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Cloth modeling is the term used for simulating cloth within a computer program, 
usually in the context of 3D computer graphics. The main approaches used for 
this may be classified into three basic types: geometric, physical, and 
particle/energy.  
 
Most models of cloth are based on "particles" of mass connected in some 
manner of mesh. Newtonian Physics is used to model each particle through the 
use of a "black box" called a physics engine. This involves using the basic law of 
motion (Newton's Second Law) 

Cloth Animation 
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Choose Underlying Model :Mass-Spring 
• Easy to understand and implement 
• Not as physically accurate as other models 

Cloth Animation 
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• Consider the sheet of cloth.  
• Divide it up into a series of approximately evenly spaced masses 

M.  
• Connect nearby masses by a spring, and use Hooke's Law and 

Newton's 2nd Law as the equations of motion.  
• Various additions, such as spring damping or angular springs, 

can be made. 
• A mesh structure proves invaluable for storing the cloth and 

performing the simulation directly on it.  
• Each vertex can store all of its own local information (velocity, 

position, forces, etc.) and when it comes time to render, the face 
information allows for immediate rendering as a normal mesh. 

Cloth Animation 
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Cloth Animation 
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Blender/Python API 
Cloth Simulation 

 Mass 
0.1                             0.5                             0.9 
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Tension 
5                             15                             25 

Stiffness 

Blender/Python API 
Cloth Simulation 
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Blender/Python API 
Cloth Simulation 

 Compression 
5                             15                             25 

Stiffness 
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Blender/Python API 
Cloth Simulation 

 Shear 
1                             5                             15 

Stiffness 
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Blender/Python API 
Cloth Simulation 

 Bending 
0.1                             0.5                             0.9 

Stiffness 
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Cloth Animation 

• Minimize Strain Energy 
• Elasticity-based forces 

• Generally this derivative must be computed analytically. Suppose we 
attempted to compute the derivative numerically; we consider the state 
variable constant, reducing our energy E(s) to E(x). Evaluating the energy E(S) 
takes a long time; we must iterate over all the vertices, faces, and edges, 
summing the energy of each one.  
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Cloth Animation 

• Define overall motion of the system 
• Given a state vector at a given time representing all relevant physical 

quantities (position, velocity) return the change in these variables w. r. t. time  
• In our case we have simple Newtonian equations: 

 

𝒅𝒙

𝒅𝒕
= 𝒗 

𝒅𝒗

𝒅𝒕
=

𝑭

𝒎
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The cyan nodes are vertices, and the blue and pink lines are springs. The diagonal 
springs are necessary to resist collapse of the face; it ensures that the entire cloth 
does not decompose into a straight line. 
Equations of State: Force 
Fnet(v) = Mg + Fwind + Fair resistance – 
 

Cloth Animation 



To determine M, a simple constant (assume is 1) is fine for all vertices. To be more 
accurate, you should compute the area of each triangle, and assign 1/3rd of it 
towards the mass of each incident vertex; this way the mass of the entire cloth is the 
total area of all the triangles times the mass density of the cloth. The gravity vector 
can also be an arbitrary vector; if all distance units were meters, time was measured 
in seconds, and we were on the surface of the earth and "y" was the "up/down" 
vector, (0, -9.8, 0) would be the correct "g". X(current) is just the current length of 
the spring, and X(rest), the spring's rest length, needs to be stored in each spring 
structure. F(wind) can just be some globally varying constant function, say 
(sin(x*y*t), cos(z*t), sin(cos(5*x*y*z)). a is a simple constant determined by the 
properties of the surrounding fluid (usually air,) but it can also be used to achieve 
certain cloth effects, and can help with the numeric stability of the cloth. k is a very 
important constant; if too low, the cloth will sag unrealistically: 
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Damping Springs: Springs resist relative, not absolute, changes in velocity 
 
Fdamp = kdamp(velocity(v1) – velocity(v2)) 

