
1

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

Trajectory of a Spinning Object

Magnus Effect

#12

2

Magnus Effect

The Magnus effect is the commonly observed effect in which a spinning ball
(or cylinder) curves away from its principal flight path. It is important in many
ball sports. It affects spinning missiles, and has some engineering uses, for
instance in the design of rotor ships and Flettner aeroplanes.

Magnus Effect

The Magnus effect is named after Gustav Magnus, the German physicist who
investigated it. The force on a rotating cylinder is known as Kutta–Joukowski
lift, after Martin Wilhelm Kutta and Nikolai Zhukovsky (or Joukowski), who
first analyzed the effect.

3

Magnus Effect

4

High velocity,

Low Pressure

Low velocity,

High Pressure
Magnus

Force, FL

Magnus Effect

5

6

Magnus Effect

The overall behavior is similar to that around an aerofoil with a circulation
which is generated by the mechanical rotation, rather than by airfoil action.

The airfoil is a Kármán–
Trefftz airfoil, with
parameters μx = −0.08,
μy = +0.08 and n = 1.94.
The angle of attack is 8°,
and the flow is a
potential flow

7

Magnus Effect

In terms of ball games, topspin is defined as spin about an axis perpendicular
to the direction of travel, where the top surface of the ball is moving forward
with the spin. Under the Magnus effect, topspin produces a downward
swerve of a moving ball, greater than would be produced by gravity alone,
and backspin has the opposite effect.

8

The Best Example of the Magnus Effect

The Best Example of the Magnus Effect

9

10

Magnus Effect

http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwiY_pLkssjMAhWFXRQKHU_xCSwQjRwIBw&url=http://www.real-world-physics-problems.com/physics-of-soccer.html&psig=AFQjCNHNKMaa2WLP23vYnZF_dxml1V7rQg&ust=1462725374420672

11

Soccer Balls

12

Soccer Balls

13

Soccer Balls

14

Soccer Balls

15

Soccer Balls

16

Soccer Balls

17

Soccer Balls

The trajectory of the soccer ball were measured
by using three video cameras that were
operating at PAL standart (50Hz- interlaced).

•trajectory of the ball

18

Soccer Balls

The initial conditions of the soccer ball were measured by
using two high-speed video cameras that were operating at
500Hz.

•spin of the ball
•Initial Velocity
•Angle of Release

19

Soccer Balls

• Cardan Angles

 x’y”z” (*)

 z’y”x”

 ...

• Euler Angles

 x’y”x”

 z’y”z”

 ...

o Experiment

- Simulation

Elevation Angle 10°

Azimuth Angle 12°

Drag Coefficient 0.27

Lift Coefficient 0.24

Spin Rate 1.1 Hz

Velocity 21 ms-1

Drag Coefficient 0.25

Lift Coefficient 0.23

Elevation Angle 14°

Azimuth Angle 38°

Initial Velocity of the Ball 36 ms-1

Spin Rate 2.2 Hz

 Local Gravity (Due to Latitude and Altitude)

Lyon 9.8061 m.s-2 45° 44’ N 248m

İstanbul (Dolmabahçe) 9.8025 m.s-2 40° 58’ N 10m

Ankara (Beytepe) 9.7984 m.s-2 39° 57’ N 1030m

 Local Air Density (Due to Temperature and Altitude)

