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Angle and Axis of Rotation 
 
While a freely moving object (such as a rod thrown across the room) usually 
rotates around its center of mass, objects can also rotate around other points. 
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Angle and Axis of Rotation 
 
In order to uniquely define the rotational state of the rod we need to specify 
both the attachment point O and the angle θ the rod forms with the 
horizontal. But if we only specify the point O, we do not really know how the 
object rotates around this point. We need to specify the rotational axis as well 
as a point on the axis. 
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Angle and Axis of Rotation 
 
How do we describe the positive rotational 
direction? This is customarily determined by the 
right hand rule. Given the direction of an axis, such 
as the z-axis, we can find the positive rotational 
direction by pointing the right thumb in the 
direction of the axis: the positive rotational 
direction is then in the direction your remaining 
fingers are curling: from the x- towards the y-axis. 
In this direction θ increases, in the opposite 
direction the angle decreases. 
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A Point on a Rotating Object 
 
Given the angle θ and the rotation axis (including both a point on the axis and 
the positive direction along the axis), we can uniquely determine the 
orientation of a rotating object. We describe the position of P using a 
coordinate system that rotates along with the object. The rotating coordinate 
system has to unit vectors that rotate with the object: the unit vector 𝑢 𝑟 , 
which is directed radially outwards from the rotation axis, and an axis normal 
to the radial direction with unit vector 𝑢 𝑛 . A point on the rod can be 
described in this coordinate system by: 
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𝑃 = 𝑝𝑟𝑢 𝑟 + 𝑝𝑛𝑢 𝑛 
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When the object has rotated 
an angle θ both unit vectors 
have also rotated. 
 
 
 
If the object is rotating 
around a moving axis, we 
also need to add the 
position of the axis—here 
given as the position of the 
center of mass: 

𝑢 𝑟 = cos 𝜃 𝐢 + sin 𝜃 𝐣 

𝑢 𝑛 = −sin 𝜃 𝐢 + 𝑐𝑜𝑠 𝜃 𝐣 

𝑝 = 𝑹 + 𝑝𝑟𝑢 𝑟 + 𝑝𝑛𝑢 𝑛 
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Periodicity of the State θ(t) 
 
The angle, θ, describes a unique configuration of the rod for values from 0 to 
2π (measured in radians). What happens when θ(t) increases beyond 2π? 
When θ reaches 2π the rod has rotated a full revolution, and the rod is in the 
same position as it was when θ was equal to 0. We cannot discern these 
positions:  
 
 
 
 
 
 
The position of the rod when θ = 2π is exactly the same as when θ = 0.  



Angular Velocity 
 
During rotation, the angle θ(t) changes with time. How can we characterize 
how fast the rod rotates? By the angular velocity, which is defined as the rate 
of the change of the angle: We define the average angular velocity over the 
time Δt as: 

𝜔 =
𝜃 𝑡 + ∆𝑡 − 𝜃 𝑡

∆𝑡
=
∆𝜃

∆𝑡
 

 
When the time interval becomes small, we find the instantaneous angular 
velocity for the rotational motion. 

𝜔 = lim
∆𝑡→0

∆𝜃

∆𝑡
=
𝑑𝜃

𝑑𝑡
= 𝜃  
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Velocity of a Point on a Rotating Body 
 
As the rod rotates, every part of the rod moves in a circle around the rotation 
axis. What is the velocity of a small part of the rotating rod, and how can we 
relate it to the angular velocity?  
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Velocity of a Point on a Rotating Body 
 
During the small time interval Δt, the rod has rotated an angle Δθ from the 
orientation θ(t) to the new orientation θ(t + Δt) = θ(t) + Δθ. How far has P 
moved? It has moved the arc length Δs = RΔθ along its circular path. The 
speed of the small part P is therefore: 
 

𝑣 =
∆𝑠

∆𝑡
= 𝑅

∆𝜃

∆𝑡
 

 
If we let the time interval Δt become infinitesimally small, we find the speed of 
the point P to be: 

