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‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Angle and Axis of Rotation

While a freely moving object (such as a rod thrown across the room) usually
rotates around its center of mass, objects can also rotate around other points.

T T T T T

Serdar ARITAN



‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Angle and Axis of Rotation

In order to uniquely define the rotational state of the rod we need to specify
both the attachment point O and the angle O the rod forms with the
horizontal. But if we only specify the point O, we do not really know how the
object rotates around this point. We need to specify the rotational axis as well

as a point on the axis. 04 -
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Angle and Axis of Rotation

How do we describe the positive rotational
direction? This is customarily determined by the *
right hand rule. Given the direction of an axis, such
as the z-axis, we can find the positive rotational
direction by pointing the right thumb in the
direction of the axis: the positive rotational
direction is then in the direction your remalnlng
fingers are curling: from the x- towards the y-axis.

In this direction O increases, in the opposite
direction the angle decreases.
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A Point on a Rotating Object

Given the angle 0 and the rotation axis (including both a point on the axis and
the positive direction along the axis), we can uniquely determine the
orientation of a rotating object. We describe the position of P using a
coordinate system that rotates along with the object. The rotating coordinate
system has to unit vectors that rotate with the object: the unit vector 4, ,
which is directed radially outwards from the rotation axis, and an axis normal
to the radial direction with unit vector #4,. A point on the rod can be
described in this coordinate system by: 5 &

P = p,t, + puiiy
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When the object has rotated
03} ; | an angle 6 both unit vectors
| have also rotated.

i, =cos@i+sinfj

i, = —sinf@i+cosfj

~>— |If the object is rotating
| around a moving axis, we
also need to add the
1 position of the axis—here
given as the position of the
| center of mass:

-04 =03 =02 =0.1 0 0.1 0.2 0.3 04 _ -~ A
p = R + p U, + pri,
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Periodicity of the State 0(t)

The angle, 0, describes a unique configuration of the rod for values from 0 to
2nt (measured in radians). What happens when 0(t) increases beyond 2m?
When 0 reaches 2mit the rod has rotated a full revolution, and the rod is in the
same position as it was when 0 was equal to 0. We cannot discern these
positions: 8

e ——— i

@ 4r

2k

0

0 I 2 3 4 5 6 7
t(s)
The position of the rod when 0 = 21t is exactly the same as when 8 = 0.
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Angular Velocity

During rotation, the angle 0(t) changes with time. How can we characterize
how fast the rod rotates? By the angular velocity, which is defined as the rate
of the change of the angle: We define the average angular velocity over the

time At as:
6(t + At) — 6(t) B A6

At At

W =

When the time interval becomes small, we find the instantaneous angular

velocity for the rotational motion.

o d0_do_
o= o At  dt
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Velocity of a Point on a Rotating Body

As the rod rotates, every part of the rod moves in a circle around the rotation

axis. What is the velocity of a small part of the rotating rod, and how can we
relate it to the angular velocity?

D7
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Velocity of a Point on a Rotating Body

During the small time interval At, the rod has rotated an angle A9 from the
orientation 0(t) to the new orientation 0(t + At) = 0(t) + A6. How far has P
moved? It has moved the arc length As = RAO along its circular path. The
speed of the small part P is therefore:

_AS_RAQ
VST

If we let the time interval At become infinitesimally small, we find the speed of

the point P to be:
_ds d (RO) = Rd@ =R
VEG @ T e
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Motion with Constant Angular Velocity

If an object rotates with a constant angular velocity, we can find the speed of
the point P from the distance traveled during one complete revolution, s = 21t

R, divided by the time of one revolution, call the period T:

s 2mR
V=== —
t T

where R is the distance from P to the rotation axis. We also know that the
velocity is v = Rw, therefore we find that:

2T 2T
v=-—R=wR=>w=—
T
The angular velocity is often also called the angular frequency.
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Angular Acceleration

The rate of change of the angular velocity by the angular acceleration, a.