Cloth Animation 

• Diagonal springs 

       resist changes in shear 

• Horizontal / Vertical 

       springs resist compression  
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Bending forces: cloth resists high curvature 
This can simulated well with bending springs 
 

Cloth Animation 
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No bending springs        Bending springs     

Cloth Animation 
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Low k – sagging                    High k - stiff 

Cloth Animation 
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Cloth Animation 

Integrating Equations of State 
Explicit vs. Implicit vs. Symplectic 
 
Euler’s Method (1st order) [Explicit]  
 
 
 
 
Runge Kutta (4th order) [Explicit]  
 
Verlet Algorithm [Explicit]  
 

• Implicit integrators are stable but 
slow and tedious to implement 
 

• *Symplectic integrators are fast 
but hard to generalize 
 

• Explicit integrators are easy to 
implement but unstable 

 

*Symplectic is an infrequently used 
mathematical term that describes objects 
joined together smoothly. 
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Explicit and implicit methods are approaches used in numerical analysis for obtaining 
numerical approximations to the solutions of time-dependent ordinary and partial 
differential equations, as is required in computer simulations of physical processes.  
 
The explicit method calculates the system status at a future time from the currently 
known system status.  
 
The implicit method calculates the system status at a future time from the system 
statuses at present and future times. 

Explicit and Implicit Methods  



The explicit method is easier to program and can be calculated within a shorter 
time. 
 
But its stability is so low that you need to use a step size small enough to prevent 
divergence. On the contrary, the implicit method has high stability and converges 
if you set proper parameters. But, as you need to solve an equation at every step, 
it takes a long time to calculate.  
 
As the implicit method can use a sufficiently large step size, it is suitable for 
solving equations that involve a long time. Also, in non-linear equations such as 
contact, it is difficult to predict a future from the past state. So, in these cases, it 
is recommended that you use the implicit method rather than the explicit 
method. 
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Explicit and Implicit Methods  
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Explicit and Implicit Methods  
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Choosing between Implicit and Explicit Methods  

Implicit is generally most efficient in solving for 
static and quasi-static equilibrium, therefore 
long duration nonlinear events would be 
suitable. 
 
Explicit is more appropriate for high speed 
events, because the time step constrained by 
the event itself and the assumption of lumped 
mass. The use of reduced integration elements 
also mean that each step is considerably faster 
than implicit. A benefit of the small time step 
approach is that extreme non-lineararities can 
be handled by virtue of the relatively small 
change in state between each time step. 
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Verlet Algorithm (Explicit) 
 

• The Verlet integration algorithm is such an explicit model with the very 
interesting property that it does not need to know anything about the 
velocity; it computes this internally via looking at the position at both the 
current and previous time step.  
 

• Another wonderful aspect of this algorithm is that like 4th order Runge-Kutta, 
it is 4th order accurate. Because it is quite accurate, easy to implement, and 
does not need the velocity terms, it is usually favorite explicit model used in 
all cloth models.  

Cloth Animation 



• Verlet integration is frequently used to calculate trajectories of particles in 
molecular dynamics simulations and computer graphics. The algorithm was 
first used in 1791 by Delambre and has been rediscovered many times since 
then, most recently by Loup Verlet in the 1960s for use in molecular 
dynamics. It was also used by Cowell and Crommelin in 1909 to compute the 
orbit of Halley's Comet. 

• Where Euler's method uses the forward difference approximation to the first 
derivative in differential equations of order one, Verlet integration can be 
seen as using the central difference approximation to the second derivative:  
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Cloth Animation 