𝑣 =
𝑑𝑠

𝑑𝑡
=

𝑑

𝑑𝑡
𝑅𝜃 = 𝑅

𝑑𝜃

𝑑𝑡
= 𝑅𝜔 
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Motion with Constant Angular Velocity 
 
If an object rotates with a constant angular velocity, we can find the speed of 
the point P from the distance traveled during one complete revolution, s = 2π 
R, divided by the time of one revolution, call the period T: 

𝑣 =
𝑠

𝑡
=
2𝜋𝑅

𝑇
 

where R is the distance from P to the rotation axis. We also know that the 
velocity is v = Rω, therefore we find that: 
 

𝑣 =
2𝜋

𝑇
𝑅 = 𝜔𝑅 ⇒ 𝜔 =

2𝜋

𝑇
 

 
The angular velocity is often also called the angular frequency. 



Angular Acceleration 
 
The rate of change of the angular velocity by the angular acceleration, α. 
 

 𝛼 =
𝑑𝜔

𝑑𝑡
=

𝑑2𝜃

𝑑𝑡
= 𝜃  
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Rotation in Pygame 
 
Be Careful: There is a aliasing problem in rotation !! 

def rot_center(image, angle): 

    """rotate an image while keeping its center and size""" 

    """ It *only* works with square images """ 

    orig_rect = image.get_rect() 

    rot_image = pygame.transform.rotate(image, angle) 

    rot_rect = orig_rect.copy() 

    rot_rect.center = rot_image.get_rect().center 

    rot_image = rot_image.subsurface(rot_rect).copy() 

    return rot_image 
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Rotation in Pygame 
 
Be Careful: There is a aliasing problem in rotate 

def rot_center_rect(image, rect, angle): 

    """rotate an image while keeping its center""" 

    rot_image = pygame.transform.rotate(image, angle) 

    rot_rect = rot_image.get_rect(center = rect.center) 

    return rot_image, rot_rect 
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Rotation in Pygame 

while not done: 

  for event in pygame.event.get(): 

    if event.type == pygame.QUIT: 

      done = True 

    elif event.type == pygame.MOUSEBUTTONDOWN: 

      player_image = rot_center(player_image, 5) 

 

 

 

#player_image, rotRect = rot_center_rect (player_image,rotRect,5) 
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Rotation in Pygame 

    # Copy image to screen 

    screen.blit(background_image, background_position) 

    # Get the current mouse position. This returns the position 

    # as a list of two numbers. 

    player_position = pygame.mouse.get_pos() 

    x = player_position[0] - 100 

    y = player_position[1] - 100 

    # Copy image to screen 

    screen.blit(player_image, [x, y])     

    # screen.blit(player_image, rotRect)     

    pygame.display.flip() 

    clock.tick(60) 
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angle = 0 

done = False 

 

while not done: 

  for event in pygame.event.get(): 

    if event.type == pygame.QUIT: 

      done = True 

    elif event.type == pygame.MOUSEBUTTONDOWN: 

      angle += 3 

            if angle >= 360: angle = 0 
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    # Copy image to screen 

    screen.blit(background_image, background_position) 

    # Get the current mouse position. This returns the position 

    # as a list of two numbers. 

    player_position = pygame.mouse.get_pos() 

    x = player_position[0] - 100 

    y = player_position[1] - 100 

    # Copy image to screen 

    screen.blit(rot_center(player_image, angle), [x, y])     

    # screen.blit(player_image, rotRect)     

    pygame.display.flip() 

    clock.tick(60) 
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Force Applied Directly Thru the Center of Mass 
 
When a force is applied thru the center of mass of an object, the object will 
translate in the direction of the force.  The magnitude of the translation is 
directly related to the magnitude of the net force and inversely related to the 
objects resistance to linear change. 
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Force Not Applied Directly Thru the Center of Mass 
 
When a force is not applied directly thru the center of mass of a rigid object it 
will cause both translation and rotation.  
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Force Not Applied Directly Thru the Center of Mass 
 
Free Rotation of a Rigid Body 

𝐹𝑇 

R 



Rigid Bodies 
 
In physics, a rigid body is an idealization of a solid body in which deformation 
is neglected. In other words, the distance between any two given points of a 
rigid body remains constant in time regardless of external forces exerted on it.  
 
