
1

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

Cloth Simulation with Particle Mechanics

 #11

MASS SPRING SYSTEM

2

3

4

Cloth modeling is the term used for simulating cloth within a computer program,
usually in the context of 3D computer graphics. The main approaches used for
this may be classified into three basic types: geometric, physical, and
particle/energy.

Most models of cloth are based on "particles" of mass connected in some
manner of mesh. Newtonian Physics is used to model each particle through the
use of a "black box" called a physics engine. This involves using the basic law of
motion (Newton's Second Law)

Cloth Animation

https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics

5

Choose Underlying Model :Mass-Spring
• Easy to understand and implement
• Not as physically accurate as other models

Cloth Animation

6

• Consider the sheet of cloth.
• Divide it up into a series of approximately evenly spaced masses

M.
• Connect nearby masses by a spring, and use Hooke's Law and

Newton's 2nd Law as the equations of motion.
• Various additions, such as spring damping or angular springs,

can be made.
• A mesh structure proves invaluable for storing the cloth and

performing the simulation directly on it.
• Each vertex can store all of its own local information (velocity,

position, forces, etc.) and when it comes time to render, the face
information allows for immediate rendering as a normal mesh.

Cloth Animation

7

Cloth Animation

8

Blender/Python API
Cloth Simulation

 Mass
0.1 0.5 0.9

9

10

Tension
5 15 25

Stiffness

Blender/Python API
Cloth Simulation

11

Blender/Python API
Cloth Simulation

 Compression
5 15 25

Stiffness

12

Blender/Python API
Cloth Simulation

 Shear
1 5 15

Stiffness

13

Blender/Python API
Cloth Simulation

 Bending
0.1 0.5 0.9

Stiffness

14

Cloth Animation

• Minimize Strain Energy
• Elasticity-based forces

• Generally this derivative must be computed analytically. Suppose we
attempted to compute the derivative numerically; we consider the state
variable constant, reducing our energy E(s) to E(x). Evaluating the energy E(S)
takes a long time; we must iterate over all the vertices, faces, and edges,
summing the energy of each one.

15

Cloth Animation

• Define overall motion of the system
• Given a state vector at a given time representing all relevant physical

quantities (position, velocity) return the change in these variables w. r. t. time
• In our case we have simple Newtonian equations:

𝒅𝒙

𝒅𝒕
= 𝒗

𝒅𝒗

𝒅𝒕
=

𝑭

𝒎

16

The cyan nodes are vertices, and the blue and pink lines are springs. The diagonal
springs are necessary to resist collapse of the face; it ensures that the entire cloth
does not decompose into a straight line.
Equations of State: Force
Fnet(v) = Mg + Fwind + Fair resistance –

Cloth Animation

To determine M, a simple constant (assume is 1) is fine for all vertices. To be more
accurate, you should compute the area of each triangle, and assign 1/3rd of it
towards the mass of each incident vertex; this way the mass of the entire cloth is the
total area of all the triangles times the mass density of the cloth. The gravity vector
can also be an arbitrary vector; if all distance units were meters, time was measured
in seconds, and we were on the surface of the earth and "y" was the "up/down"
vector, (0, -9.8, 0) would be the correct "g". X(current) is just the current length of
the spring, and X(rest), the spring's rest length, needs to be stored in each spring
structure. F(wind) can just be some globally varying constant function, say
(sin(x*y*t), cos(z*t), sin(cos(5*x*y*z)). a is a simple constant determined by the
properties of the surrounding fluid (usually air,) but it can also be used to achieve
certain cloth effects, and can help with the numeric stability of the cloth. k is a very
important constant; if too low, the cloth will sag unrealistically:

17

Cloth Animation

18

Damping Springs: Springs resist relative, not absolute, changes in velocity

Fdamp = kdamp(velocity(v1) – velocity(v2))

Cloth Animation

• Diagonal springs

 resist changes in shear

• Horizontal / Vertical

 springs resist compression

19

Bending forces: cloth resists high curvature
This can simulated well with bending springs

Cloth Animation

20

No bending springs Bending springs

Cloth Animation

21

Low k – sagging High k - stiff

Cloth Animation

22

Cloth Animation

Integrating Equations of State
Explicit vs. Implicit vs. Symplectic

Euler’s Method (1st order) [Explicit]

Runge Kutta (4th order) [Explicit]

Verlet Algorithm [Explicit]

• Implicit integrators are stable but
slow and tedious to implement

• *Symplectic integrators are fast
but hard to generalize

• Explicit integrators are easy to
implement but unstable

*Symplectic is an infrequently used
mathematical term that describes objects
joined together smoothly.

