PHYSICS in COMPUTER ANIMATIONS and GAMES
Cloth Simulation with Particle Mechanics

#11

Serdar ARITAN

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

MASS SPRING SYSTEM

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

Cloth modeling is the term used for simulating cloth within a computer program,
usually in the context of 3D computer graphics. The main approaches used for
this may be classified into three basic types: geometric, physical, and
particle/energy.

Most models of cloth are based on "particles" of mass connected in some
manner of mesh. Newtonian Physics is used to model each particle through the
use of a "black box" called a physics engine. This involves using the basic law of
motion (Newton's Second Law)

Serdar ARITAN

https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

Choose Underlying Model :Mass-Spring
* Easy to understand and implement
* Not as physically accurate as other models

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES
Cloth Animation

* Consider the sheet of cloth.

* Divide it up into a series of approximately evenly spaced masses
M.

* Connect nearby masses by a spring, and use Hooke's Law and
Newton's 2nd Law as the equations of motion.

* \Various additions, such as spring damping or angular springs,
can be made.

* A mesh structure proves invaluable for storing the cloth and
performing the simulation directly on it.

* Each vertex can store all of its own local information (velocity,
position, forces, etc.) and when it comes time to render, the face
information allows for immediate rendering as a normal mesh.

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Force Field Soft Body

e fabric materials.
' Default ‘

Rigid Body |

U Rigid Body Constraint ' v

Cotton| Leather Rubber Denim Silk

[

1.000

0.300 0.4 3.000 1.000 0.150
Bending Model

15 80 15 40 5

5 25 25 25 0.0

0.5 150 25 10 0.05

0.500

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES
Blender/Python API

Cloth Simulation

WERS
0.5 0.9

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES
Blender/Python API

Cloth Simulation

Tension
15

Stiffness
Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES
Blender/Python API

Cloth Simulation

Compression
15

Stiffness
Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES
Blender/Python API

Cloth Simulation

Stiffness
Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES
Blender/Python API

Cloth Simulation

Bending
0.5

Stiffness
Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

* Minimize Strain Energy
* Elasticity-based forces

_{ IE(S) OE(S) aE(S)}
net — ax ’ a}? ’ az

JE (x) E(x+Ax)—-E (x)
ax Ax
* Generally this derivative must be computed analytically. Suppose we
attempted to compute the derivative numerically; we consider the state

variable constant, reducing our energy E(s) to E(x). Evaluating the energy E(S)
takes a long time; we must iterate over all the vertices, faces, and edges,

summing the energy of each one.

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

* Define overall motion of the system
 Given a state vector at a given time representing all relevant physical

quantities (position, velocity) return the change in these variables w. r. t. time
* In our case we have simple Newtonian equations:

dx_ dv_F

dt dt m

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

The cyan nodes are vertices, and the blue and pink lines are springs. The diagonal
springs are necessary to resist collapse of the face; it ensures that the entire cloth
does not decompose into a straight line.

Equations of State: Force

Fnet(v) = Mg + l:wind + Fair resistance Z K(Xcurrent — Xrest)= Ma

Springsevy
M = mass of vertex T, . G
g = gravity vector = (0, —=9.8, 0) ‘ |
k = spring constant " NI\ 7
Ncurrent = current length of spring

Npest = rest (initial) length of spring ‘
Fyina = wind vector

. 2
Fair resistance = —@ * VelOClt.V(")
Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

To determine M, a simple constant (assume is 1) is fine for all vertices. To be more
accurate, you should compute the area of each triangle, and assign 1/3rd of it
towards the mass of each incident vertex; this way the mass of the entire cloth is the
total area of all the triangles times the mass density of the cloth. The gravity vector
can also be an arbitrary vector; if all distance units were meters, time was measured
in seconds, and we were on the surface of the earth and "y" was the "up/down"
vector, (0, -9.8, 0) would be the correct "g". X(current) is just the current length of
the spring, and X(rest), the spring's rest length, needs to be stored in each spring
structure. F(wind) can just be some globally varying constant function, say
(sin(x*y*t), cos(z*t), sin(cos(5*x*y*z)). a is a simple constant determined by the
properties of the surrounding fluid (usually air,) but it can also be used to achieve
certain cloth effects, and can help with the numeric stability of the cloth. k is a very

important constant; if too low, the cloth will sag unrealistically:

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

Damping Springs: Springs resist relative, not absolute, changes in velocity

Fdamp = kdamp(VQIOCity(Vl) - VEIOC|ty(V2)) IS E——

e Diagonal springs — —— —
resist changes in shear
e Horizontal / Vertical

springs resist compression g ——

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

Bending forces: cloth resists high curvature
This can simulated well with bending springs