The position of a rigid body is the position of all the particles of which it is 
composed. To simplify the description of this position, we exploit the property 
that the body is rigid, namely that all its particles maintain the same distance 
relative to each other. If the body is rigid, it is sufficient to describe the 
position of at least three non-collinear particles. 
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Kinetic Energy of a Rotating Rigid Body 
 
we found that the kinetic energy of a body can be expressed as: 
 
 
 
 
 
where the first term is related to the motion of the center of mass and 
describes the kinetic energy for the translational motion. The second term is 
related to the motion relative to the center of mass. For a rigid body, the only 
way a part of the body can move relative to the center of mass is by rotation. 
We therefore interpret the second term as kinetic energy for the rotational 
motion, and we will here introduce the kinetic energy for rotating objects. 
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𝐾 =
1

2
𝑀 𝑉 2 +

1

2
 𝑚𝑖 𝑣𝑐𝑚,𝑖

2
𝑁

𝑖=1

 



Kinetic Energy of a Rotating Rigid Body 
 
An object can rotate either around a fixed axis or around a moving axis such 
as a moving center of mass. Here, we first address the behavior of a rigid body 
rotating around a fixed axis, and then generalize to the case of an axis 
following the center of mass motion. 
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Rotation Around a Fixed Axis 
 
In order to determine the kinetic energy of the rigid body we assume that the 
body consists of small mass-points with masses mi and positions, ri , where 
the positions are measured relative to an origin placed on the rotation axis. 
The whole body is rotating with the angular velocity ω around the fixed axis 
through the origin, O. What is the velocity of point i on the body? 
 
 
We can simplify the description by decomposing the position into two 
vectors: the vector ρi , directed normal to the z-axis, and the vector zi k 
directed along the z-axis.  

𝑣𝑖 = 𝜔 × 𝑟𝑖 

𝑟𝑖 =  𝜌𝑖 + 𝑧𝑖𝑘 
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𝑣𝑖 = 𝜔 𝐤 × 𝜌𝑖 + 𝑧𝑖𝐤 = 𝜔 𝐤 × 𝜌𝑖 + 𝑧𝑖𝜔 𝐤 × 𝐤 = 𝜔 𝐤 × 𝜌𝑖 

= 0 
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In order to find the kinetic energy, we only need the magnitude of the velocity 
for each point: 
 
 
 
 
 
where we have introduced the quantity IO, which we call the moment of 
inertia of the rigid body about the axis O: 

𝐾 = 
1

2
𝑚𝑖𝑣𝑖

2 =

𝑁

𝑖=1

 
1

2
𝑚𝑖 𝜔𝜌𝑖

2 =

𝑁

𝑖=1

1

2
 𝑚𝑖𝜌𝑖

2

𝑁

𝑖=1

𝜔2 =
1

2
𝐼0𝜔

2 

= 𝐼0 

𝐼0 = 𝑚𝑖𝜌𝑖
2

𝑁

𝑖=1

 



If the rod is a rigid body, the only possible motion relative to the center of 
mass is a rotational motion. The total kinetic energy is therefore: : 

𝐾 =
1

2
𝑀𝑉2 +

1

2
 𝑚𝑖𝐼𝑐𝑚𝜔

2

𝑁

𝑖=1
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the Moment of Inertia 

The moment of inertia depends on both the 
mass and how it is distributed  
around the rotation axis. 
 
The moment of inertia 
of the hammer is  
 
 
where R is the distance 
from the head, P,  
to the rotation 
axis O. 