23

Explicit and implicit methods are approaches used in numerical analysis for obtaining
numerical approximations to the solutions of time-dependent ordinary and partial
differential equations, as is required in computer simulations of physical processes.

The explicit method calculates the system status at a future time from the currently
known system status.

The implicit method calculates the system status at a future time from the system
statuses at present and future times.

Explicit and Implicit Methods

The explicit method is easier to program and can be calculated within a shorter
time.

But its stability is so low that you need to use a step size small enough to prevent
divergence. On the contrary, the implicit method has high stability and converges
if you set proper parameters. But, as you need to solve an equation at every step,
it takes a long time to calculate.

As the implicit method can use a sufficiently large step size, it is suitable for
solving equations that involve a long time. Also, in non-linear equations such as
contact, it is difficult to predict a future from the past state. So, in these cases, it
is recommended that you use the implicit method rather than the explicit
method.

24

Explicit and Implicit Methods

25

Explicit and Implicit Methods

26

Choosing between Implicit and Explicit Methods

Implicit is generally most efficient in solving for
static and quasi-static equilibrium, therefore
long duration nonlinear events would be
suitable.

Explicit is more appropriate for high speed
events, because the time step constrained by
the event itself and the assumption of lumped
mass. The use of reduced integration elements
also mean that each step is considerably faster
than implicit. A benefit of the small time step
approach is that extreme non-lineararities can
be handled by virtue of the relatively small
change in state between each time step.

27

Verlet Algorithm (Explicit)

• The Verlet integration algorithm is such an explicit model with the very
interesting property that it does not need to know anything about the
velocity; it computes this internally via looking at the position at both the
current and previous time step.

• Another wonderful aspect of this algorithm is that like 4th order Runge-Kutta,
it is 4th order accurate. Because it is quite accurate, easy to implement, and
does not need the velocity terms, it is usually favorite explicit model used in
all cloth models.

Cloth Animation

• Verlet integration is frequently used to calculate trajectories of particles in
molecular dynamics simulations and computer graphics. The algorithm was
first used in 1791 by Delambre and has been rediscovered many times since
then, most recently by Loup Verlet in the 1960s for use in molecular
dynamics. It was also used by Cowell and Crommelin in 1909 to compute the
orbit of Halley's Comet.

• Where Euler's method uses the forward difference approximation to the first
derivative in differential equations of order one, Verlet integration can be
seen as using the central difference approximation to the second derivative:

28

Cloth Animation

Δ2𝑥 𝑛
Δ𝑡2

=

𝑥 𝑛+1 − 𝑥 𝑛
∆𝑡 −

𝑥 𝑛 − 𝑥 𝑛−1
∆𝑡

∆𝑡
=
𝑥 𝑛+1 − 2𝑥 𝑛 + 𝑥 𝑛−1

Δ𝑡2

𝑎 𝑛Δ𝑡
2 = 𝑥 𝑛+1 − 2𝑥 𝑛 + 𝑥 𝑛−1 𝑥 𝑛+1 = 2𝑥 𝑛 − 𝑥 𝑛−1 +𝑎 𝑛 Δ𝑡

2

Euler integration

The heart of the simulation is a particle system. Typically, in implementations
of particle systems, each particle has two main variables: Its position 𝒓 𝑡0
and its velocity 𝒗 𝑡0 . Then in the time-stepping loop, the new position
r 𝑡0 + ∆𝑡 and velocity 𝒗 𝑡0 + ∆𝑡 are often computed by applying the rules

where Δt is the time step, and a is the acceleration computed using Newton’s
second law.