X

\J ()

XXX

s\

A

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

No bending springs Bending springs

Serdar ARITAN (20

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

XXX
RIXIIXIXIXIX

Low k — sagging High k - stiff
Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

Integrating Equations of State

- - : * Implicit integrators are stable but
Explicit vs. Implicit vs. Symplectic P g

slow and tedious to implement
Euler’s Method (1s(th?rder) [Explicit] » *Symplectic integrators are fast
VesAc = Vi + At (_) but hard to generalize

dt /¢
* Explicit integrators are easy to

Xepat = X¢ + At v)
implement but unstable

Runge Kutta (4th order) [Explicit]

Verlet Algorithm [Explicit]

v " *Symplectic is an infrequently used
Xt+At = 2 X — Xe-At t (dt) (At) mathematical term that describes objects
t joined together smoothly.

Serdar ARITAN (22

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Explicit and Implicit Methods

Explicit and implicit methods are approaches used in numerical analysis for obtaining
numerical approximations to the solutions of time-dependent ordinary and partial
differential equations, as is required in computer simulations of physical processes.

The explicit method calculates the system status at a future time from the currently
known system status.

The implicit method calculates the system status at a future time from the system
statuses at present and future times.

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Explicit and Implicit Methods

The explicit method is easier to program and can be calculated within a shorter
time.

But its stability is so low that you need to use a step size small enough to prevent
divergence. On the contrary, the implicit method has high stability and converges
if you set proper parameters. But, as you need to solve an equation at every step,
it takes a long time to calculate.

As the implicit method can use a sufficiently large step size, it is suitable for
solving equations that involve a long time. Also, in non-linear equations such as
contact, it is difficult to predict a future from the past state. So, in these cases, it
is recommended that you use the implicit method rather than the explicit
method.

Serdar ARITAN (24

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Explicit and Implicit Methods

Accelerations

Cenvral Difierence
[niegration
Grid-Point

Velocities

- Grid-Point
i Positions

Element Formulation and
Gradient Operaior

Element Strain
Rates

ConzStusve Model and
|néegration

Element
Stresses

Element Formulation and
[wergence Ciperator

Element Forces
at Grid-Points

=

Serdar ARITAN 25

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Choosing between Implicit and Explicit Methods
Implicit is generally most efficient in solving for FomcrBauc

static and quasi-static equilibrium, therefore st St i v St e 5 PR——
long duration nonlinear events would be swnsevwwrve! ;
suitable. General Engincering | | Mochiing
Problems i Metab Forming

“—E_,P . Aulumc:kii[c Impact .
Explicit is more appropriate for high speed § St P | e Pt
events, because the time step constrained by E"’z:‘ imm
the event itself and the assumption of lumped ., | — i. L Chorses mpac
mass. The use of reduced integration elements m;;g;gm o e w s%"';;m
also mean that each step is considerably faster i respone § §
than implicit. A benefit of the small time step JSute M,.c.,-a,wm%am
approach is that extreme non-lineararities can N : L e
be handled by virtue of the relatively small = ‘;‘F',’;;f;‘a:fsj: - ?Eﬁiﬂlﬁﬁ:: _

change in state between each time step.
Serdar ARITAN 26

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

Verlet Algorithm (Explicit)

* The Verlet integration algorithm is such an explicit model with the very
interesting property that it does not need to know anything about the
velocity; it computes this internally via looking at the position at both the
current and previous time step.

* Another wonderful aspect of this algorithm is that like 4" order Runge-Kutta,
it is 4th order accurate. Because it is quite accurate, easy to implement, and
does not need the velocity terms, it is usually favorite explicit model used in
all cloth models.

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Cloth Animation

* \Verlet integration is frequently used to calculate trajectories of particles in
molecular dynamics simulations and computer graphics. The algorithm was
first used in 1791 by Delambre and has been rediscovered many times since
then, most recently by Loup Verlet in the 1960s for use in molecular
dynamics. It was also used by Cowell and Crommelin in 1909 to compute the
orbit of Halley's Comet.

* Where Euler's method uses the forward difference approximation to the first
derivative in differential equations of order one, Verlet integration can be
seen as using the central difference approximation to the second derivative:

-

Xn+1 —Xn Xpn —Xn-—1

AZJ_C)n . At At . £n+1 — 255)11 + fn—l
At? At At?
C_inAtz = fn+1 - an + fn—l £n+1 = an - fn—l +C_in Atz

Serdar ARITAN 28

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Euler integration

The heart of the simulation is a particle system. Typically, in implementations
of particle systems, each particle has two main variables: Its position r(t,)
and its velocity v(ty). Then in the time-stepping loop, the new position
r(to + At) and velocity v(t, + At) are often computed by applying the rules

F
a(ty) = -

v(t, + Ai) =~ v(ty) + a(ty, r(ty), v(ty))At

r(ty + At) = r(ty) + v(ty + At)At
where At is the time step, and a is the acceleration computed using Newton’s
second law.

