
1

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

Rotational Motion

#10

2

Angle and Axis of Rotation

While a freely moving object (such as a rod thrown across the room) usually
rotates around its center of mass, objects can also rotate around other points.

3

Angle and Axis of Rotation

In order to uniquely define the rotational state of the rod we need to specify
both the attachment point O and the angle θ the rod forms with the
horizontal. But if we only specify the point O, we do not really know how the
object rotates around this point. We need to specify the rotational axis as well
as a point on the axis.

4

Angle and Axis of Rotation

How do we describe the positive rotational
direction? This is customarily determined by the
right hand rule. Given the direction of an axis, such
as the z-axis, we can find the positive rotational
direction by pointing the right thumb in the
direction of the axis: the positive rotational
direction is then in the direction your remaining
fingers are curling: from the x- towards the y-axis.
In this direction θ increases, in the opposite
direction the angle decreases.

5

A Point on a Rotating Object

Given the angle θ and the rotation axis (including both a point on the axis and
the positive direction along the axis), we can uniquely determine the
orientation of a rotating object. We describe the position of P using a
coordinate system that rotates along with the object. The rotating coordinate
system has to unit vectors that rotate with the object: the unit vector 𝑢 𝑟 ,
which is directed radially outwards from the rotation axis, and an axis normal
to the radial direction with unit vector 𝑢 𝑛 . A point on the rod can be
described in this coordinate system by:

6

𝑃 = 𝑝𝑟𝑢 𝑟 + 𝑝𝑛𝑢 𝑛

7

When the object has rotated
an angle θ both unit vectors
have also rotated.

If the object is rotating
around a moving axis, we
also need to add the
position of the axis—here
given as the position of the
center of mass:

𝑢 𝑟 = cos 𝜃 𝐢 + sin 𝜃 𝐣

𝑢 𝑛 = −sin 𝜃 𝐢 + 𝑐𝑜𝑠 𝜃 𝐣

𝑝 = 𝑹 + 𝑝𝑟𝑢 𝑟 + 𝑝𝑛𝑢 𝑛

8

Periodicity of the State θ(t)

The angle, θ, describes a unique configuration of the rod for values from 0 to
2π (measured in radians). What happens when θ(t) increases beyond 2π?
When θ reaches 2π the rod has rotated a full revolution, and the rod is in the
same position as it was when θ was equal to 0. We cannot discern these
positions:

The position of the rod when θ = 2π is exactly the same as when θ = 0.

Angular Velocity

During rotation, the angle θ(t) changes with time. How can we characterize
how fast the rod rotates? By the angular velocity, which is defined as the rate
of the change of the angle: We define the average angular velocity over the
time Δt as:

𝜔 =
𝜃 𝑡 + ∆𝑡 − 𝜃 𝑡

∆𝑡
=
∆𝜃

∆𝑡

When the time interval becomes small, we find the instantaneous angular
velocity for the rotational motion.

𝜔 = lim
∆𝑡→0

∆𝜃

∆𝑡
=
𝑑𝜃

𝑑𝑡
= 𝜃

9

10

Velocity of a Point on a Rotating Body

As the rod rotates, every part of the rod moves in a circle around the rotation
axis. What is the velocity of a small part of the rotating rod, and how can we
relate it to the angular velocity?

11

Velocity of a Point on a Rotating Body

During the small time interval Δt, the rod has rotated an angle Δθ from the
orientation θ(t) to the new orientation θ(t + Δt) = θ(t) + Δθ. How far has P
moved? It has moved the arc length Δs = RΔθ along its circular path. The
speed of the small part P is therefore:

𝑣 =
∆𝑠

∆𝑡
= 𝑅

∆𝜃

∆𝑡

If we let the time interval Δt become infinitesimally small, we find the speed of
the point P to be:

𝑣 =
𝑑𝑠

𝑑𝑡
=

𝑑

𝑑𝑡
𝑅𝜃 = 𝑅

𝑑𝜃

𝑑𝑡
= 𝑅𝜔

12

Motion with Constant Angular Velocity

If an object rotates with a constant angular velocity, we can find the speed of
the point P from the distance traveled during one complete revolution, s = 2π
R, divided by the time of one revolution, call the period T:

𝑣 =
𝑠

𝑡
=
2𝜋𝑅

𝑇

where R is the distance from P to the rotation axis. We also know that the
velocity is v = Rω, therefore we find that:

𝑣 =
2𝜋

𝑇
𝑅 = 𝜔𝑅 ⇒ 𝜔 =

2𝜋

𝑇

The angular velocity is often also called the angular frequency.