Δ2𝑥 𝑛
Δ𝑡2

=

𝑥 𝑛+1 − 𝑥 𝑛
∆𝑡 −

𝑥 𝑛 − 𝑥 𝑛−1
∆𝑡

∆𝑡
=
𝑥 𝑛+1 − 2𝑥 𝑛 + 𝑥 𝑛−1

Δ𝑡2
 

𝑎 𝑛Δ𝑡
2 = 𝑥 𝑛+1 − 2𝑥 𝑛 + 𝑥 𝑛−1 𝑥 𝑛+1 = 2𝑥 𝑛 − 𝑥 𝑛−1 +𝑎 𝑛 Δ𝑡

2 



Euler integration 
 
The heart of the simulation is a particle system. Typically, in implementations 
of particle systems, each particle has two main variables: Its position 𝒓 𝑡0   
and its velocity 𝒗 𝑡0 . Then in the time-stepping loop, the new position 
r 𝑡0 + ∆𝑡  and velocity 𝒗 𝑡0 + ∆𝑡  are often computed by applying the rules 
 
 
 
 
 
where Δt is the time step, and a is the acceleration computed using Newton’s 
second law. 

𝒗 𝑡0 + ∆𝑡 ≈ 𝒗 𝑡0 + 𝒂 𝑡0, 𝒓 𝑡0 , 𝒗 𝑡0 ∆𝒕 

r 𝑡0 + ∆𝑡 ≈ 𝒓 𝑡0 + 𝒗 𝑡0 + ∆𝑡 ∆𝑡 

𝒂 𝑡0 =
𝐹

𝑚
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𝒗 𝑡0 + ∆𝑡 ≈ 𝒗 𝑡0 + 𝒂 𝑡0, 𝒓 𝑡0 , 𝒗 𝑡0 ∆𝒕 

r 𝑡0 + ∆𝑡 ≈ 𝒓 𝑡0 + 𝒗 𝑡0 + ∆𝑡 ∆𝑡 

r 𝑡0 + ∆𝑡 ≈ 𝒓 𝑡0 + 𝒗 𝑡0 + 𝒂 𝑡0 ∆𝒕 ∆𝑡 

r 𝑡0 + ∆𝑡 ≈ 𝟐𝒓 𝑡0 − 𝒓 𝑡0 − ∆𝑡 + 𝒂 𝑡0 ∆𝒕𝟐 

r 𝑡0 + ∆𝑡 ≈ 𝒓 𝑡0 + 𝒓 𝑡0 − 𝒓 𝑡0 − ∆𝑡 + 𝒂 𝑡0 ∆𝒕 ∆𝑡 
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Verlet integration 

Euler integration 

verlet(x, x0, F, dt, m) 

euler(x, v, F, dt, m) 

Verlet integration 



Verlet integration 
 
In Verlet integration, however, we choose a velocity-less representation and 
another integration scheme: Instead of storing each particle’s position and 
velocity, we store its current position r 𝑡0  and its previous position 
r 𝑡0 − ∆𝑡 . Keeping the time step fixed, the update rule (or integration step) is 
then  
 
 
It works due to the fact that 

𝟐. 𝒓 𝑡0 − 𝒓 𝑡0 − ∆𝑡 = 𝒓 𝑡0 + 𝒓 𝑡0 − 𝒓 𝑡0 − ∆𝑡  

is an approximation of the current velocity. (actually, it’s the distance traveled 
last time step) 

r 𝑡0 + ∆𝑡 ≈ 𝟐. 𝒓 𝑡0 − 𝒓 𝑡0 − ∆𝑡 + 𝑎 𝑡0 ∆𝑡2 

r 𝑡0 − ∆𝑡 ≈ 𝒓 𝑡0 + ∆𝑡  
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Verlet integration 
 
It is not always very accurate (energy might leave the system, i.e., dissipate) 
but it’s fast and stable. By lowering the value 2 to something like 1.99 a small 
amount of drag can also be introduced to the system. 
 