Serdar ARITAN 29

PHYSICS in COMPUTER ANIMATIONS and GAMES

Verlet integration

(o + At) = v(ty) + alty, r(to), v(ts))At |

r(ty + At) = r(ty) + v(t, + At)At

 Euler integration

— —— — — — —

r(ty + At) = r(ty) + v(ty) + a(ty)At At

r(ty + At) = r(ty) + r(ty) — r(ty — At) + a(ty)At At

r(ty + At) =~ 2r(ty) — r(ty — At) + a(ty)At?

verlet(x, x0, F, dt, m)
euler(x, v, F, dt, m)

Serdar ARITAN

Verlet integration

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Verlet integration

In Verlet integration, however, we choose a velocity-less representation and
another integration scheme: Instead of storing each particle’s position and
velocity, we store its current position r(t,) and its previous position
r(to — At). Keeping the time step fixed, the update rule (or integration step) is
then

r(to + At) =~ 2.1(ty) — r(ty — At) + a(ty)At?

r(tO - At) = r(to + At)
It works due to the fact that

2.1(tg) — r(ty — At) = r(ty) + (r(ty) — r(ty — At))

is an approximation of the current velocity. (actually, it’s the distance traveled
last time step)

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Verlet integration

It is not always very accurate (energy might leave the system, i.e., dissipate)
but it’s fast and stable. By lowering the value 2 to something like 1.99 a small
amount of drag can also be introduced to the system.

At the end of each step, for each particle the current position r(t,) gets
stored in the corresponding variable r(t, — At). Note that when manipulating
many particles, a useful optimization is possible by simply swapping array

pointers.

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

A Newtonian Particle fx, x,t)
x —))
» Differential equation: f = ma m
* Forces can depend on: The second order ODE
Position x, Velocity v, Time ¢ dzx f(x, /dt Jt)
To handle a second order ODE, we dt2 m
convert it to a first-order one by The first order ODE
introducing extra variables. Here dv f(r,v,t)
we create a variable v to represent p =
velocity, giving us a pair of t m
coupled first-order ODE’s v = /o,
x = v -]f(?f', v,‘ t:)J
a =

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
A Newtonian Particle
The position and velocity X and v can be concatenated to form a 6-vector. This

position/velocity product space is called phase space. In components, the
phase space equation of motion is;

X171 [V1]
X [
X3| | Vs
v |~ [fa/m
V5 fa/m
vl Lfs/ml

system of n particles is described by n copies of the equation, concatenated to
form a én-long vector. Conceptually, the whole system may be regarded as a
point moving through 6n-space.

Serdar ARITAN E3

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

the phase space

In newtonian mechanics, the phase space is the space of all possible states of
a_system; the state of a mechanical system is defined by the constituent
positions x and velocity v. x and v together determine the future behavior of
that system. In other words if you know x and v at time t you will be able to
calculate the x and v at time t+1.

To describe the motion of a single particle you will need 6 variables, 3
positions and 3 velocities. You can imagine a 6 dimensional space; three
positions and three velocities. Each point in this 6 dimensional space is a
possible description of the particles' possible states, of course constraint by
the laws of classical mechanics.

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

the phase space

Time Series Phase Portrait

Pio= 1tion
=

Magnitude

Velooity

Serdar ARITAN E3

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

the phase space

Real Space Phase Space

SO

Velocity

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Particle Structure

A particle may be represented by a structure containing its position, velocity,
force, and mass. The six-vector formed by concatenating the position and
velocity comprises the point’s position in phase space.

X Position Position in

Velocity Phase Space

mass

Vv
f Force Accumulator
m

Serdar ARITAN E3

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Particle Systems

A particle system is essentially just a [list of particles].

particles| |n || time

<

—t,

11

Serdar ARITAN E3

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

=t win O P 9

= Particle(object):

¢
"
O
"
()
U
O
O
!
(=
"
=
L\
-
LS
"
i
&
(=
O
=
L
O
O
U
(=
("
=
L\
-
‘\
=2
Q
&
5
)
5
[/
=
£
(=
¢
.
("

__init_ (self, screen, currentPos, gridIndex):

Current Position : m x

self.currentPos = Vec2d(currentPos)

Index [x][y] of Where it lives in the grid
self.gridIndex = gridIndex

Previous Position : m oldx

self.oldPos = Vec2d(currentPos)

Force accumulators : m_a

self.forces = GRAVITY

Serdar ARITAN

Should the particle be locked at its current position?

self.locked = False
self.followMouse = False

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

Forces

* Constant gravity

* Position/time dependent force fields
* Velocity-Dependent drag

* n-ary springs

particles time | |forces| |nforces

)

m objects to invoke

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Forces

All particles are essentially alike. In contrast, the objects that give rise to

forces are heterogeneous. As a matter of implementation, we would like to

make it easy to extend the set of force-producing objects without modifying
the basic particle system model.