𝐼0 = 𝑀 𝑅2 
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Moments of inertia for various solid bodies 



Moments of inertia 

A flywheel is a 
mechanical device 
specifically designed 
to efficiently store 
rotational energy. 
Flywheels resist 
changes in rotational 
speed by their 
moment of inertia. 
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Moments of inertia 
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Using a continuously variable transmission (CVT), energy is recovered from the 
drive train during braking and stored in a flywheel. This stored energy is then used 
during acceleration by altering the ratio of the CVT. 

Continuously Variable Transmission  
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Newton’s Second Law for Rotational Motion 
 
 
 
 
From Newton’s second law for rotational motion , we interpret the torque RFT 
= τ as the cause of the angular acceleration, just as we interpreted the force 
as the cause of acceleration for translational motion. For a given torque, τ = FT 
R, a larger value of I means a smaller angular acceleration. Also, we see that 
the torque τ = FT R depends on both the tangential force, FT and the distance 
to the rotation axis, R: If we apply the same force F further out from the 
rotation axis, we get a larger torque and a larger angular acceleration. 



A particle is located at position r relative to its axis of rotation. When a force 
F is applied to the particle, only the perpendicular component F⊥ produces 
a torque. This torque τ = r × F has magnitude τ = |r| |F⊥| = |r| |F| sin θ and 
is directed outward from the screen. 
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Rotation around a fixed axis 



F 
θ 

Rotation around a fixed axis 
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Axis of 
Rotation 

m I 

Axis of 
Rotation 

m I 

𝜏 = 𝑟 × 𝐹 = I × 𝛼  

τ is the magnitude of the torque, 
r is the position vector (a vector from the origin of 
the coordinate system defined to the point where 
the force is applied) 
F is the force vector 
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𝜏 = 𝐹𝑇𝑅 = 𝐼 ∝ 

∝1 ∝2 ∝3 

𝐼1 𝐼2 𝐼3 

Top View 



Numerical Integration 
 
 
 
Euler’s method for angular motion: Euler’s method follows exactly the same 
scheme as for linear motion: 
 

𝜔 𝑡𝑖 + ∆𝑡 = 𝜔 𝑡𝑖 + ∆𝑡 𝛼 𝑡𝑖  
𝜃 𝑡𝑖 + ∆𝑡 = 𝜃 𝑡𝑖 + ∆𝑡 𝜔 𝑡𝑖 + ∆𝑡  
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∝=
𝐹𝑇𝑅

𝐼
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𝐼 = 𝑚𝑟2 = 𝑚1𝑟1
2 +𝑚2𝑟2

2 

Top View 

∝=
𝐹𝑇𝑅

𝐼
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import numpy as np 

import matplotlib.pyplot as plt 

 

R1 = 0.02   # m 

M1 = 4      # kg 

R2 = 0.02   # m 

M2 = 4      # kg 

I = M1*R1**2 + M2*R2**2 

g = 9.8     # m/sˆ2 

F = 10      # N 

omega0 = 0.0    # rad/s 

time = .20      # s 

dt = 0.01       # s 
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# Numerical variables 

n = int(round(time/dt)) 

theta = np.zeros(n, float) 

omega = np.zeros(n, float) 

t = np.zeros(n, float) 

 

# Initialize 

fig, ax = plt.subplots() 

theta[0] = 0 

omega[0] = omega0 



# Integration loop 

for i in range(n-1): 

    r = np.array([R1*np.cos(theta[i]), R1*np.sin(theta[i])]) 

    tauz = F*R1 

    alpha = tauz/I 

    omega[i+1] = omega[i] + alpha*dt 

    theta[i+1] = theta[i] + omega[i+1]*dt 

    t[i+1] = t[i] + dt 

    if (np.mod(i, 2)==0): 

        ax.plot(np.array([0, r[0]]), np.array([0, r[1]]),'-o') 

        ax.set_xlabel('x [m]') 

        ax.set_ylabel('y [m]') 

        ax.axis([0, R1, 0, R1]) 

        ax.set_aspect('equal') 
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𝐼𝑐𝑚 = 𝑚𝑟2 = 𝑚1𝑟1
2 +𝑚2𝑟2