Lyon 1.1670 20°C 248m

İstanbul (Dolmabahçe) 1.2031 20°C 10m

Ankara (Beytepe) 1.0559 20°C 1030m

•Initial Values for Simulation

The Best Example of the Magnus Effect

21

The Best Example of the Magnus Effect

22

- Lyons

- İstanbul

- Ankara

The Best Example of the Magnus Effect

23

The Best Example of the Magnus Effect

24

Drag Coefficient

- 0.24

- 0.25

- 0.26
Topun havalanma sabiti 0.23

Hava Yükselme Açısı 14°

Topun ilk Hızı 36 m.s-1

Topun Dönme Oranı 2.2 Hz

Lifting Coefficient

- 0.22

- 0.23

- 0.24

The Best Example of the Magnus Effect

25

Topun hava direnme sabiti 0.25

Hava Yükselme Açısı 14°

Topun ilk Hızı 36 m.s-1

Topun Dönme Oranı 2.2 Hz

2

2

2

1

2

1

UpSCF

apVCF

UpSCF

LL

MA

DD

26

Perfect Glide Experiment

27

28

Perfect Glide

29

Perfect Glide Experiment

Perfect Glide Experiment

30

31

Perfect Glide Experiment

Perfect Glide Experiment

32

33

34

35

Magnus Effect

Topspin

Backspin

http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwjolY6qs8jMAhUJzRQKHQ35D0gQjRwIBw&url=http://hardquotes.com/tennis/spin-your-way-to-win&psig=AFQjCNGuBgVSFXAh0PJgzDCC6Fo8RBHa9Q&ust=1462725521137447

36

Magnus Effect

Magnus Effect

37

38

39

Fl is the lift force stemming from the rotation of the ball (the Magnus-effect) and is
normal to vr. With the given direction the ball rotates counter-clockwise (backspin). Fd
is the fluids resistance against the motion and is parallel to vr.

40

These forces are given by

 CD is the drag coefficient, CL is the lift coefficient, A is the area projected in
the velocity direction and ρf is the density of the fluid. Newton's second law
in x- and y-directions gives

𝐹𝑑 =
1

2
𝜌𝑓𝐴𝐶𝐷𝑣𝑟

2

𝐹𝑙 =
1

2
𝜌𝑓𝐴𝐶𝐿𝑣𝑟

2

𝑑𝑣𝑥
𝑑𝑡

= −𝜌𝑓
𝐴

2𝑚
𝑣𝑟
2 𝐶𝐷 cos𝜑 + 𝐶𝐿 sin𝜑

𝑑𝑣𝑦

𝑑𝑡
= 𝜌𝑓

𝐴

2𝑚
𝑣𝑟
2 𝐶𝐿 cos𝜑 − 𝐶𝐷 sin𝜑 − 𝑔

41

42

Carl David Tolme Runge – Martin Wilhelm Kutta

Runge –Kutta

43

The Runga-Kutta uses these slopes as weighted average to better approximate the
actual slope, velocity, of the object.

44

import numpy as np

import matplotlib.pyplot as plt

g = 9.81 # Gravity [m/s^2]

nu = 1.5e-5 # Kinematical viscosity [m^2/s]

rho_f = 1.29 # Density of fluid [kg/m^3]

rho_s = 418 # Density of sphere [kg/m^3]

d = 67.0e-3 # Diameter of the sphere [m]

v0 = 50.0 # Initial velocity [m/s]

vfx = 0.0 # x-component of fluid's velocity

vfy = 0.0 # y-component of fluid's velocity

CD = 0.55 # CD is typically about 0.5 - 0.6

CL = 0.3 # CL is normally taken to be positive for

 # backspin and negative for topspin.

45

def rk4(func, z0, time):

 """The Runge-Kutta 4 scheme for solution of systems of ODEs.

 z0 is a vector for the initial conditions,

 the right hand side of the system is represented by func which returns

 a vector with the same size as z0 ."""

 z = np.zeros((size(time), size(z0)))

 z[0, :] = z0

 for i, t in enumerate(time[0:-1]):

 dt = time[i+1] - time[i]

 dt2 = dt/2.0

 k1 = np.asarray(func(z[i, :], t)) # predictor step 1

 k2 = np.asarray(func(z[i, :] + k1*dt2, t + dt2)) # predictor step 2

 k3 = np.asarray(func(z[i, :] + k2*dt2, t + dt2)) # predictor step 3

 k4 = np.asarray(func(z[i, :] + k3*dt, t + dt)) # predictor step 4

 z[i+1, :] = z[i, :] + dt/6.0*(k1 + 2.0*k2 + 2.0*k3 + k4)# Corrector step

 return z

.