Forces can be grouped into three broad categories:

* Unary forces, such as gravity and drag, that act independently on each
particle, either exerting a constant force, or one that depends on one or
more of particle position, particle velocity, and time.

* n-ary forces, such as springs, that apply forces to a fixed set of particles.

* Forces of spatial interaction, such as attraction and repulsion, that may act
on any or all pairs of particles, depending on their positions.

Serdar ARITAN 3

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Unary forces: Gravity

Global earth gravity is trivial to implement. The gravitational force on each
particle is f = mg, where g is a constant vector (presumably pointing down)
whose magnitude is the gravitational constant. If all particles are to feel the
same gravity, which they need not in a simulation, then gravitational force is
applied simply by traversing the system’s particle list, and adding the
appropriate force into each particles force accumulator. Gravity is basic
enough that it could reasonably be wired it into the particle system, rather
than maintaining a distinct “gravity object”.

Serdar ARITAN 43

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Unary forces: Viscous Drag

Ideal viscous drag has the form f = -k;v, where the constant k;is called the
coefficient of drag. The effect of drag is to resist motion, making a particle
gradually come to rest in the absence of other influences. It is highly
recommended that at least a small amount of drag be applied to each
particle, if only to enhance numerical stability. Excessive drag, however, makes
it appear that the particles are floating in molasses. Like gravity, drag can be
implemented as a wired-in special case.

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

n-ary forces

An example of a binary force is a Hook’s law spring. In a basic spring-damper
simulation, the springs are the structural elements that hold everything
together. The spring forces between a pair of particles at positions a and b are

fa = —lks(rg =l =) + kq(vq — vb)z] fo =—fa

the spring force magnitude is proportional to the difference between the
actual length and the rest length, while the damping force magnitude is
proportional to a and b’s relative speed.

Serdar ARITAN 45

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Solver Interface

The relation between a particle system and a differential equation solver.

Serdar ARITAN 46

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

Solver Interface

The relation between a particle system and a differential equation solver.

Particle System

particles time

im(State)

Diffeq Solver

6n
X1 Vi X2 Vo oo Xy Vy
f, f, f

Deriv Eval

' n
Vimy Y2amy o Ve g

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

class ParticleSystem(Grid):

AL

def _ init_ (self, screen, rows=16, columns=16, step=PSTEP, offset=OFFSET):

super (ParticleSystem, self). init_(screen, rows, columns, step, offset)

def verlet (self):
Verlet integration step:
for p in self:
if not p.locked:
make a copy of our current position
temp = Vec2d (p.currentPos)
p.currentPos += p.currentPos - p.oldPos + p.forces * TSTEP**2
p.oldPos = temp
21if p.followMouse:
temp = Vec2d (p.currentPos)
p.currentPos = Vec2d(pygame.mouse.get pos())
p.oldPos = temp

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Derivation Evaluation Loop

* (lear forces
Loop over particles, zero force accumulators.

e C(Calculate forces
Sum all forces into accumulators.

* QGather
Loop over particles, copying v and f/m into destination
array.

Serdar ARITAN 49

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

1
T~
H !

Clear Force

Accumulators InVOlfe accumulateForces
functions

3

Return [v, f/m,..]
to solver.

Serdar ARITAN m

PHYSICS in COMPUTER ANIMATIONS and GAMES

class ParticleSystem(Grid):

LB LML

[\
[
2
A
-
{i
<~
[
IS
’_
[\
a
It\
1\
~
a
‘_

def _ init_ (self, screen, rows=16, columns=16, step=PSTEP, offset=OFFSET):
super (ParticleSystem, self). init_ (screen, rows, columns, step, offset)

def accumulateForces (self):
This doesn't do much right now, other than constantly reset the

particles 'forces' to be 'gravity'. But this is where you'd implement
other things, like drag, wind, etc.
for p in self:

p.forces = GRAVITY

def timeStep (self):
This executes the whole shebang:
self.accumulateForces ()
self.verlet()
for i in range (ITERATE) :
self.satisfyConstraints ()