Angular Acceleration

The rate of change of the angular velocity by the angular acceleration, α.

 𝛼 =
𝑑𝜔

𝑑𝑡
=

𝑑2𝜃

𝑑𝑡
= 𝜃

13

14

Rotation in Pygame

Be Careful: There is a aliasing problem in rotation !!

def rot_center(image, angle):

 """rotate an image while keeping its center and size"""

 """ It *only* works with square images """

 orig_rect = image.get_rect()

 rot_image = pygame.transform.rotate(image, angle)

 rot_rect = orig_rect.copy()

 rot_rect.center = rot_image.get_rect().center

 rot_image = rot_image.subsurface(rot_rect).copy()

 return rot_image

15

Rotation in Pygame

Be Careful: There is a aliasing problem in rotate

def rot_center_rect(image, rect, angle):

 """rotate an image while keeping its center"""

 rot_image = pygame.transform.rotate(image, angle)

 rot_rect = rot_image.get_rect(center = rect.center)

 return rot_image, rot_rect

16

Rotation in Pygame

while not done:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 done = True

 elif event.type == pygame.MOUSEBUTTONDOWN:

 player_image = rot_center(player_image, 5)

#player_image, rotRect = rot_center_rect (player_image,rotRect,5)

17

Rotation in Pygame

 # Copy image to screen

 screen.blit(background_image, background_position)

 # Get the current mouse position. This returns the position

 # as a list of two numbers.

 player_position = pygame.mouse.get_pos()

 x = player_position[0] - 100

 y = player_position[1] - 100

 # Copy image to screen

 screen.blit(player_image, [x, y])

 # screen.blit(player_image, rotRect)

 pygame.display.flip()

 clock.tick(60)

18

19

20

21

angle = 0

done = False

while not done:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 done = True

 elif event.type == pygame.MOUSEBUTTONDOWN:

 angle += 3

 if angle >= 360: angle = 0

22

 # Copy image to screen

 screen.blit(background_image, background_position)

 # Get the current mouse position. This returns the position

 # as a list of two numbers.

 player_position = pygame.mouse.get_pos()

 x = player_position[0] - 100

 y = player_position[1] - 100

 # Copy image to screen

 screen.blit(rot_center(player_image, angle), [x, y])

 # screen.blit(player_image, rotRect)

 pygame.display.flip()

 clock.tick(60)

23

24

25

Force Applied Directly Thru the Center of Mass

When a force is applied thru the center of mass of an object, the object will
translate in the direction of the force. The magnitude of the translation is
directly related to the magnitude of the net force and inversely related to the
objects resistance to linear change.

26

27

Force Not Applied Directly Thru the Center of Mass

When a force is not applied directly thru the center of mass of a rigid object it
will cause both translation and rotation.

28

Force Not Applied Directly Thru the Center of Mass

Free Rotation of a Rigid Body

𝐹𝑇

R

Rigid Bodies

In physics, a rigid body is an idealization of a solid body in which deformation
is neglected. In other words, the distance between any two given points of a
rigid body remains constant in time regardless of external forces exerted on it.

The position of a rigid body is the position of all the particles of which it is
composed. To simplify the description of this position, we exploit the property
that the body is rigid, namely that all its particles maintain the same distance
relative to each other. If the body is rigid, it is sufficient to describe the
position of at least three non-collinear particles.

29

Kinetic Energy of a Rotating Rigid Body

we found that the kinetic energy of a body can be expressed as:

where the first term is related to the motion of the center of mass and
describes the kinetic energy for the translational motion. The second term is
related to the motion relative to the center of mass. For a rigid body, the only
way a part of the body can move relative to the center of mass is by rotation.
We therefore interpret the second term as kinetic energy for the rotational
motion, and we will here introduce the kinetic energy for rotating objects.