At the end of each step, for each particle the current position r 𝑡0  gets 
stored in the corresponding variable r 𝑡0 − ∆𝑡 . Note that when manipulating 
many particles, a useful optimization is possible by simply swapping array 
pointers.  
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A Newtonian Particle 
 
• Differential equation: f = ma 
• Forces can depend on: 

Position x , Velocity v, Time t 

𝑥 =
𝑓 𝑥, 𝑥 , 𝑡

𝑚
 

 

𝑑2𝑥

𝑑𝑡2
=
𝑓 𝑥, 𝑑𝑥 𝑑𝑡 , 𝑡

𝑚
 

 
𝑑𝑣

𝑑𝑡
=
𝑓 𝑟, 𝑣, 𝑡

𝑚
 

 

𝑎 =
𝑓 𝑟, 𝑣, 𝑡

𝑚
 

To handle a second order ODE, we 
convert it to a first-order one by 
introducing extra variables. Here 
we create a variable v to represent 
velocity, giving us  a pair of 

coupled first-order ODE’s 𝑣 = 𝑓
𝑚 , 

𝑥 = 𝑣 

The second order ODE 

The first order ODE 
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A Newtonian Particle 
 
The position and velocity x and v can be concatenated to form a 6-vector. This 
position/velocity product space is called phase space. In components, the 
phase space equation of motion is; 

𝑥 1
𝑥 2
𝑥 3
𝑣 1
𝑣 2
𝑣 3

=

𝑣1
𝑣2
𝑣3

𝑓1 𝑚 

𝑓2 𝑚 

𝑓3 𝑚 

 

system of n particles is described by n copies of the equation, concatenated to 
form a 6n-long vector. Conceptually, the whole system may be regarded as a 
point moving through 6n-space. 
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the phase space  
 
In newtonian mechanics, the phase space is the space of all possible states of 
a system; the state of a mechanical system is defined by the constituent 
positions x and velocity v. x and v together determine the future behavior of 
that system. In other words if you know x and v at time t you will be able to 
calculate the x and v at time t+1.  
 
To describe the motion of a single particle you will need 6 variables, 3 
positions and 3 velocities. You can imagine a 6 dimensional space; three 
positions and three velocities. Each point in this 6 dimensional space is a 
possible description of the particles' possible states, of course constraint by 
the laws of classical mechanics.  
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the phase space  
 



the phase space  
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Particle Structure 
 
A particle may be represented by a structure containing its position, velocity, 
force, and mass. The six-vector formed by concatenating the position and 
velocity comprises the point’s position in phase space. 
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Particle Systems 
 
A particle system is essentially just a [ list of particles ]. 



class Particle(object): 

    """ 

    Stores position, previous position, and where it is in the grid. 

    """ 

    def __init__(self, screen, currentPos, gridIndex): 

        # Current Position : m_x 

        self.currentPos = Vec2d(currentPos) 

        # Index [x][y] of Where it lives in the grid 

        self.gridIndex = gridIndex 

        # Previous Position : m_oldx 

        self.oldPos = Vec2d(currentPos) 

        # Force accumulators : m_a 

        self.forces = GRAVITY 

        # Should the particle be locked at its current position? 

        self.locked = False 

        self.followMouse = False 

40 
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Forces 
 

• Constant      gravity 
• Position/time dependent   force fields 
• Velocity-Dependent    drag 
• n-ary      springs 



Forces 
 
All particles are essentially alike. In contrast, the objects that give rise to 
forces are heterogeneous. As a matter of implementation, we would like to 
make it easy to extend the set of force-producing objects without modifying 
the basic particle system model.  
Forces can be grouped into three broad categories: 
• Unary forces, such as gravity and drag, that act independently on each 

particle, either exerting a constant force, or one that depends on one or 
more of particle position, particle velocity, and time. 

• n-ary forces, such as springs, that apply forces to a fixed set of particles. 
• Forces of spatial interaction, such as attraction and repulsion, that may act 

on any or all pairs of particles, depending on their positions. 

42 
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Unary forces: Gravity 
 
Global earth gravity is trivial to implement. The gravitational force on each 
particle is f = mg, where g is a constant vector (presumably pointing down) 
whose magnitude is the gravitational constant. If all particles are to feel the 
same gravity, which they need not in a simulation, then gravitational force is 
applied simply by traversing the system’s particle list, and adding the 
appropriate force into each particles force accumulator. Gravity is basic 
enough that it could reasonably be wired it into the particle system, rather 
than maintaining a distinct “gravity object”. 