Serdar ARITAN

) PHYSICS in COMPUTER ANIMATIONS and GAMES

./ & verletCloth02 LMB: movetlock - RMB: unlock - fps: 44.84 — *

Serdar ARITAN

ij PHYSICS in COMPUTER ANIMATIONS and GAMES

{4 particle dance! FPS: 23

Serdar ARITAN e y 53

PHYSICS in COMPUTER ANIMATIONS and GAMES

“ Cloth : Integration

g Euler
Speed Multiplier 1.000 Also known as “Forward Euler”. Simplest integrator. Very fast but also with less exact
~ Physical Properties results. If no dampening is used, particles get more and more energy over time. For

example, bouncing particles will bounce higher and higher each time. Should not be
confused with “Backward Euler” (not implemented) which has the opposite feature, the

energy decrease over time, even with no dampening. Use this integrator for short
simulations or simulations with a lot of dampening where speedy calculations are more

kil important than accuracy.
Compression
Shear Verlet
Bending
Very fast and stable integrator, energy is conserved over time with very little numerical
o e dissipation
Tension

Compression Midpoint

. L’:_EEF — Also known as “2nd order Runge-Kutta". Slower than Euler but much more stable. If the
tending

acceleration is constant (no drag for example), it is energy conservative. It should be noted
~ o Internal Springs

that in example of the bouncing particles, the particles might bounce higher than they

Max Spring Crea... 0.000

—— T started once in a while, but this is not a trend. This integrator is a generally good integrator

¥ Check Surface Normals for use in most cases.
Tension 15.000

Compression 15.000 RK4
v : Short for “4th order Runge-Kutta". Similar to Midpoint but slower and in most cases more

15.000

accurate. It is energy conservative even if the acceleration is not constant. Only needed in

Max Compression 15.000

complex simulations where Midpoint is found not to be accurate enough.

Serdar ARITAN 54

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

Relative Performance
W Bxx2D M Chipmunk Chipmunk Pro

Game Dynamics

Designed specifically for 2D video games.
Circle, convex polygon, and beveled line segment collision primitives.
Multiple collision primitives can be attached to a single rigid body.
Fast broad phase collision detection by using a bounding box tree with great temporal coherence or a spatial
hash.
Extremely fast impulse solving by utilizing Erin Catto’s contact persistence algorithm.
Supports sleeping objects that have come to rest to reduce the CPU load.
Support for collision event callbacks based on user definable object types types.
Flexible collision filtering system with layers, exclusion groups and callbacks.
Supports nearest point, segment (raycasting), shape and bounding box queries to the collision detection system.
Collision impulses amounts can be retrieved for gameplay effects, sound effects, etc.
Large variety of joints — easily make vehicles, ragdolls, and more.
Joint callbacks.
Can be used to easily implement breakable or animated joints.
Maintains a contact graph of all colliding objects.
Lightweight C99 implementation with no external dependencies outside of the Std. C library

1] 0.5 1 L5 2

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

Serdar ARITAN 56

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

Pymunk is a easy-to-use pythonic 2d physics library that can be used
whenever you need 2d rigid body physics from Python. Perfect when you
need 2d physics in your game, demo or other application! It is built on top of
the very capable 2d physics library Chipmunk.

In the normal case pymunk can be installed with pip:

> plp 1nstall pymunk

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Pymunk is a easy-to-use pythonic 2d physics library that can be used whenever you need 2d
rigid body physics from Python. Perfect when you need 2d physics in your game, demo or
other application! It is built on top of the very capable 2d physics library Chipmunk.

> Loca sk

~

Name Date modified Type Size
n 10-Apr-21 1:45 PM cile folder "a WinPython Control Panel - O X
notebooks 17-Apr-21 11:05 PM File folder Packages Options Advanced ?
p}.rt-hon—3.9.4.amd64 ,T_fpr_zr ”:2 o F?le folder Python 3.2 64bit: | C:WIPy54-3340\python-3.9. 4.amds4 | I:l
scripts T-Apr-2 03 PM File folder
settings 27-Apr-21 6:14 PM File folder 0 Installjupgrade packages 5 Uninstall packages
t 17-Apr-21 11:05 PM File folder