30

𝐾 =
1

2
𝑀 𝑉 2 +

1

2
 𝑚𝑖 𝑣𝑐𝑚,𝑖

2
𝑁

𝑖=1

Kinetic Energy of a Rotating Rigid Body

An object can rotate either around a fixed axis or around a moving axis such
as a moving center of mass. Here, we first address the behavior of a rigid body
rotating around a fixed axis, and then generalize to the case of an axis
following the center of mass motion.

31

32

Rotation Around a Fixed Axis

In order to determine the kinetic energy of the rigid body we assume that the
body consists of small mass-points with masses mi and positions, ri , where
the positions are measured relative to an origin placed on the rotation axis.
The whole body is rotating with the angular velocity ω around the fixed axis
through the origin, O. What is the velocity of point i on the body?

We can simplify the description by decomposing the position into two
vectors: the vector ρi , directed normal to the z-axis, and the vector zi k
directed along the z-axis.

𝑣𝑖 = 𝜔 × 𝑟𝑖

𝑟𝑖 = 𝜌𝑖 + 𝑧𝑖𝑘

33

𝑣𝑖 = 𝜔 𝐤 × 𝜌𝑖 + 𝑧𝑖𝐤 = 𝜔 𝐤 × 𝜌𝑖 + 𝑧𝑖𝜔 𝐤 × 𝐤 = 𝜔 𝐤 × 𝜌𝑖

= 0

34

In order to find the kinetic energy, we only need the magnitude of the velocity
for each point:

where we have introduced the quantity IO, which we call the moment of
inertia of the rigid body about the axis O:

𝐾 =
1

2
𝑚𝑖𝑣𝑖

2 =

𝑁

𝑖=1

1

2
𝑚𝑖 𝜔𝜌𝑖

2 =

𝑁

𝑖=1

1

2
 𝑚𝑖𝜌𝑖

2

𝑁

𝑖=1

𝜔2 =
1

2
𝐼0𝜔

2

= 𝐼0

𝐼0 = 𝑚𝑖𝜌𝑖
2

𝑁

𝑖=1

If the rod is a rigid body, the only possible motion relative to the center of
mass is a rotational motion. The total kinetic energy is therefore: :

𝐾 =
1

2
𝑀𝑉2 +

1

2
 𝑚𝑖𝐼𝑐𝑚𝜔

2

𝑁

𝑖=1

35

36

the Moment of Inertia

The moment of inertia depends on both the
mass and how it is distributed
around the rotation axis.

The moment of inertia
of the hammer is

where R is the distance
from the head, P,
to the rotation
axis O.

𝐼0 = 𝑀 𝑅2

37

Moments of inertia for various solid bodies

Moments of inertia

A flywheel is a
mechanical device
specifically designed
to efficiently store
rotational energy.
Flywheels resist
changes in rotational
speed by their
moment of inertia.

38

Moments of inertia

39

Using a continuously variable transmission (CVT), energy is recovered from the
drive train during braking and stored in a flywheel. This stored energy is then used
during acceleration by altering the ratio of the CVT.

Continuously Variable Transmission

40

Newton’s Second Law for Rotational Motion

From Newton’s second law for rotational motion , we interpret the torque RFT
= τ as the cause of the angular acceleration, just as we interpreted the force
as the cause of acceleration for translational motion. For a given torque, τ = FT
R, a larger value of I means a smaller angular acceleration. Also, we see that
the torque τ = FT R depends on both the tangential force, FT and the distance
to the rotation axis, R: If we apply the same force F further out from the
rotation axis, we get a larger torque and a larger angular acceleration.

A particle is located at position r relative to its axis of rotation. When a force
F is applied to the particle, only the perpendicular component F⊥ produces
a torque. This torque τ = r × F has magnitude τ = |r| |F⊥| = |r| |F| sin θ and
is directed outward from the screen.

41

Rotation around a fixed axis

F
θ

Rotation around a fixed axis

42

Axis of
Rotation

m I

Axis of
Rotation

m I

𝜏 = 𝑟 × 𝐹 = I × 𝛼

τ is the magnitude of the torque,
r is the position vector (a vector from the origin of
the coordinate system defined to the point where
the force is applied)
F is the force vector

43

𝜏 = 𝐹𝑇𝑅 = 𝐼 ∝

∝1 ∝2 ∝3

𝐼1 𝐼2 𝐼3

Top View

Numerical Integration

Euler’s method for angular motion: Euler’s method follows exactly the same
scheme as for linear motion:

𝜔 𝑡𝑖 + ∆𝑡 = 𝜔 𝑡𝑖 + ∆𝑡 𝛼 𝑡𝑖
𝜃 𝑡𝑖 + ∆𝑡 = 𝜃 𝑡𝑖 + ∆𝑡 𝜔 𝑡𝑖 + ∆𝑡

44

∝=
𝐹𝑇𝑅

𝐼

45

𝐼 = 𝑚𝑟2 = 𝑚1𝑟1
2 +𝑚2𝑟2

2

Top View

∝=
𝐹𝑇𝑅

𝐼

46

import numpy as np

import matplotlib.pyplot as plt

R1 = 0.02 # m

M1 = 4 # kg

R2 = 0.02 # m

M2 = 4 # kg

I = M1*R1**2 + M2*R2**2

g = 9.8 # m/sˆ2

F = 10 # N

omega0 = 0.0 # rad/s

time = .20 # s

dt = 0.01 # s

47

Numerical variables

n = int(round(time/dt))

theta = np.zeros(n, float)

omega = np.zeros(n, float)

t = np.zeros(n, float)

Initialize

fig, ax = plt.subplots()

theta[0] = 0

omega[0] = omega0

Integration loop

for i in range(n-1):

 r = np.array([R1*np.cos(theta[i]), R1*np.sin(theta[i])])

 tauz = F*R1

 alpha = tauz/I

 omega[i+1] = omega[i] + alpha*dt

 theta[i+1] = theta[i] + omega[i+1]*dt

 t[i+1] = t[i] + dt

 if (np.mod(i, 2)==0):

 ax.plot(np.array([0, r[0]]), np.array([0, r[1]]),'-o')

 ax.set_xlabel('x [m]')

 ax.set_ylabel('y [m]')

 ax.axis([0, R1, 0, R1])

 ax.set_aspect('equal')

48

49

𝐼𝑐𝑚 = 𝑚𝑟2 = 𝑚1𝑟1
2 +𝑚2𝑟2

2

Side View
𝒎𝟏𝒈

𝒎𝟐𝒈

50

𝜽
𝒎𝟐𝒈

𝒎𝟏𝒈 Side View

51

import numpy as np

import matplotlib.pyplot as plt

R1 = 0.02 # m

M1 = 4 # kg

R2 = 0.02 # m

M2 = 4 # kg

I = M1*R1**2 + M2*R2**2

g = 9.8 # m/sˆ2

theta0 = np.radians(30) # rad

omega0 = 0.0 # rad/s

time = 0.20 # s

dt = 0.01 # s

52

Numerical variables

n = int(round(time/dt))

theta = np.zeros(n, float)

omega = np.zeros(n, float)

t = np.zeros(n, float)

Initialize

fig, ax = plt.subplots()

theta[0] = theta0

omega[0] = omega0

53

Integration loop

for i in range(n-1):

 r = np.array([R2*np.cos(theta[i]), R2*np.sin(theta[i])])

 tauz = M1*g*np.sin(theta[i])*R1 - M2*g*np.sin(theta[i])*R2

 alpha = tauz/I

 omega[i+1] = omega[i] + alpha*dt

 theta[i+1] = theta[i] + omega[i+1]*dt

 t[i+1] = t[i] + dt

 if (np.mod(i, 2)==0):

 ax.plot(np.array([0, r[0]]), np.array([0, r[1]]),'-o')

 ax.set_xlabel('x [m]')

 ax.set_ylabel('y [m]')

 ax.axis([-R1, R1, -R1, R1])

 ax.set_aspect('equal')

54

R1 = 0.02 # m

M1 = 4 # kg

R2 = 0.02 # m

M2 = 4 # kg

theta0 = radians(30)

55

R1 = 0.0199 # m

M1 = 4 # kg

R2 = 0.02 # m

M2 = 4 # kg

theta0 = radians(30)

Parallel-Axis Theorem

We can use the parallel-axis theorem to find the moment of inertia around
any axis if we only know the moment of inertia around the center of mass.
This is why you usually only find tabulated the moment of inertia of an object
around its center of mass. The moment of inertia, IO, of an object

around an axis O is related to the moment
of inertia, Icm, of the object around a
parallel axis through the center of mass of
the object by

where m is the mass of the object, and s is
the distance between the axis O and the
parallel axis through the center of mass.