dw d%8
“=Gt=a =9
Comparison of linear and rotational motion

Motion Linear Rotation
Position x(1) 0(1)

dx db
Velocit v(t) = — [) = —

y (1) T 2 w(t) T 2

dv  d°x dw d-6

A | t ) = = [) = =
cceleration a(t) T —3 a(t) T -
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Rotation in Pygame

Be Careful: There is a aliasing problem in rotation !!

ad

=f rot_center (image, angle):

"""rotate an image while keeping its center and size"""

wen It *only* works with square images e

orig _rect = image.get rect()

rot_image = pygame.transform.rotate(image, angle)
rot_rect = orig_rect.copy ()

rot_rect.center = rot image.get rect() .center
rot_image = rot_ image.subsurface (rot_rect) .copy ()
return rot_ image
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Rotation in Pygame

Be Careful: There is a aliasing problem in rotate

def rot_center_ rect(image, rect, angle):
"""rotate an image while keeping its center"""
rot_image = pygame.transform.rotate(image, angle)
rot_rect = rot_image.get rect(center = rect.center)
return rot_image, rot rect
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Rotation in Pygame

while not done:
for event in pygame.event.get():
1f event. type == pygame.QUIT:
done = True
21l1f event.type == pygame.MOUSEBUTTONDOWN :
player image = rot_ center (player image, 5)

#player image, rotRect = rot center rect (player image,rotRect,5)
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Rotation in Pygame

# Copy image to screen

screen.blit (background image, background position)
# Get the current mouse position. This returns the position
# as a list of two numbers.

player position = pygame.mouse.get pos()

x = player position[0] - 100

y = player position[1l] - 100

# Copy image to screen

screen.blit (player image, [x, y])

# screen.blit (player image, rotRect)

pygame .display.flip()

clock.tick (60)
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& Pygame

Serdar ARITAN




PHYSICS in COMPUTER ANIMATIONS and GAMES

i Pygame is cool
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i Pygame is coal
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& Pygame is cool
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while not done:
for event in pygame.event.get():
1f event. type == pygame.QUIT:
done = True

211l event.type == pygame.MOUSEBUTTONDOWN :

‘ angle += 3
if angle >= 360: angle = 0
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# Copy image to screen

screen.blit (background image, background position)

# Get the current mouse position. This returns the position
# as a list of two numbers.

player position = pygame.mouse.get pos()

x = player position[0] - 100

y = player position[1l] - 100

# Copy image to screen
‘ screen.blit (rot_center (player image, angle), [x, y])

# screen.blit (player image, rotRect)
pygame .display.flip()
clock.tick (60)
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& Pygame
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£ Pygame
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Force Applied Directly Thru the Center of Mass

When a force is applied thru the center of mass of an object, the object will
translate in the direction of the force. The magnitude of the translation is
directly related to the magnitude of the net force and inversely related to the
objects resistance to linear change.
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Force Not Applied Directly Thru the Center of Mass

When a force is not applied directly thru the center of mass of a rigid object it
will cause both translation and rotation.
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Force Not Applied Directly Thru the Center of Mass

Free Rotation of a Rigid Body
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Rigid Bodies

In physics, a rigid body is an idealization of a solid body in which deformation
is neglected. In other words, the distance between any two given points of a
rigid body remains constant in time regardless of external forces exerted on it.

The position of a rigid body is the position of all the particles of which it is
composed. To simplify the description of this position, we exploit the property
that the body is rigid, namely that all its particles maintain the same distance
relative to each other. If the body is rigid, it is sufficient to describe the
position of at least three non-collinear particles.
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Kinetic Energy of a Rotating Rigid Body

we found that the kinetic energy of a body can be expressed as:
k=2 M)+ Zml(vcml

where the first term is related to the motion of the center of mass and
describes the kinetic energy for the translational motion. The second term is
related to the motion relative to the center of mass. For a rigid body, the only
way a part of the body can move relative to the center of mass is by rotation.
We therefore interpret the second term as kinetic energy for the rotational

motion, and we will here introduce the kinetic energy for rotating objects.
Serdar ARITAN 30
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Kinetic Energy of a Rotating Rigid Body

An object can rotate either around a fixed axis or around a moving axis such
as a moving center of mass. Here, we first address the behavior of a rigid body
rotating around a fixed axis, and then generalize to the case of an axis
following the center of mass motion.