𝒗 𝑡0 + ∆𝑡 ≈ 𝒗 𝑡0 + 𝒂 𝑡0, 𝒓 𝑡0 , 𝒗 𝑡0 ∆𝒕

r 𝑡0 + ∆𝑡 ≈ 𝒓 𝑡0 + 𝒗 𝑡0 + ∆𝑡 ∆𝑡

𝒂 𝑡0 =
𝐹

𝑚

29

𝒗 𝑡0 + ∆𝑡 ≈ 𝒗 𝑡0 + 𝒂 𝑡0, 𝒓 𝑡0 , 𝒗 𝑡0 ∆𝒕

r 𝑡0 + ∆𝑡 ≈ 𝒓 𝑡0 + 𝒗 𝑡0 + ∆𝑡 ∆𝑡

r 𝑡0 + ∆𝑡 ≈ 𝒓 𝑡0 + 𝒗 𝑡0 + 𝒂 𝑡0 ∆𝒕 ∆𝑡

r 𝑡0 + ∆𝑡 ≈ 𝟐𝒓 𝑡0 − 𝒓 𝑡0 − ∆𝑡 + 𝒂 𝑡0 ∆𝒕𝟐

r 𝑡0 + ∆𝑡 ≈ 𝒓 𝑡0 + 𝒓 𝑡0 − 𝒓 𝑡0 − ∆𝑡 + 𝒂 𝑡0 ∆𝒕 ∆𝑡

30

Verlet integration

Euler integration

verlet(x, x0, F, dt, m)

euler(x, v, F, dt, m)

Verlet integration

Verlet integration

In Verlet integration, however, we choose a velocity-less representation and
another integration scheme: Instead of storing each particle’s position and
velocity, we store its current position r 𝑡0 and its previous position
r 𝑡0 − ∆𝑡 . Keeping the time step fixed, the update rule (or integration step) is
then

It works due to the fact that

𝟐. 𝒓 𝑡0 − 𝒓 𝑡0 − ∆𝑡 = 𝒓 𝑡0 + 𝒓 𝑡0 − 𝒓 𝑡0 − ∆𝑡

is an approximation of the current velocity. (actually, it’s the distance traveled
last time step)

r 𝑡0 + ∆𝑡 ≈ 𝟐. 𝒓 𝑡0 − 𝒓 𝑡0 − ∆𝑡 + 𝑎 𝑡0 ∆𝑡2

r 𝑡0 − ∆𝑡 ≈ 𝒓 𝑡0 + ∆𝑡

31

32

Verlet integration

It is not always very accurate (energy might leave the system, i.e., dissipate)
but it’s fast and stable. By lowering the value 2 to something like 1.99 a small
amount of drag can also be introduced to the system.

At the end of each step, for each particle the current position r 𝑡0 gets
stored in the corresponding variable r 𝑡0 − ∆𝑡 . Note that when manipulating
many particles, a useful optimization is possible by simply swapping array
pointers.

33

A Newtonian Particle

• Differential equation: f = ma
• Forces can depend on:

Position x , Velocity v, Time t

𝑥 =
𝑓 𝑥, 𝑥 , 𝑡

𝑚

𝑑2𝑥

𝑑𝑡2
=
𝑓 𝑥, 𝑑𝑥 𝑑𝑡 , 𝑡

𝑚

𝑑𝑣

𝑑𝑡
=
𝑓 𝑟, 𝑣, 𝑡

𝑚

𝑎 =
𝑓 𝑟, 𝑣, 𝑡

𝑚

To handle a second order ODE, we
convert it to a first-order one by
introducing extra variables. Here
we create a variable v to represent
velocity, giving us a pair of

coupled first-order ODE’s 𝑣 = 𝑓
𝑚 ,

𝑥 = 𝑣

The second order ODE

The first order ODE

34

A Newtonian Particle

The position and velocity x and v can be concatenated to form a 6-vector. This
position/velocity product space is called phase space. In components, the
phase space equation of motion is;

𝑥 1
𝑥 2
𝑥 3
𝑣 1
𝑣 2
𝑣 3

=

𝑣1
𝑣2
𝑣3

𝑓1 𝑚

𝑓2 𝑚

𝑓3 𝑚

system of n particles is described by n copies of the equation, concatenated to
form a 6n-long vector. Conceptually, the whole system may be regarded as a
point moving through 6n-space.

35

the phase space

In newtonian mechanics, the phase space is the space of all possible states of
a system; the state of a mechanical system is defined by the constituent
positions x and velocity v. x and v together determine the future behavior of
that system. In other words if you know x and v at time t you will be able to
calculate the x and v at time t+1.

To describe the motion of a single particle you will need 6 variables, 3
positions and 3 velocities. You can imagine a 6 dimensional space; three
positions and three velocities. Each point in this 6 dimensional space is a
possible description of the particles' possible states, of course constraint by
the laws of classical mechanics.