𝐼𝑜 = 𝐼𝑐𝑚 +𝑚𝑠2

57

R1 = 0.024 # m

M1 = 4 # kg

R2 = 0.016 # m

M2 = 6 # kg

Ro = 0.02

theta0 = radians(30)

𝐼𝑜 = 𝐼𝑐𝑚 +𝑀𝑠2 = 𝑀1𝑅1
2 +𝑀2𝑅2

2 + (𝑀1 +𝑀2)𝑠
2

O

= 4 0.0242 + 6 0.0162 + 10 0.0042

58

59

60

Rotational Motion Around a Moving Center of Mass

A rod being thrown across the lecture hall. After it has been thrown it is just
affected by gravity and air resistance. We know that the motion of the center
of mass of the object only depends on the external forces acting on the
object—its motion is determined from Newton’s second law of motion. But
what about the rotational motion around the center of mass? The rotational
motion around the center of mass for a rigid body is determined from
Newton’s second law for rotational motion around the center of mass.

61

Rotational Motion Around a Moving Center of Mass

When the rod is not in contact with the floor only gravity acts.

62

Rotational Motion Around a Moving Center of Mass

The rod hits the floor, and bounces back up.

63

Rotational Motion Around a Moving Center of Mass

When the rod is not in contact with the floor, the only external force acting is
gravity, and since gravity acts in the center of mass, the torque of gravity
around the center of mass is zero, and the angular acceleration is therefore
zero: The rod rotates with a constant angular velocity. However, when the rod
is in contact with the floor, the contact force F from the floor on the rod gives
rise to a net torque around the center of mass, which leads to an angular
acceleration during the contact.

𝜏 = 𝐹𝑇𝑟𝑐𝑚 = 𝐼 ∝

Rotational Motion Around a Moving Center of Mass

The rod is of length L = 1 m, mass M = 0.5 kg, and has a moment of inertia I =
(1/12)ML2 around its center of mass. We describe the rod by the position R(t)
of its center of mass and the angular orientation θ(t), where we assume that
the rod moves in the xy-plane and rotates around an axis through the center
of mass directed along the z-axis.

64

Rotational Motion Around a Moving Center of Mass

The motion of the rod is determined by the forces acting on it. The rod is
affected by gravity, G =−Mg j, acting at the center of mass, rG,cm = 0. In
addition the rod will bounce on the floor. We model the force between the
floor and the rod as a spring force, representing the deformation of the floor
and the rod. The two ends of the rod are at positions:

65

𝑟𝐴 = 𝑅 + 𝐿
2 𝑢

𝑟𝐵 = 𝑅 + 𝐿
2 𝑢

𝑢 = cos 𝜃 𝑖 + sin 𝜃 𝑗

Rotational Motion Around a Moving Center of Mass

The normal force, NA, NB due to the interaction between end A and end B of
the rod is:

Here, k is the spring constant for the interaction between the rod and the
floor.

66

𝑁𝐴 =
−𝑘𝑦𝐴 𝑤ℎ𝑒𝑛 𝑦𝐴 < 0
0 𝑤ℎ𝑒𝑛 𝑦𝐴 ≥ 0

𝑁𝐵 =
−𝑘𝑦𝐵 𝑤ℎ𝑒𝑛 𝑦𝐵 < 0
0 𝑤ℎ𝑒𝑛 𝑦𝐵 ≥ 0

Rotational Motion Around a Moving Center of Mass

The motion of the rod is determined from Newton’s second law for
translational and rotational motion:

and

67

 𝐹𝑗
𝑗

= 𝐺 + 𝑁𝐴 + 𝑁𝐵 = 𝑚𝑎

 𝜏𝑧,𝑐𝑚,𝑗

𝑗

= 𝐼𝛼

 𝜏𝑧,𝑐𝑚,𝑗

𝑗

= 0 × 𝐺 + 𝑟𝐴,𝑐𝑚 × 𝑁𝐴 + 𝑟𝐵,𝑐𝑚 × 𝑁𝐵

Rotational Motion Around a Moving Center of Mass

It is not simple to solve these equations analytically, but it is straight forward
to implement a numerical solution. :