2 

Side View 
𝒎𝟏𝒈 

𝒎𝟐𝒈 
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𝜽 
𝒎𝟐𝒈 

𝒎𝟏𝒈 Side View 
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import numpy as np 

import matplotlib.pyplot as plt 

 

R1 = 0.02   # m 

M1 = 4      # kg 

R2 = 0.02   # m 

M2 = 4      # kg 

I = M1*R1**2 + M2*R2**2 

g = 9.8     # m/sˆ2 

 

theta0 = np.radians(30)     # rad 

omega0 = 0.0       # rad/s 

time = 0.20         # s 

dt = 0.01          # s 
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# Numerical variables 

n = int(round(time/dt)) 

theta = np.zeros(n, float) 

omega = np.zeros(n, float) 

t = np.zeros(n, float) 

 

# Initialize 

fig, ax = plt.subplots() 

theta[0] = theta0 

omega[0] = omega0 
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# Integration loop 

for i in range(n-1): 

    r = np.array([R2*np.cos(theta[i]), R2*np.sin(theta[i])]) 

    tauz = M1*g*np.sin(theta[i])*R1 - M2*g*np.sin(theta[i])*R2 

    alpha = tauz/I 

    omega[i+1] = omega[i] + alpha*dt 

    theta[i+1] = theta[i] + omega[i+1]*dt 

    t[i+1] = t[i] + dt 

    if (np.mod(i, 2)==0): 

        ax.plot(np.array([0, r[0]]), np.array([0, r[1]]),'-o') 

        ax.set_xlabel('x [m]') 

        ax.set_ylabel('y [m]') 

        ax.axis([-R1, R1, -R1, R1]) 

        ax.set_aspect('equal') 
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R1 = 0.02   # m 

M1 = 4      # kg 

R2 = 0.02   # m 

M2 = 4      # kg 

theta0 = radians(30) 
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R1 = 0.0199 # m 

M1 = 4      # kg 

R2 = 0.02   # m 

M2 = 4      # kg 

theta0 = radians(30) 



Parallel-Axis Theorem 
 
We can use the parallel-axis theorem to find the moment of inertia around 
any axis if we only know the moment of inertia around the center of mass. 
This is why you usually only find tabulated the moment of inertia of an object 
around its center of mass. The moment of inertia, IO, of an object 

around an axis O is related to the moment 
of inertia, Icm, of the object around a 
parallel axis through the center of mass of 
the object by  
 
where m is the mass of the object, and s is 
the distance between the axis O and the 
parallel axis through the center of mass. 

𝐼𝑜 = 𝐼𝑐𝑚 +𝑚𝑠2 
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R1 = 0.024   # m 

M1 = 4       # kg 

R2 = 0.016   # m 

M2 = 6       # kg 

Ro = 0.02 

theta0 = radians(30) 

𝐼𝑜 =  𝐼𝑐𝑚 +𝑀𝑠2 = 𝑀1𝑅1
2 +𝑀2𝑅2

2 + (𝑀1 +𝑀2)𝑠
2 

O 

= 4 0.0242 + 6 0.0162 + 10 0.0042 
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Rotational Motion Around a Moving Center of Mass 
 
A rod being thrown across the lecture hall. After it has been thrown it is just 
affected by gravity and air resistance. We know that the motion of the center 
of mass of the object only depends on the external forces acting on the 
object—its motion is determined from Newton’s second law of motion. But 
what about the rotational motion around the center of mass? The rotational 
motion around the center of mass for a rigid body is determined from 
Newton’s second law for rotational motion around the center of mass. 
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Rotational Motion Around a Moving Center of Mass 
 
When the rod is not in contact with the floor only gravity acts. 