2 IDLE (Python GUI) 17-Apr-2111:03PM Application 60 KB Action Name | Version Description

= IDLEX 17-Apr-21 11:03 PM Application &0 KB

B ipython Ct Console 17-Apr-21 11:03 PM Application 140 KB

— Jupyter Lab 17-Apr-21 11:03 PM Application T4 KB

— Jupyter Notebook 17-Apr-21 1103 PM Application T4 KB

license 16-Mar-19 %55 PM Text Document 2 KB

IR Pyzo 17-Apr-21 11:03 PM Application 143 KB

[T at Assistant 17-Apr-21 11:.03 PM Application 149 KB

@ at Designer 17-Apr-21 1103 PM Application 142 KB

P at Linguist 17-Apr-21 1103 PM Application 147 KB

& spyder reset 17-Apr-21 11:03 PM Application 138 KB

& spyder 17-Apr-21 11:03 PM Application 139 KB

I8 vs code 17-Apr-2111:03 PM Application 129 KB

& winPython Command Prompt 17-Apr-21 11:03 PM Application 72 KB

"a WinPython Control Panel 17-Apr-21 11:03 PM Application 127 KB —

- WinPython Interpreter 17-Apr-21 11:03 PM Application 60 KB

EW\'nPython Powershell Prompt 17-Apr-21 11:03 PM Application 120 KB T — e m—

Serdar ARITAN 58

http://chipmunk-physics.net/

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

Pymunk is a easy-to-use pythonic 2d physics library that can be used
whenever you need 2d rigid body physics from Python. Perfect when you
need 2d physics in your game, demo or other application! It is built on top of
the very capable 2d physics library Chipmunk.

In the normal case pymunk can be installed with pip:

> plp 1nstall pymunk

Serdar ARITAN E3

PHYSICS in COMPUTER ANIMATIONS and GAMES
pymunk 6.7.0 e

pip install pymunk @ Released: May 1, 2024

Pymunk is a easy-to-use pythonic 2D physics library

Navigation Project description

= Project description

D Release history

& Download files

Verified details
These details have been verified by PyP!

Maintainers

viblo
E Pymunk is an easy-to-use pythonic 2D physics library that can be used whenever you need 2D rigid body m

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

M W - O X "a WinPython Control Panel - O X
Packages Options Advanced ? Packages Options Advanced ?
Python 3.6 64bit: D:\WinPython-64bit-3.6. 1.0Qt5\python-3.6. 1.amde4 Python 3.6 &4bit: D: \WinPython-64bit-3.6. 1.0Qt5 python-3.6. 1.amd54
Y Y Qts'py
O 1stalljuparade packages L Uninstal packages (4] Installjupgrade packages L Uninstal packages
Action Name Version Description Name Version Description
" Logilab code analysis
O pylint Lz module: analyzes Pyth...
Markov Chain Monte
O EpLE L3k Carlo sampling toolkit.
Markov Chain Mante
pymunk O pymc3 3.0 Carlo sampling toolkit.
.Dyo-n Pattern-matching
’iFn S O pymeta3 0.5.1 language based on Met...
== Python driver for
O DAL 340 MongoDB <http: /fwwmw...
|| pymunk 5.2.0
O pyodbc 4.0.15 DB API Module for ODBC
Cross platform Python
O pycpengl HLL binding to OpenGL and ...
pypandoc 1.3.2 in wrapper for pandoc.
O d Thi for pand
[l pyparsing 2.2.0 A Python Parsing Module
. Add packages | Remove @ (Un)select all g/ Install packages x Uninstall packages

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

O Console 1/A X

Python
Type "copy

, [MSC v.1938 64 bit (AMD&4)]
for more information.

IPython 8.22.2 -- An enhanced Interactive Python.

In [1]: pip
Note:

U

Comman
install
download
uninstall

completion
debug
help

General Options:

Serdar ARITAN

you may need to re

s \WPyB4-31238\

nel to use updated packa

12.3.amd64\python.exe -m pip <command> [options]

Install pack

Download pac -

Uninstall packages.

Output installed packages in requirements format.
Inspect the python environment.

List installed pack

Show information about installed pac

Verify installed packages have compatible dependencies.
Manage local and global configuration.

Search PyPI for packages.

Inspect and mana pip's wheel cache.

Inspect information available from pack

Build wheels from your requirements.

Compute hashes of packa archives.

A helper command used for command completion.
Show information useful for debu

Show help for commands.

IPython Console Hi:

PHYSICS in COMPUTER ANIMATIONS and GAMES
pip install pymunk

Console 1/

In [2]: pip install pymunk
Collecting pymunk
Downloading pymunk-6.7.8-cp312-cp312-win_amd64.whl.metadata (6.9 kB)
Requirement already satisfied: cffi»=1.15.8 in c:\wpy64-31230\python-3.12.3.amd64\1ib\site-
packages (from pymunk) (1.16.8)
Requirement already satisfied: pycparser in c:\wpy64-31230\python-3.12.3.amd64\1ib\site-
packages (from cffi>=1.15.@->pymunk}) (2.21)
Downloading pymunk-6.7.8-cp312-cp312-win_amd64.whl (363 kB)
8.8/363.6 kB ? eta -:--:--
B e 18.2/363.6 kB ? eta -:--:--
28.5/363.6 kB 3308.3 kB/s eta
38.7/363.6 kB 262.6 kB/s eta
81.9/363.6 kB 512.8 kB/s eta
184.3/363.6 kB 938.9 kB/s eta
.7/363.6 kB 1.4 MB/s eta
.4/363.6 kB 1.5 MB/s eta
.4/363.6 kB 1.5 MB/s eta
.6/363.6 kB 1.8 MB/s eta

LI I s B T v T v R v

Installing collected packages: pymunk
Successfully installed pymunk-6.7.8
Note: you may need to restart the kernel to use updated packages.