Unary forces: Viscous Drag 
 
Ideal viscous drag has the form f = -kdv, where the constant kd is called the 
coefficient of drag. The effect of drag is to resist motion, making a particle 
gradually come to rest in the absence of other influences. It is highly 
recommended that at least a small amount of drag be applied to each 
particle, if only to enhance numerical stability. Excessive drag, however, makes 
it appear that the particles are floating in molasses. Like gravity, drag can be 
implemented as a wired-in special case. 

44 
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n-ary forces 
 
An example of a binary force is a Hook’s law spring. In a basic spring-damper 
simulation, the springs are the structural elements that hold everything 
together. The spring forces between a pair of particles at positions a and b are 
 
 
 
 
the spring force magnitude is proportional to the difference between the 
actual length and the rest length, while the damping force magnitude is 
proportional to a and b’s relative speed. 
 

𝑓𝑎 = − 𝑘𝑠 𝑟𝑎 − 𝑟𝑏 − 𝑙 + 𝑘𝑑 𝑣𝑎 − 𝑣𝑏
2      𝑓𝑏 = −𝑓𝑎 
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Solver Interface 
 
The relation between a particle system and a differential equation solver. 
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Solver Interface 
 
The relation between a particle system and a differential equation solver. 



class ParticleSystem(Grid): 

    """ 

    Implements the verlet particles physics on the encapsulated Grid object. 

    """ 

    def __init__(self, screen, rows=16, columns=16, step=PSTEP, offset=OFFSET): 

        super(ParticleSystem, self).__init__(screen, rows, columns, step, offset) 
         

     def verlet(self): 

        # Verlet integration step: 

        for p in self: 

            if not p.locked: 

                # make a copy of our current position 

                temp = Vec2d(p.currentPos) 

                p.currentPos += p.currentPos - p.oldPos + p.forces * TSTEP**2 

                p.oldPos = temp 

            elif p.followMouse: 

                temp = Vec2d(p.currentPos) 

                p.currentPos = Vec2d(pygame.mouse.get_pos()) 

                p.oldPos = temp 
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Derivation Evaluation Loop 
 

• Clear forces 
Loop over particles, zero force accumulators. 
 

• Calculate forces 
Sum all forces into accumulators. 
 

• Gather 
Loop over particles, copying v and f/m into destination 
array. 



50 

accumulateForces 
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class ParticleSystem(Grid): 

    """ 

    Implements the verlet particles physics on the encapsulated Grid object. 

    """ 

    def __init__(self, screen, rows=16, columns=16, step=PSTEP, offset=OFFSET): 

        super(ParticleSystem, self).__init__(screen, rows, columns, step, offset) 
         

     def accumulateForces(self): 

        # This doesn't do much right now, other than constantly reset the 

        # particles 'forces' to be 'gravity'.  But this is where you'd implement 

        # other things, like drag, wind, etc. 

        for p in self: 

            p.forces = GRAVITY 

 

    def timeStep(self): 

        # This executes the whole shebang: 

        self.accumulateForces() 

        self.verlet() 

        for i in range(ITERATE): 

            self.satisfyConstraints() 



52 



53 



54 



55 

• Designed specifically for 2D video games. 
• Circle, convex polygon, and beveled line segment collision primitives. 
• Multiple collision primitives can be attached to a single rigid body. 
• Fast broad phase collision detection by using a bounding box tree with great temporal coherence or a spatial 

hash. 
• Extremely fast impulse solving by utilizing Erin Catto’s contact persistence algorithm. 
• Supports sleeping objects that have come to rest to reduce the CPU load. 
• Support for collision event callbacks based on user definable object types types. 
• Flexible collision filtering system with layers, exclusion groups and callbacks.  
• Supports nearest point, segment (raycasting), shape and bounding box queries to the collision detection system. 
• Collision impulses amounts can be retrieved for gameplay effects, sound effects, etc. 
• Large variety of joints – easily make vehicles, ragdolls, and more. 
• Joint callbacks.  