62 

Rotational Motion Around a Moving Center of Mass 
 
 
The rod hits the floor, and bounces back up. 
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Rotational Motion Around a Moving Center of Mass 
 
When the rod is not in contact with the floor, the only external force acting is 
gravity, and since gravity acts in the center of mass, the torque of gravity 
around the center of mass is zero, and the angular acceleration is therefore 
zero: The rod rotates with a constant angular velocity. However, when the rod 
is in contact with the floor, the contact force F from the floor on the rod gives 
rise to a net torque around the center of mass, which leads to an angular 
acceleration during the contact. 

𝜏 = 𝐹𝑇𝑟𝑐𝑚 = 𝐼 ∝ 



Rotational Motion Around a Moving Center of Mass 
 
The rod is of length L = 1 m, mass M = 0.5 kg, and has a moment of inertia I = 
(1/12)ML2 around its center of mass. We describe the rod by the position R(t) 
of its center of mass and the angular orientation θ(t), where we assume that 
the rod moves in the xy-plane and rotates around an axis through the center 
of mass directed along the z-axis. 
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Rotational Motion Around a Moving Center of Mass 
 
The motion of the rod is determined by the forces acting on it. The rod is 
affected by gravity, G =−Mg j, acting at the center of mass, rG,cm = 0. In 
addition the rod will bounce on the floor. We model the force between the 
floor and the rod as a spring force, representing the deformation of the floor 
and the rod. The two ends of the rod are at positions:  
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𝑟𝐴 = 𝑅 + 𝐿
2 𝑢  

𝑟𝐵 = 𝑅 + 𝐿
2 𝑢  

𝑢 = cos 𝜃 𝑖 + sin 𝜃 𝑗 



Rotational Motion Around a Moving Center of Mass 
 
The normal force, NA, NB due to the interaction between end A and end B of 
the rod is:  
 
 
 
 
 
Here, k is the spring constant for the interaction between the rod and the 
floor. 
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𝑁𝐴 =  
−𝑘𝑦𝐴 𝑤ℎ𝑒𝑛 𝑦𝐴 < 0
0 𝑤ℎ𝑒𝑛 𝑦𝐴 ≥ 0

 

𝑁𝐵 =  
−𝑘𝑦𝐵 𝑤ℎ𝑒𝑛 𝑦𝐵 < 0
0 𝑤ℎ𝑒𝑛 𝑦𝐵 ≥ 0

 



Rotational Motion Around a Moving Center of Mass 
 
The motion of the rod is determined from Newton’s second law for 
translational and rotational motion: 
 
 
 
and 
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 𝐹𝑗
𝑗

= 𝐺 + 𝑁𝐴 + 𝑁𝐵 = 𝑚𝑎 

 𝜏𝑧,𝑐𝑚,𝑗

𝑗

= 𝐼𝛼 

 𝜏𝑧,𝑐𝑚,𝑗

𝑗

= 0 × 𝐺 + 𝑟𝐴,𝑐𝑚 × 𝑁𝐴 + 𝑟𝐵,𝑐𝑚 × 𝑁𝐵 



Rotational Motion Around a Moving Center of Mass 
 
It is not simple to solve these equations analytically, but it is straight forward 
to implement a numerical solution. : 
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𝒗 𝑡0 + ∆𝑡 ≈ 𝒗 𝑡0 + 𝒂 𝑡0, 𝒓 𝑡0 , 𝒗 𝑡0 ∆𝒕 

r 𝑡0 + ∆𝑡 ≈ 𝒓 𝑡0 + 𝒗 𝑡0 + ∆𝑡 ∆𝑡 

𝝎 𝑡0 + ∆𝑡 ≈ 𝝎 𝑡0 + 𝜶 𝑡0, 𝜽 𝑡0 , 𝝎 𝑡0 ∆𝒕 

𝜽 𝑡0 + ∆𝑡 ≈ 𝜽 𝑡0 +𝝎 𝑡0 + ∆𝑡 ∆𝑡 



 # Calculate motion  

    for i in range(n-1): 