36

the phase space

the phase space

37

38

Particle Structure

A particle may be represented by a structure containing its position, velocity,
force, and mass. The six-vector formed by concatenating the position and
velocity comprises the point’s position in phase space.

39

Particle Systems

A particle system is essentially just a [list of particles].

class Particle(object):

 """

 Stores position, previous position, and where it is in the grid.

 """

 def __init__(self, screen, currentPos, gridIndex):

 # Current Position : m_x

 self.currentPos = Vec2d(currentPos)

 # Index [x][y] of Where it lives in the grid

 self.gridIndex = gridIndex

 # Previous Position : m_oldx

 self.oldPos = Vec2d(currentPos)

 # Force accumulators : m_a

 self.forces = GRAVITY

 # Should the particle be locked at its current position?

 self.locked = False

 self.followMouse = False

40

41

Forces

• Constant gravity
• Position/time dependent force fields
• Velocity-Dependent drag
• n-ary springs

Forces

All particles are essentially alike. In contrast, the objects that give rise to
forces are heterogeneous. As a matter of implementation, we would like to
make it easy to extend the set of force-producing objects without modifying
the basic particle system model.
Forces can be grouped into three broad categories:
• Unary forces, such as gravity and drag, that act independently on each

particle, either exerting a constant force, or one that depends on one or
more of particle position, particle velocity, and time.

• n-ary forces, such as springs, that apply forces to a fixed set of particles.
• Forces of spatial interaction, such as attraction and repulsion, that may act

on any or all pairs of particles, depending on their positions.

42

43

Unary forces: Gravity

Global earth gravity is trivial to implement. The gravitational force on each
particle is f = mg, where g is a constant vector (presumably pointing down)
whose magnitude is the gravitational constant. If all particles are to feel the
same gravity, which they need not in a simulation, then gravitational force is
applied simply by traversing the system’s particle list, and adding the
appropriate force into each particles force accumulator. Gravity is basic
enough that it could reasonably be wired it into the particle system, rather
than maintaining a distinct “gravity object”.

Unary forces: Viscous Drag

Ideal viscous drag has the form f = -kdv, where the constant kd is called the
coefficient of drag. The effect of drag is to resist motion, making a particle
gradually come to rest in the absence of other influences. It is highly
recommended that at least a small amount of drag be applied to each
particle, if only to enhance numerical stability. Excessive drag, however, makes
it appear that the particles are floating in molasses. Like gravity, drag can be
implemented as a wired-in special case.

44

45

n-ary forces

An example of a binary force is a Hook’s law spring. In a basic spring-damper
simulation, the springs are the structural elements that hold everything
together. The spring forces between a pair of particles at positions a and b are

the spring force magnitude is proportional to the difference between the
actual length and the rest length, while the damping force magnitude is
proportional to a and b’s relative speed.

𝑓𝑎 = − 𝑘𝑠 𝑟𝑎 − 𝑟𝑏 − 𝑙 + 𝑘𝑑 𝑣𝑎 − 𝑣𝑏
2 𝑓𝑏 = −𝑓𝑎

46

Solver Interface

The relation between a particle system and a differential equation solver.

47

Solver Interface

The relation between a particle system and a differential equation solver.

class ParticleSystem(Grid):

 """

 Implements the verlet particles physics on the encapsulated Grid object.

 """

 def __init__(self, screen, rows=16, columns=16, step=PSTEP, offset=OFFSET):

 super(ParticleSystem, self).__init__(screen, rows, columns, step, offset)

 def verlet(self):

 # Verlet integration step:

 for p in self:

 if not p.locked:

 # make a copy of our current position

 temp = Vec2d(p.currentPos)

 p.currentPos += p.currentPos - p.oldPos + p.forces * TSTEP**2

 p.oldPos = temp

 elif p.followMouse:

 temp = Vec2d(p.currentPos)

 p.currentPos = Vec2d(pygame.mouse.get_pos())

 p.oldPos = temp

48

49

Derivation Evaluation Loop

• Clear forces
Loop over particles, zero force accumulators.

• Calculate forces
Sum all forces into accumulators.

• Gather
Loop over particles, copying v and f/m into destination
array.

50

accumulateForces

51

class ParticleSystem(Grid):

 """

 Implements the verlet particles physics on the encapsulated Grid object.