0.6 ] 0.6 F
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Rotation Around a Fixed Axis

In order to determine the kinetic energy of the rigid body we assume that the
body consists of small mass-points with masses m; and positions, r; , where
the positions are measured relative to an origin placed on the rotation axis.
The whole body is rotating with the angular velocity w around the fixed axis
through the origin, 0. What is the velocity of point i on the body?

Vi=w X7

We can simplify the description by decomposing the position into two
vectors: the vector p; , directed normal to the z-axis, and the vector z; k

directed along the z-axis.
ri = pPi + Zik
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T
-

\

vi=wk X(p;+ zK)=wk Xp;+zwk Xk=wk Xp;

=0
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In order to find the kinetic energy, we only need the magnitude of the velocity
for each point:

where we have introduced the quantity I;, which we call the moment of
inertia of the rigid body about the axis O:

N
Iy = Z m;p;
i=1
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If the rod is a rigid body, the only possible motion relative to the center of
mass is a rotational motion. The total kinetic energy is therefore: :

T
0.6s
Il
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the Moment of Inertia
The moment of inertia depends on both the

.
y

mass and how it is distributed : ! i ] !
. . | | |
around the rotation axis. o 3 5 0 0 b o
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Moments of inertia for various solid bodies
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Serdar ARITAN

— @

Thin rod of length L. Solid cylinder of radius R.
I = lleLz I = 1M’R2

L =

Hollow cylinder. Cylinder shell of radius R.
I =1M(R}+ R3) I=MR?

Z|

=

Thin pla,te of size a x b Sphere of radius R

I=5M(a®+b?) I=2MR?
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Moments of inertia

A flywheel is a
mechanical  device
specifically designed
to efficiently store
rotational energy.
Flywheels resist
changes in rotational
speed by their
moment of inertia.
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Moments of inertia

Using a continuously variable transmission (CVT), energy is recovered from the
drive train during braking and stored in a flywheel. This stored energy is then used
during acceleration by altering the ratio of the CVT.
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Newton’s Second Law for Rotational Motion

The force by the torque F — FrR
The translational inertia (mass) by the rotational inertia m — I
The acceleration by the angular acceleration a — o

From Newton’s second law for rotational motion , we interpret the torque RF;
= t as the cause of the angular acceleration, just as we interpreted the force
as the cause of acceleration for translational motion. For a given torque, t=F;
R, a larger value of I means a smaller angular acceleration. Also, we see that
the torque t = F; R depends on both the tangential force, F; and the distance
to the rotation axis, R: If we apply the same force F further out from the
rotation axis, we get a larger torque and a larger angular acceleration.
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Rotation around a fixed axis

T

A particle is located at position r relative to its axis of rotation. When a force

F is applied to the particle, only the perpendicular component FL1 produces
a torque. This torque t =r x F has magnitudet=|r| |FL| = |r| |F| sin© and
is directed outward from the screen.
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Rotation around a fixed axis

P T=rxXF=Ixa

"/.‘/-- -\,\F\\

\ \ =
F o \.
o is of
Rotation

Axis of
Rotation

T is the magnitude of the torque,

ris the position vector (a vector from the origin of
the coordinate system defined to the point where
the force is applied)

F is the force vector
Serdar ARITAN 3
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T=FR=I

Top View
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Numerical Integration

FrR
= —
I
Euler’s method for angular motion: Euler’s method follows exactly the same

scheme as for linear motion:

w(t; + At) = w(t;) + At a(t;) G
0(t; + At) = 0(t;) + At w(t; + At)
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FrR
L I= Zmrz = myre + Moy