[3]:

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmun

Serdar ARITAN

0O Console 1/A x

In [2]: pip install pymunk
Collecting pymunk

Downloading pymunk-6.7.8-cp312-cp312-win_amdb4d.whl.metadata
Requirement already satisfied: cffi>=1.15.8 in c:\wpy64-31230\

packages (from pymunk) (1.16.8)

Requirement already satisfied: pycparser in c:\wpy64-3123@\pyt o

packages (from cffi>=1.15.0->pymunk) (2.21)
Downloading pymunk-6.7.0-cp312-cp312-win_amd64.whl (363

8) ®

©.0/363.6 kB ? eta
10.2/363.6 kB ? et
20.5/363.6 kB 330.3

30.7/363.6 kB 262.6 %
81.9/363.6 kB 512.0 ()

184.3/363.6 kB 938.9

.7/363.6
.4/363.6
.4/363.6
.6/363.6

Installing collected packages: pymunk

Successtully installed pymunk-6.7.8

Note: you may need to restart the kernel to use updated

In [3]:

=
kB 1.4 °
kB 1.5 @
kB 1.5 x

Installing collected packages: pymunk
Successfully installed pymunk-6.7.0
Note: you may need to restart the kernel to use updated packages

L]
MNew console (default settings) Ctrl+T
Special consoles
Connect to an existing kernel
Interrupt kernel
Restart kernel Ctrl+.
Remove all variables Ctri+Alt+R
Rename tab
Show environment variables
Show sys.path contents
Show elapsed time
Unlock position
Undock

Close

kB 1.@ Vi o Ced .Ul . OY

packages.

PHYSICS in COMPUTER ANIMATIONS and GAMES
prmunk pip show pymunk

Console 1/A =

Restarting kernel...

In [1]: pip show
Note: you may need to restart the kernel to use updated packages.
WARNIMNG: ERROR: Please provide a package name or names.

In [2]: pip show pymunk

Name: pymunk

Version: 6.7.8

Summary: Pymunk is a easy-to-use pythonic 2D physics library
Home-page: http://www.pymunk.org

Author: Victor Blomgwvist

Author-email: wvb@viblo.se

License: MIT License

Location: C:\WPy64-31230\python-3.12.3.amd64\Lib\site-packages
Requires: cffi

Required-hy:

Note: you may need to restart the kernel to use updated packages.

In [3]: import pymunk

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

Rigid bodies
A rigid body holds the physical properties of an object. (mass, position, rotation, velocity,
etc.) It does not have a shape by itself. If you've done physics with particles before, rigid
bodies differ mostly in that they are able to rotate.

Collision shapes
By attaching shapes to bodies, you can define the a body’s shape. You can attach many
shapes to a single body to define a complex shape, or none if it doesn’t require a shape.

Constraints/joints
You can attach joints between two bodies to constrain their behavior.

Spaces
Spaces are the basic simulation unit in Chipmunk. You add bodies, shapes and joints to a
space, and then update the space as a whole.

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES
I% pym un k & Joints. Just wait and the L willtip over _ »

import sys

import pygame

from pygame.locals import *
import pymunk #1

def main():
pygame.init()
screen = pygame.display.set mode ((600, 600))
pygame.display.set caption("Joints. Just wait and the L will t
clock = pygame.time.Clock()
space = pymunk.Space() #2
space.gravity = (0.0, 980.0)

try:
while True:
for event in pygame.event.get():
if event.type == QUIT:
sys.exit(0)
elif event.type == KEYDOWN and event.key == K _ES
sys.exit(0)

screen.fill ((127,127,255))
space.step(1/50.0) #3
pygame.display.flip()
clock. tick (50)
finally:
pygame.quit()
sys.exit()

if _name == ' main ':
main ()

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

The code will display a blank window, and will run a physics simulation of an empty space.
#1 We need to import pymunk in order to use it...

#2 We then create a space and set its gravity to something good. Remember that what is
important is what looks good on screen, not what the real world value is. -980 will make a good
looking simulation, but feel free to experiment.