        # Find force acting on each edge  

        fnet = np.array([0,0,0])  

        tnet = 0.0 

        u = np.array([np.cos(theta[i]), np.sin(theta[i]), 0]) 

        # Position of edge A  

        rr = r[i] + 0.5*L*u  

        # Collision with bottom wall  

        dr = rr[1] 

        f = -k*dr*(dr<0.0)*np.array([0,1,0]) 

        fnet = fnet + f  

        torque = np.cross((rr-r[i]),f)  

        tnet = tnet + torque  

        # Position of edge B  

        rr = r[i] - 0.5*L*u  

        # Collision with bottom wall  

        dr = rr[1]  

        f = -k*dr*(dr<0.0)*np.array([0,1,0])  

        fnet = fnet + f  

        torque = np.cross((rr-r[i]), f)  

        tnet = tnet + torque  

        # Add gravity  

        fnet = fnet - m*g*array([0,1,0])  

        # Integration step - Newton - Euler  

        a = fnet/m  

        v[i+1] = v[i] + a*dt  

        r[i+1] = r[i] + v[i+1]*dt  

        alphaz = tnet[2]/I  

        omega[i+1] = omega[i] + alphaz*dt  

        theta[i+1] = theta[i] + omega[i+1]*dt  

        t[i+1] = t[i] + dt  
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What is Rotation Matrix 
 
In linear algebra, a rotation matrix is a matrix that is used to perform a 
rotation in Euclidean space. For example the matrix 
 

𝑅 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

 

 
rotates points in the xy-Cartesian plane counter-clockwise through an angle θ 
about the origin of the Cartesian coordinate system. To perform the rotation 
using a rotation matrix R, the position of each point must be represented by a 
column vector v, containing the coordinates of the point. A rotated vector is 
obtained by using the matrix multiplication Rv. 
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What is Rotation Matrix 
 
In two dimensions, every rotation matrix has the following form, 
 

𝑅 𝜃 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

 

 
This rotates column vectors by means of the following matrix multiplication, 
 

𝑥′

𝑦′
=

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑥
𝑦  

 
𝑥′ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃  
𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃 
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What is Rotation Matrix 
 
Particularly useful are the matrices for 90°, 180°, and 270° rotations, 
 

𝑅 90∘ =
0 −1
1 0

 

 

𝑅 180∘ =
−1 0
0 −1

 

 

𝑅 270∘ =
0 1
−1 0
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Translate to Origin Perform Rotation 
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Translate back to the center 



import pygame 

from pylab import * 

from pygame.locals import * 

  

pygame.init() 

 

scrx = 800 

scry = 600 

scrcolor = Color('black') 

 

scr_toggle = 0 

 

screen = pygame.display.set_mode((scrx, scry), 0, 32) 

pygame.display.set_caption('Pygame Rotation') 

polycolor = Color('green') 

polyv = [[100, 100], [200, 100], [200, 200], [100, 200]] 

polym = [150, 150] 
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def rotate(pointlist, angle): 

    theta = np.radians(angle) 

    c, s = np.cos(theta), np.sin(theta) 

    R = matrix('{} {}; {} {}'.format(c, -s, s, c)) 

    a = R.dot(asarray(pointlist).T).T 

    return a 

 

def translate(pointlist, translation): 

    polyvM = matrix(pointlist) 

    return hstack((polyvM[:,0] + translation[0], polyvM[:,1] +     

 translation[1])).tolist()        



    

     

done = False 

 

while not done: 

    for event in pygame.event.get(): 

        if event.type == pygame.QUIT: 

            done = True 

 

    screen.fill(scrcolor, (0, 0, scrx, scry)) 

    polyv= translate(polyv, [-150, -150]) 

    polyv = rotate(polyv, 0.1).tolist() 

    polyv= translate(polyv, [150, 150]) 

 

    pygame.draw.polygon(screen, polycolor, polyv, 1) 

    pygame.display.update() 

 

pygame.quit() 
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