=7

Top View
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Rl = 0.02 # m

Ml = 4 # kg

R2 = 0.02 # m

M2 = 4 # kg

I = M1*R1**2 + M2*R2**2
g=9.8 # m/s"2

F =10 # N

omegal = 0.0 # rad/s
time = .20 # s

dt = 0.01 # s
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# Numerical variables

n = int(round(time/dt))
theta np.zeros(n, float)
omega np.zeros(n, float)
t = np.zeros(n, float)

# Initialize

fig, ax = plt.subplots()
theta[0] 0

omega[0] omegal

Serdar ARITAN



‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

# Integration loop
for i in range(n-1):

np.array ([Rl*np.cos (theta[i]),

tauz = F*Rl
alpha

t[i+l1]

Serdar ARITAN

(np.

ax

ax.
ax.
ax.
ax.

= tauz/I
omega[i+l] = omega[i] + alpha*dt
theta[i+l] = theta[i] + omega[i+l]*dt

= t[i] + dt
mod (i, 2)==0):

set xlabel('x [m]')
set ylabel('y [m]')
axis ([0, R1l, 0, R1l])
set aspect('equal')

E 00100

.plot(np. array([o, r[0]]1), np.array([O, r[1]]), -

0.0200

Rl*np.sin(theta[i])])

o')

0.0175

0.0150

0.0125

>

0.0075

0.0050

0.0025

0.0000 +

0.000 0.005 0.010 0.015
x [m]
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£ numpy as np
- matplotlib.pyplot as plt

-

-

Rl = 0.02 # m

Ml = 4 # kg

R2 = 0.02 # m

M2 = 4 # kg

I = M1*R1**2 4+ M2*R2**2

g=9.8 # m/s"2

theta0 = np.radians (30) # rad
omegal0 = 0.0 # rad/s
time = 0.20 # s

dt = 0.01 # s
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# Numerical variables

n = int(round(time/dt))
theta np.zeros(n, float)
omega np.zeros(n, float)
t = np.zeros(n, float)

# Initialize

fig, ax = plt.subplots()
theta[0] thetal
omega[0] omegal
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# Integration loop
for i in range(n-1):
np.array([R2*np.cos(theta[i]), R2*np.sin(theta[i])])

r:
tauz

alpha
omega[i+l] = omega[i] + alpha*dt

theta[i+l] = theta[i] + omega[i+l] *dt
t[i+l]
1E (np

Serdar ARITAN

ax

ax.
ax.
ax.
ax.

Ml*g*np.sin(theta[i]) *Rl - M2*g*np.sin(theta[i]) *R2

= tauz/I

= t[i] + dt

.mod(i, 2)==0):

.plot(np.array ([0, r[0]]), np.array ([0, r[l]]),'-0o")
set xlabel('x [m]')

set ylabel('y [m]')

axis([-R1, R1l, -Rl, R1l])

set aspect('equal')
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Rl = 0.02 # m
Ml = 4 # kg
R2 = 0.02 # m
M2 = 4 # kg

theta0 = radians(30)

0020

0015

0.010
0.005 1
0.000 1 @)

—0.005 A

y [m]

—0.010 A

=0.015

-0.020 T T T
-0.02 -0.01 000 0ol 002
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Rl = 0.0199 # m
Ml = 4 # kg
R2 = 0.02 # m
M2 = 4 # kg

theta0 = radians(30)

0015 1

0010
0005
0000 1

—0.005 -

y [m]

—0.010 1

—0.015 1

I ) )
-0.01 000 00l
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Parallel-Axis Theorem

We can use the parallel-axis theorem to find the moment of inertia around
any axis if we only know the moment of inertia around the center of mass.

This is why you usually only find tabulated the moment of inertia of an object
around its center of mass.

The moment of inertia, /,, of an object
around an axis O is related to the moment
of inertia, 1, of the object around a
parallel axis through the center of mass of
the object by

1, = I, + ms?

where m is the mass of the object, and s is
the distance between the axis O and the
parallel axis through the center of mass.
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I,
Rl = 0.024 # m
Ml = 4 # kg
R2 = 0.016 # m
M2 = 6 # kg
Ro = 0.02

theta0 = radians (30)

Iem + Ms? = MyR? + MyR3 + (M + M,)s?