#3 In our game loop we call the step() function on our space. The step function steps the
simulation one step forward in time.

Note
It is best to keep the step size constant and not adjust it depending on the
framerate. The physic simulation will work much better with a constant step
size.

Serdar ARITAN 3

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

add ball (space):

"""Add a ball to the given space at a random position"""
mass = 1

radius = 14

inertia = pymunk.moment for circle(mass, 0, radius, (0,0))
body = pymunk.Body (mass, inertia)

X = random.randint (120,380)

body.position = x, 550

shape = pymunk.Circle (body, radius, (0,0))

space.add (body, shape)

, shape

1. All bodies must have their moment of inertia set. If our object is a normal ball we can use
the predefined function moment for circle to calculate it given its mass and radius.
However, you could also select a value by experimenting with what looks good for your
simulation.

After we have the inertia we can create the body of the ball.

And we set its position

And in order for it to collide with things, it needs to have one (or many) collision shape(s).

. Finally we add the body and shape to the space to include it in our simulation.
Serdar ARITA 69

VAW

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

& Joints. Just wait and the L will tip over

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

So lets add something the balls can land on, two static lines forming an L. As with the balls we
start with a function to add an L to the space:
© add_static_L(space):
body = pymunk.Body (body type = pymunk.Body.STATIC) # 1
body.position = (300, 300)
11 = pymunk.Segment (body, (-150, 0), (255, 0), 5) # 2
12 = pymunk.Segment (body, (-150, 0), (-150, 50), 5)
space.add (11, 12) # 3
11,12

1. We create a “static” body. The important step is to never add it to the space like the
dynamic ball bodies. Note how static bodies are created by setting the body type of the
body.

2. Aline shaped shape is created here.

3. Again, we only add the segments, not the body to the space.

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

%pymunk -

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

A static L shape is pretty boring. So lets make it a bit more exciting by adding two joints, one

that it can rotate around, and one that prevents it from rotating too much.

add_L(space):
rotation_center body = pymunk.Body(body type = pymunk.Body.STATIC) i 1
rotation_center body.position = (300, 300)

body = pymunk.Body (10, 10000) # 2

body.position = (300, 300)

11 = pymunk.Segment (body, (-150, 0), (255.0, 0.0), 5.0)

12 = pymunk.Segment (body, (-150.0, 0), (-150.0, 50.0), 5.0)

rotation center_ joint = pymunk.PinJoint (body, rotation_center_body, (0,0), (0,0)) # 3

space.add (11, 12, body, rotation_center_ joint)
11,12

1. This is the rotation center body.
2. The L shape will now be moving in the world, and therefor it can no longer be a static body.
3. A pinjoint allow two objects to pivot about a single point.

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

& Joints. Just wait and the L will tip over
®
®
Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

To constrain the rotating L shape to create a more interesting simulation.

add L(space):
rotation center body = pymunk.Body(body type = pymunk.Body.STATIC)
rotation_center body.position = (300,300)

rotation limit body = pymunk.Body (body type = pymunk.Body.STATIC) # 1
rotation limit body.position = (200,300)

body = pymunk.Body (10, 10000)
body.position = (300,300)
11 = pymunk.Segment (body, (-150, 0), (255.0, 0.0), 5.0)
12 = pymunk.Segment (body, (-150.0, 0), (-150.0, 50.0), 5.0)
rotation_center_joint = pymunk.PinJoint (body, rotation_center_body, (0,0), (0,0))
joint limit = 25
rotation_limit_ joint = pymunk.SlideJoint(body, rotation_limit beody, (-100,0), (0,0), 0, joint limit) # 2
space.add (11, 12, body, rotation center joint, rotation_ limit joint)
11,12

1. We add a body.
2. Create a slide joint. It behaves like pin joints but have a minimum and maximum distance.
The two bodies can slide between the min and max.

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

%pymunk

Serdar ARITAN

+ Joints. Just wait and the L will tip over

L

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

You might notice that we never delete balls. This will make the simulation require more and
more memory and use more and more cpul.

balls_ to_remove = []

for ball in balls:

if ball.body.position.y < 0: #1
balls_to_remove.append(ball) # 2

for ball in balls_to_remove:
space.remove (ball, ball.beody) # 3
balls.remove (ball) # 4

Loop the balls and check if the body.position is less than 0.

If that is the case, we add it to our list of balls to remove.

To remove an object from the space, we need to remove its shape and its body.
And then we remove it from our list of balls.

P wnN e

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES
prmunk SO

Classwork: Newton’s Cradle

o o ®

test 10 doublePendulum.py

hint: shape.elasticity = 0.9999999
Serdar ARITAN