Can be used to easily implement breakable or animated joints.  
• Maintains a contact graph of all colliding objects. 
• Lightweight C99 implementation with no external dependencies outside of the Std. C library 
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Pymunk is a easy-to-use pythonic 2d physics library that can be used 
whenever you need 2d rigid body physics from Python. Perfect when you 
need 2d physics in your game, demo or other application! It is built on top of 
the very capable 2d physics library Chipmunk. 
 
In the normal case pymunk can be installed with pip: 
 
> pip install pymunk 

 
 



Pymunk is a easy-to-use pythonic 2d physics library that can be used whenever you need 2d 
rigid body physics from Python. Perfect when you need 2d physics in your game, demo or 
other application! It is built on top of the very capable 2d physics library Chipmunk. 
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http://chipmunk-physics.net/
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Pymunk is a easy-to-use pythonic 2d physics library that can be used 
whenever you need 2d rigid body physics from Python. Perfect when you 
need 2d physics in your game, demo or other application! It is built on top of 
the very capable 2d physics library Chipmunk. 
 
In the normal case pymunk can be installed with pip: 
 
> pip install pymunk 
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pip install pymunk 
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Installing collected packages: pymunk 

Successfully installed pymunk-6.7.0 

Note: you may need to restart the kernel to use updated packages 
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pip show pymunk 
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Rigid bodies 
A rigid body holds the physical properties of an object. (mass, position, rotation, velocity, 
etc.) It does not have a shape by itself. If you’ve done physics with particles before, rigid 
bodies differ mostly in that they are able to rotate. 

Collision shapes 
By attaching shapes to bodies, you can define the a body’s shape. You can attach many 
shapes to a single body to define a complex shape, or none if it doesn’t require a shape. 

Constraints/joints 
You can attach joints between two bodies to constrain their behavior. 

Spaces 
Spaces are the basic simulation unit in Chipmunk. You add bodies, shapes and joints to a 
space, and then update the space as a whole.  
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import sys 

import pygame 

from pygame.locals import * 

import pymunk #1 

 

def main(): 

    pygame.init() 

    screen = pygame.display.set_mode((600, 600)) 

    pygame.display.set_caption("Joints. Just wait and the L will tip over") 

    clock = pygame.time.Clock() 

    space = pymunk.Space() #2 

    space.gravity = (0.0, 980.0) 

 

    try: 

        while True: 

            for event in pygame.event.get(): 

                if event.type == QUIT: 

                    sys.exit(0) 

                elif event.type == KEYDOWN and event.key == K_ESCAPE: 

                    sys.exit(0) 

                     

            screen.fill((127,127,255)) 

            space.step(1/50.0) #3  

            pygame.display.flip() 

            clock.tick(50) 

    finally:     

        pygame.quit() 

        sys.exit() 

 

if __name__ == '__main__': 

    main() 
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The code will display a blank window, and will run a physics simulation of an empty space. 
 
#1 We need to import pymunk in order to use it... 
 
#2 We then create a space and set its gravity to something good. Remember that what is 
important is what looks good on screen, not what the real world value is. -980 will make a good 
looking simulation, but feel free to experiment. 
 
#3 In our game loop we call the step() function on our space. The step function steps the 
simulation one step forward in time. 

Note 
 It is best to keep the step size constant and not adjust it depending on the 
framerate. The physic simulation will work much better with a constant step 
size.  
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1.  All bodies must have their moment of inertia set. If our object is a normal ball we can use 
the predefined function moment_for_circle to calculate it given its mass and radius. 
However, you could also select a value by experimenting with what looks good for your 
simulation. 