LOnE

000G

0004 -

¥ [m]

0002 -

0L000

—0.002
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low=14.0kgm? |, =80kgm? Iy =6.0 kgem? lcm = 4.0 kgem?

{f#‘fﬁ%

—fr
AN

ICM =30 kg-m2
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is the rotational for a point
analog of Moment of TENOY
Inertia .

which when @ and accounting
multiplied by is a factor for the

in

Angular Mass
Acceleration l Distribution
Rotational leads to

equals net

Clorque >

Newton's 2nd Law
for Rotation

Kinetic Energy the

Moments of Inertia
of Common Objects
aided

aided

Angular
Momentum

one example
of several and the

) ) fundamental
Rotation-Linear principle
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Conservation of
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Rotational Motion Around a Moving Center of Mass

A rod being thrown across the lecture hall. After it has been thrown it is just
affected by gravity and air resistance. We know that the motion of the center
of mass of the object only depends on the external forces acting on the
object—its motion is determined from Newton’s second law of motion. But
what about the rotational motion around the center of mass? The rotational
motion around the center of mass for a rigid body is determined from
Newton’s second law for rotational motion around the center of mass.
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Rotational Motion Around a Moving Center of Mass

When the rod is not in contact with the floor only gravity acts.

y |[m]

x [m]
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Rotational Motion Around a Moving Center of Mass

7 o
'y
4r ~ 7

The rod hits|the flor,

)

/_f,f' [d bounces back up.
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Rotational Motion Around a Moving Center of Mass

When the rod is not in contact with the floor, the only external force acting is
gravity, and since gravity acts in the center of mass, the torque of gravity
around the center of mass is zero, and the angular acceleration is therefore
zero: The rod rotates with a constant angular velocity. However, when the rod
is in contact with the floor, the contact force F from the floor on the rod gives
rise to a net torque around the center of mass, which leads to an angular
acceleration during the contact.

A\
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Rotational Motion Around a Moving Center of Mass

The rod is of length L =1 m, mass M = 0.5 kg, and has a moment of inertia | =
(1/12)ML? around its center of mass. We describe the rod by the position R(t)
of its center of mass and the angular orientation 0(t), where we assume that

the rod moves in the xy-plane and rotates around an axis through the center
of mass directed along the z-axis.

B. _

7777777777777,
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Rotational Motion Around a Moving Center of Mass

The motion of the rod is determined by the forces acting on it. The rod is
affected by gravity, G =-Mg j, acting at the center of mass, rg ., = 0. In
addition the rod will bounce on the floor. We model the force between the
floor and the rod as a spring force, representing the deformation of the floor
and the rod. The two ends of the rod are at positions:

=R+ (L/Z)ﬁ

s =R+ (L/y)a

#t =cosfi+sinf j
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Rotational Motion Around a Moving Center of Mass

The normal force, N,, N, due to the interaction between end A and end B of
the rod is:
N, = {—kyA when y, <0
A7 0 when y,=0
N. = {—kyB when yp <0
B0l 0 when yz=>0

Here, k is the spring constant for the interaction between the rod and the
floor.
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Rotational Motion Around a Moving Center of Mass

The motion of the rod is determined from Newton’s second law for
translational and rotational motion:

zF}-=G+NA+N3=ma
J

and
Z Tyem,j = la

J

ZTZ’Cm’j - 0 X G -+ T‘Alcm X NA + TB,Cm X NB
J
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Rotational Motion Around a Moving Center of Mass