 """

 def __init__(self, screen, rows=16, columns=16, step=PSTEP, offset=OFFSET):

 super(ParticleSystem, self).__init__(screen, rows, columns, step, offset)

 def accumulateForces(self):

 # This doesn't do much right now, other than constantly reset the

 # particles 'forces' to be 'gravity'. But this is where you'd implement

 # other things, like drag, wind, etc.

 for p in self:

 p.forces = GRAVITY

 def timeStep(self):

 # This executes the whole shebang:

 self.accumulateForces()

 self.verlet()

 for i in range(ITERATE):

 self.satisfyConstraints()

52

53

54

55

• Designed specifically for 2D video games.
• Circle, convex polygon, and beveled line segment collision primitives.
• Multiple collision primitives can be attached to a single rigid body.
• Fast broad phase collision detection by using a bounding box tree with great temporal coherence or a spatial

hash.
• Extremely fast impulse solving by utilizing Erin Catto’s contact persistence algorithm.
• Supports sleeping objects that have come to rest to reduce the CPU load.
• Support for collision event callbacks based on user definable object types types.
• Flexible collision filtering system with layers, exclusion groups and callbacks.
• Supports nearest point, segment (raycasting), shape and bounding box queries to the collision detection system.
• Collision impulses amounts can be retrieved for gameplay effects, sound effects, etc.
• Large variety of joints – easily make vehicles, ragdolls, and more.
• Joint callbacks.

Can be used to easily implement breakable or animated joints.
• Maintains a contact graph of all colliding objects.
• Lightweight C99 implementation with no external dependencies outside of the Std. C library

56

57

Pymunk is a easy-to-use pythonic 2d physics library that can be used
whenever you need 2d rigid body physics from Python. Perfect when you
need 2d physics in your game, demo or other application! It is built on top of
the very capable 2d physics library Chipmunk.

In the normal case pymunk can be installed with pip:

> pip install pymunk

Pymunk is a easy-to-use pythonic 2d physics library that can be used whenever you need 2d
rigid body physics from Python. Perfect when you need 2d physics in your game, demo or
other application! It is built on top of the very capable 2d physics library Chipmunk.

58

http://chipmunk-physics.net/

59

Pymunk is a easy-to-use pythonic 2d physics library that can be used
whenever you need 2d rigid body physics from Python. Perfect when you
need 2d physics in your game, demo or other application! It is built on top of
the very capable 2d physics library Chipmunk.

In the normal case pymunk can be installed with pip:

> pip install pymunk

60

61

62

63

pip install pymunk

64

Installing collected packages: pymunk

Successfully installed pymunk-6.7.0

Note: you may need to restart the kernel to use updated packages

65

pip show pymunk

66

Rigid bodies
A rigid body holds the physical properties of an object. (mass, position, rotation, velocity,
etc.) It does not have a shape by itself. If you’ve done physics with particles before, rigid
bodies differ mostly in that they are able to rotate.

Collision shapes
By attaching shapes to bodies, you can define the a body’s shape. You can attach many
shapes to a single body to define a complex shape, or none if it doesn’t require a shape.

Constraints/joints
You can attach joints between two bodies to constrain their behavior.

Spaces
Spaces are the basic simulation unit in Chipmunk. You add bodies, shapes and joints to a
space, and then update the space as a whole.

67

import sys

import pygame

from pygame.locals import *

import pymunk #1

def main():

 pygame.init()

 screen = pygame.display.set_mode((600, 600))

 pygame.display.set_caption("Joints. Just wait and the L will tip over")

 clock = pygame.time.Clock()

 space = pymunk.Space() #2

 space.gravity = (0.0, 980.0)

 try:

 while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 sys.exit(0)

 elif event.type == KEYDOWN and event.key == K_ESCAPE:

 sys.exit(0)

 screen.fill((127,127,255))

 space.step(1/50.0) #3

 pygame.display.flip()

 clock.tick(50)

 finally:

 pygame.quit()

 sys.exit()

if __name__ == '__main__':

 main()

68

The code will display a blank window, and will run a physics simulation of an empty space.

#1 We need to import pymunk in order to use it...

#2 We then create a space and set its gravity to something good. Remember that what is
important is what looks good on screen, not what the real world value is. -980 will make a good
looking simulation, but feel free to experiment.

#3 In our game loop we call the step() function on our space. The step function steps the
simulation one step forward in time.

Note
 It is best to keep the step size constant and not adjust it depending on the
framerate. The physic simulation will work much better with a constant step
size.