2.  After we have the inertia we can create the body of the ball. 
3. And we set its position 
4. And in order for it to collide with things, it needs to have one (or many) collision shape(s). 
5. Finally we add the body and shape to the space to include it in our simulation. 

def add_ball(space): 

    """Add a ball to the given space at a random position""" 

    mass = 1 

    radius = 14 

    inertia = pymunk.moment_for_circle(mass, 0, radius, (0,0)) 

    body = pymunk.Body(mass, inertia) 

    x = random.randint(120,380) 

    body.position = x, 550 

    shape = pymunk.Circle(body, radius, (0,0)) 

    space.add(body, shape) 

    return shape 
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So lets add something the balls can land on, two static lines forming an L. As with the balls we 
start with a function to add an L to the space: 

def add_static_L(space): 

    body = pymunk.Body(body_type = pymunk.Body.STATIC) # 1 

    body.position = (300, 300) 

    l1 = pymunk.Segment(body, (-150, 0), (255, 0), 5) # 2 

    l2 = pymunk.Segment(body, (-150, 0), (-150, 50), 5) 

    space.add(l1, l2) # 3 

    return l1,l2 

1. We create a “static” body. The important step is to never add it to the space like the 
dynamic ball bodies. Note how static bodies are created by setting the body_type of the 
body. 

2. A line shaped shape is created here. 
3. Again, we only add the segments, not the body to the space. 
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A static L shape is pretty boring. So lets make it a bit more exciting by adding two joints, one 
that it can rotate around, and one that prevents it from rotating too much. 

def add_L(space): 

    rotation_center_body = pymunk.Body(body_type = pymunk.Body.STATIC) # 1 

    rotation_center_body.position = (300, 300) 

 

    body = pymunk.Body(10, 10000) # 2 

    body.position = (300, 300) 

    l1 = pymunk.Segment(body, (-150, 0), (255.0, 0.0), 5.0) 

    l2 = pymunk.Segment(body, (-150.0, 0), (-150.0, 50.0), 5.0) 

 

    rotation_center_joint = pymunk.PinJoint(body, rotation_center_body, (0,0), (0,0)) # 3 

 

    space.add(l1, l2, body, rotation_center_joint) 

    return l1,l2 

1. This is the rotation center body. 
2. The L shape will now be moving in the world, and therefor it can no longer be a static body. 
3. A pin joint allow two objects to pivot about a single point. 



74 



75 

To constrain the rotating L shape to create a more interesting simulation. 
def add_L(space): 

    rotation_center_body = pymunk.Body(body_type = pymunk.Body.STATIC) 

    rotation_center_body.position = (300,300) 

 

    rotation_limit_body = pymunk.Body(body_type = pymunk.Body.STATIC) # 1 

    rotation_limit_body.position = (200,300) 

 

    body = pymunk.Body(10, 10000) 

    body.position = (300,300) 

    l1 = pymunk.Segment(body, (-150, 0), (255.0, 0.0), 5.0) 

    l2 = pymunk.Segment(body, (-150.0, 0), (-150.0, 50.0), 5.0) 

    rotation_center_joint = pymunk.PinJoint(body, rotation_center_body, (0,0), (0,0)) 

    joint_limit = 25 

    rotation_limit_joint = pymunk.SlideJoint(body, rotation_limit_body, (-100,0), (0,0), 0, joint_limit) # 2 

    space.add(l1, l2, body, rotation_center_joint, rotation_limit_joint) 

    return l1,l2 

1. We add a body. 
2. Create a slide joint. It behaves like pin joints but have a minimum and maximum distance. 

The two bodies can slide between the min and max. 
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You might notice that we never delete balls. This will make the simulation require more and 
more memory and use more and more cpu. 

balls_to_remove = [] 

 

for ball in balls: 

    if ball.body.position.y < 0:  # 1 

        balls_to_remove.append(ball)  # 2 

 

for ball in balls_to_remove: 

    space.remove(ball, ball.body)  # 3 

    balls.remove(ball)   # 4 

1. Loop the balls and check if the body.position is less than 0. 
2. If that is the case, we add it to our list of balls to remove. 
3. To remove an object from the space, we need to remove its shape and its body. 
4. And then we remove it from our list of balls. 
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hint: shape.elasticity = 0.9999999 

Classwork: Newton’s Cradle 

test_10_doublePendulum.py 