It is not simple to solve these equations analytically, but it is straight forward
to implement a numerical solution. :

v(ty + At) = v(ty) + a(ty, r(ty), v(ty))At
r(ty + At) = r(ty) + v(ty + At)At

w(ty + At) = w(ty) + a(ty, 0(ty), @(ty))At
0(t, + At) = 0(ty) + @(ty + At)At
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# Calculate motion

for i in range(n-1):
# Find force acting on each edge
fnet = np.array([0,0,0])
tnet = 0.0
u = np.array([np.cos(theta[i]), np.sin(theta[i]), 0])
# Position of edge A
rr = r[i] + 0.5*%L*u
# Collision with bottom wall
dr = rr[l]
f = -k*dr*(dr<0.0) *np.array([0,1,0])
fnet = fnet + £
torque = np.cross((rr-r[i]),f)
tnet = tnet + torque
# Position of edge B

rr = r[i] - 0.5*%L*u
# Collision with bottom wall
dr = rr[l]

f = -k*dr*(dr<0.0) *np.array([0,1,0])
fnet = fnet + £

torque = np.cross((rr-r[i]), f)

tnet = tnet + torque

# Add gravity

fnet = fnet - m*g*array([0,1,0])

# Integration step - Newton - Euler
a = fnet/m

v[i+l] = v[i] + a*dt
r[i+l] = r[i] + v[i+l]*dt
alphaz = tnet[2]/I

omega[i+l] = omega[i] + alphaz*dt
theta[i+l] = theta[i] + omega[i+l]*dt
t[i+l] = t[i] + dt
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What is Rotation Matrix

In linear algebra, a rotation matrix is a matrix that is used to perform a
rotation in Euclidean space. For example the matrix

R = [Cos@ —sin @
sin@ cos@

rotates points in the xy-Cartesian plane counter-clockwise through an angle @
about the origin of the Cartesian coordinate system. To perform the rotation
using a rotation matrix R, the position of each point must be represented by a
column vector v, containing the coordinates of the point. A rotated vector is
obtained by using the matrix multiplication Rv.
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What is Rotation Matrix

In two dimensions, every rotation matrix has the following form,

__[cos@ —siné
R(B)_[sinﬂ cos 6

This rotates column vectors by means of the following matrix multiplication,

] =15 o [3)

x' =xcosf —ysiné
y' = xsin@ + ycos @
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What is Rotation Matrix

Particularly useful are the matrices for 90°, 180°, and 270° rotations,

o _[0 -1
R(90°) = | 0]
w_[-1 0
R8O = | |
w_ [0 1
r@70) =" |
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& 1 'l!'ru\
|-

cosipifd) -sinipirddf | =1 | | #2
" |singpisg) cosgirn) [ W] | v2 |

Serdar ARITAN



‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Serdar ARITAN

*

isai




‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Translate to Origin Perform Rotation
4
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Translate back to thesenter

Serdar ARITAN 80



PHYSICS in COMPUTER ANIMATIONS and GAMES

Lmport pygame
from pylab import *
from pygame.locals import *

pygame.init()

scrx = 800
scry = 600
scrcolor = Color('black')

scr_toggle = 0

screen = pygame.display.set mode((scrx, scry), 0, 32)
pygame.display.set caption('Pygame Rotation')

polycolor = Color('green')

polyv [[100, 100], [200, 100], [200, 200], [100, 200]]
polym [150, 150]
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def rotate(pointlist, angle):

theta = np.radians (angle)

c, s = np.cos(theta), np.sin(theta)

R matrix('{} {}; {} {}'.format(c, -s, s, ¢c))
a R.dot (asarray (pointlist) .T) .T
nuxrn a

|
o non

def translate(pointlist, translation):
polyvM = matrix(pointlist)
return hstack((polyvM[:,0] + translation[0], polyvM[:,1] +
translation[l])) .tolist()
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done = False
while not done:
“or event in pygame.event.get():
. event. type == pygame.QUIT:
done = True

screen.fill (scrcolor, (0, 0, scrx, scry))
polyv= translate (polyv, [-150, -150])
polyv = rotate(polyv, 0.1).tolist()
polyv= translate (polyv, [150, 150])

pygame .draw.polygon(screen, polycolor, polyv, 1)
pygame.display.update()

Pygame.quit()
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~ Pygame Rot
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