68

𝒗 𝑡0 + ∆𝑡 ≈ 𝒗 𝑡0 + 𝒂 𝑡0, 𝒓 𝑡0 , 𝒗 𝑡0 ∆𝒕

r 𝑡0 + ∆𝑡 ≈ 𝒓 𝑡0 + 𝒗 𝑡0 + ∆𝑡 ∆𝑡

𝝎 𝑡0 + ∆𝑡 ≈ 𝝎 𝑡0 + 𝜶 𝑡0, 𝜽 𝑡0 , 𝝎 𝑡0 ∆𝒕

𝜽 𝑡0 + ∆𝑡 ≈ 𝜽 𝑡0 +𝝎 𝑡0 + ∆𝑡 ∆𝑡

 # Calculate motion

 for i in range(n-1):

 # Find force acting on each edge

 fnet = np.array([0,0,0])

 tnet = 0.0

 u = np.array([np.cos(theta[i]), np.sin(theta[i]), 0])

 # Position of edge A

 rr = r[i] + 0.5*L*u

 # Collision with bottom wall

 dr = rr[1]

 f = -k*dr*(dr<0.0)*np.array([0,1,0])

 fnet = fnet + f

 torque = np.cross((rr-r[i]),f)

 tnet = tnet + torque

 # Position of edge B

 rr = r[i] - 0.5*L*u

 # Collision with bottom wall

 dr = rr[1]

 f = -k*dr*(dr<0.0)*np.array([0,1,0])

 fnet = fnet + f

 torque = np.cross((rr-r[i]), f)

 tnet = tnet + torque

 # Add gravity

 fnet = fnet - m*g*array([0,1,0])

 # Integration step - Newton - Euler

 a = fnet/m

 v[i+1] = v[i] + a*dt

 r[i+1] = r[i] + v[i+1]*dt

 alphaz = tnet[2]/I

 omega[i+1] = omega[i] + alphaz*dt

 theta[i+1] = theta[i] + omega[i+1]*dt

 t[i+1] = t[i] + dt

69

70

71

72

73

74

What is Rotation Matrix

In linear algebra, a rotation matrix is a matrix that is used to perform a
rotation in Euclidean space. For example the matrix

𝑅 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

rotates points in the xy-Cartesian plane counter-clockwise through an angle θ
about the origin of the Cartesian coordinate system. To perform the rotation
using a rotation matrix R, the position of each point must be represented by a
column vector v, containing the coordinates of the point. A rotated vector is
obtained by using the matrix multiplication Rv.

75

What is Rotation Matrix

In two dimensions, every rotation matrix has the following form,

𝑅 𝜃 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

This rotates column vectors by means of the following matrix multiplication,

𝑥′

𝑦′
=

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑥
𝑦

𝑥′ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃
𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃

76

What is Rotation Matrix

Particularly useful are the matrices for 90°, 180°, and 270° rotations,

𝑅 90∘ =
0 −1
1 0

𝑅 180∘ =
−1 0
0 −1

𝑅 270∘ =
0 1
−1 0

77

78

79

Translate to Origin Perform Rotation

80

Translate back to the center

import pygame

from pylab import *

from pygame.locals import *

pygame.init()

scrx = 800

scry = 600

scrcolor = Color('black')

scr_toggle = 0

screen = pygame.display.set_mode((scrx, scry), 0, 32)

pygame.display.set_caption('Pygame Rotation')

polycolor = Color('green')

polyv = [[100, 100], [200, 100], [200, 200], [100, 200]]

polym = [150, 150]

81

82

def rotate(pointlist, angle):

 theta = np.radians(angle)

 c, s = np.cos(theta), np.sin(theta)

 R = matrix('{} {}; {} {}'.format(c, -s, s, c))

 a = R.dot(asarray(pointlist).T).T

 return a

def translate(pointlist, translation):

 polyvM = matrix(pointlist)

 return hstack((polyvM[:,0] + translation[0], polyvM[:,1] +

 translation[1])).tolist()

done = False

while not done:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 done = True

 screen.fill(scrcolor, (0, 0, scrx, scry))

 polyv= translate(polyv, [-150, -150])

 polyv = rotate(polyv, 0.1).tolist()

 polyv= translate(polyv, [150, 150])

 pygame.draw.polygon(screen, polycolor, polyv, 1)

 pygame.display.update()

pygame.quit()

83

84