69

1. All bodies must have their moment of inertia set. If our object is a normal ball we can use
the predefined function moment_for_circle to calculate it given its mass and radius.
However, you could also select a value by experimenting with what looks good for your
simulation.

2. After we have the inertia we can create the body of the ball.
3. And we set its position
4. And in order for it to collide with things, it needs to have one (or many) collision shape(s).
5. Finally we add the body and shape to the space to include it in our simulation.

def add_ball(space):

 """Add a ball to the given space at a random position"""

 mass = 1

 radius = 14

 inertia = pymunk.moment_for_circle(mass, 0, radius, (0,0))

 body = pymunk.Body(mass, inertia)

 x = random.randint(120,380)

 body.position = x, 550

 shape = pymunk.Circle(body, radius, (0,0))

 space.add(body, shape)

 return shape

70

71

So lets add something the balls can land on, two static lines forming an L. As with the balls we
start with a function to add an L to the space:

def add_static_L(space):

 body = pymunk.Body(body_type = pymunk.Body.STATIC) # 1

 body.position = (300, 300)

 l1 = pymunk.Segment(body, (-150, 0), (255, 0), 5) # 2

 l2 = pymunk.Segment(body, (-150, 0), (-150, 50), 5)

 space.add(l1, l2) # 3

 return l1,l2

1. We create a “static” body. The important step is to never add it to the space like the
dynamic ball bodies. Note how static bodies are created by setting the body_type of the
body.

2. A line shaped shape is created here.
3. Again, we only add the segments, not the body to the space.

72

73

A static L shape is pretty boring. So lets make it a bit more exciting by adding two joints, one
that it can rotate around, and one that prevents it from rotating too much.

def add_L(space):

 rotation_center_body = pymunk.Body(body_type = pymunk.Body.STATIC) # 1

 rotation_center_body.position = (300, 300)

 body = pymunk.Body(10, 10000) # 2

 body.position = (300, 300)

 l1 = pymunk.Segment(body, (-150, 0), (255.0, 0.0), 5.0)

 l2 = pymunk.Segment(body, (-150.0, 0), (-150.0, 50.0), 5.0)

 rotation_center_joint = pymunk.PinJoint(body, rotation_center_body, (0,0), (0,0)) # 3

 space.add(l1, l2, body, rotation_center_joint)

 return l1,l2

1. This is the rotation center body.
2. The L shape will now be moving in the world, and therefor it can no longer be a static body.
3. A pin joint allow two objects to pivot about a single point.

74

75

To constrain the rotating L shape to create a more interesting simulation.
def add_L(space):

 rotation_center_body = pymunk.Body(body_type = pymunk.Body.STATIC)

 rotation_center_body.position = (300,300)

 rotation_limit_body = pymunk.Body(body_type = pymunk.Body.STATIC) # 1

 rotation_limit_body.position = (200,300)

 body = pymunk.Body(10, 10000)

 body.position = (300,300)

 l1 = pymunk.Segment(body, (-150, 0), (255.0, 0.0), 5.0)

 l2 = pymunk.Segment(body, (-150.0, 0), (-150.0, 50.0), 5.0)

 rotation_center_joint = pymunk.PinJoint(body, rotation_center_body, (0,0), (0,0))

 joint_limit = 25

 rotation_limit_joint = pymunk.SlideJoint(body, rotation_limit_body, (-100,0), (0,0), 0, joint_limit) # 2

 space.add(l1, l2, body, rotation_center_joint, rotation_limit_joint)

 return l1,l2

1. We add a body.
2. Create a slide joint. It behaves like pin joints but have a minimum and maximum distance.

The two bodies can slide between the min and max.

76

77

You might notice that we never delete balls. This will make the simulation require more and
more memory and use more and more cpu.

balls_to_remove = []

for ball in balls:

 if ball.body.position.y < 0: # 1

 balls_to_remove.append(ball) # 2

for ball in balls_to_remove:

 space.remove(ball, ball.body) # 3

 balls.remove(ball) # 4

1. Loop the balls and check if the body.position is less than 0.
2. If that is the case, we add it to our list of balls to remove.
3. To remove an object from the space, we need to remove its shape and its body.
4. And then we remove it from our list of balls.

78 78
hint: shape.elasticity = 0.9999999

Classwork: Newton’s Cradle

test_10_doublePendulum.py

