula for the derivative approximation.
 ‘LSODA’: Adams/BDF method with automatic stiffness detection. This is a
wrapper of the Fortran solver from ODEPACK.

38

Explicit Runge-Kutta methods (‘RK23’, ‘RK45’, ‘DOP853’) should
be used for non-stiff problems and implicit methods (‘Radau’,
‘BDF’) for stiff problems. Among Runge-Kutta methods,
‘DOP853’ is recommended for solving with high precision (low
values of rtol and atol).

If not sure, first try to run ‘RK45’. If it makes unusually many
iterations, diverges, or fails, your problem is likely to be stiff and
you should use ‘Radau’ or ‘BDF’. ‘LSODA’ can also be a good
universal choice, but it might be somewhat less convenient to
work with as it wraps old Fortran code.

39

40

41

42

43

Numerical Integration

44

45

Euler : Euler's method is first order method. It is a straight-forward method
that estimates the next point based on the rate of change at the current
point. It is a single step method. If no dampening is used, particles get more
and more energy over time. “For example, bouncing particles will bounce
higher and higher each time”. Use this integrator for short simulations or
simulations with a lot of dampening where speedy calculations are more
important than accuracy.

Midpoint : Also known as “2nd order Runge-Kutta”. Slower than Euler but
much more stable.

RK4 : Short for “4th order Runge-Kutta”. Similar to Midpoint but slower and
in most cases more accurate. It is energy conservative even if the
acceleration is not constant.

Euler method

 Also known as “Forward Euler”. Simplest integrator. Very fast but also with
less exact results. If no damping is used, particles get more and more energy
over time. Notably, Forward Euler's method is unconditionally unstable for
un-damped oscillating systems (such as a spring-mass system or wave
equations) in space discretization.

46

Euler method

Adding physical damping to the model (e.g. Rayleigh damping). In this case
the damping will only be applied to the structure and the question is how
much damping to introduce when physically it is negligible.

Adding numerical damping. This reduces the numerical oscillations, but also
reduces the physical response which should be solved for, and the question is
how much numerical damping to introduce in order to obtain acceptable
results.

47

48

49

Carl David Tolme Runge – Martin Wilhelm Kutta

Runge –Kutta

50

Runge –Kutta

51

1) At time interval t0, calculate slope k1.
2) Create a triangle by projecting k1 to t0+∆t.

Runge –Kutta

52

3) Calculate half the height of the triangle, (∆t/2) k1, and draw a horizontal line.
4) Draw a vertical line at interval t0+(1/2)∆t.
5) At this intersection point, calculate the slope k2.

Runge –Kutta

53

6) Starting out with k2, create a triangle by projecting k2 to t+(3/2)∆t.
7) Calculate half the height of the triangle, (∆t/2)k2.

Runge –Kutta

54

8) Translate the height to the base of the triangle formed by k1 at t0+(1/2)∆t.

Runge –Kutta

55

9) At this point, calculate the slope k3.

Runge –Kutta

56

10) Create the another triangle by projecting k3 to t0+(3/2)∆t
11) Find half the height of the triangle, (∆t/2)k3

Runge –Kutta

57

12) Translate this height to the base of the triangle formed by k1 at point t0+∆t

Runge –Kutta

58

13) Find the slope k4.

Runge –Kutta

59

The Runga-Kutta uses these slopes as weighted average to better approximate the
actual slope, velocity, of the object.

import pygame

WHITE = (255, 255, 255)

pygame.init()

icon = pygame.image.load('icon.png')

pygame.display.set_icon(icon)

size = (700, 200)

screen = pygame.display.set_mode(size)

pygame.display.set_caption("Physics in Game and Animation")

Loop until the user clicks the close button.

done = False

Used to manage how fast the screen updates

clock = pygame.time.Clock()

-------- Main Program Loop -----------

while not done:

 # --- Main event loop

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 done = True

 screen.fill(WHITE)

 pygame.display.flip()

 clock.tick(60)

Close the window and quit.

pygame.quit()

60

How to set an icon in Pygame.