46

tennis ball without lift

def f2(z, t):

 """4x4 system for golf ball with drag in two directions."""

 zout = np.zeros_like(z)

 C = 3.0*rho_f/(4.0*rho_s*d)

 vrx = z[2] - vfx

 vry = z[3] - vfy

 vr = np.sqrt(vrx**2 + vry**2)

 zout[:] = [z[2], z[3], -C*vr*(CD*vrx), C*vr*(-CD*vry) - g]

 return zout

tennis ball with lift

def f3(z, t):

 """4x4 system for golf ball with drag and lift in two directions."""

 zout = np.zeros_like(z)

 C = 3.0*rho_f/(4.0*rho_s*d)

 vrx = z[2] - vfx

 vry = z[3] - vfy

 vr = np.np.sqrt(vrx**2 + vry**2)

 zout[:] = [z[2], z[3], -C*vr*(CD*vrx + CL*vry), C*vr*(CL*vrx - CD*vry) - g]

 return zout

47

main program starts here

T = 3 # end of simulation

N = 60 # no of time steps

time = np.linspace(0, T, N+1)

N2 = 4

alfa = np.linspace(30, 15, N2) # Angle of elevation [degrees]

angle = alfa*np.pi/180.0 # convert to radians

legends = []

line_color = ['k', 'm', 'b', 'r']

fig, ax = plt.subplots(figsize = (20, 8))# width, height in inches

48

computing and plotting

tennis ball with drag

for i in range(0, N2):

 z0 = np.zeros(4)

 z0[2] = v0*np.cos(angle[i])

 z0[3] = v0*np.sin(angle[i])

 z = rk4(f2, z0, time)

 ax.plot(z[:, 0], z[:, 1], '-', color=line_color[i])

 legends.append('angle=' + str(alfa[i]) + ', with drag')

tennis ball with drag and lift

for i in range(0, N2):

 z0 = np.zeros(4)

 z0[2] = v0*np.cos(angle[i])

 z0[3] = v0*np.sin(angle[i])

 z = rk4(f3, z0, time)

 ax.plot(z[:, 0], z[:, 1], '.', color=line_color[i])

 legends.append('angle=' + str(alfa[i]) + ', with drag and with lift')

49

ax.legend(legends, loc='best', frameon=False)

ax.xlabel('x [m]')

ax.ylabel('y [m]')

ax.axis([0, 100, 0, 30])

Plt.show()

50

Comprehensive Biomechanical Modeling and Simulation of the Upper Body

Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans.
Graph. 28, 4, Article 99 (August 2009)

51

A total of 814 actuators are modeled

Physically Based Modeling

52

53

54

55

56

57

58

Arıtan S. et al. (1997) Program for generation of three-dimensional finite element mesh from magnetic imaging scans. Medical
Enginering & Physics. 59

60

61

62

The SGI Origin 2000 is a family of mid-range and high-end server computers developed and
manufactured by Silicon Graphics (SGI). They were introduced in 1996 to succeed the SGI Challenge
and POWER Challenge.

ABAQUS is a software suite for finite element analysis and computer-aided engineering, originally released in 1978.

63

64

Axis-Aligned minimum Bounding Box (AABB)

An axis-aligned bounding box (AABB) is also a very quick way of determining
collisions. The fit is generally better than a bounding sphere (especially if the
object you are bounding is a box itself).

65

Axis-Aligned minimum Bounding Box (AABB)

• A box that is

Defined by the min and max
coordinates of an object
Always aligned with the
 coordinate axes

Initial Airplane Orientation

Airplane Orientation 2

Axis-Aligned minimum Bounding Box (AABB)
• How can we tell if a point p

 is inside the box?

• Do a bunch of ifs
◦ if

 px<= maxx and

 py<= maxy and

 px>= minx and

 py>= miny :

 collide = True

 elif

 collide = False

66

P

minx maxx

maxy

miny

px<= maxx

p
y
<
=

m
a
x
y

px>= minx

67

Comparing AABBs

if mins/maxes overlap:
 collide = True
else:

 collide = False

Bminx Bmaxx

Bmaxy

Bminy

Aminx Amaxx

68

AABB Approach
Initialization: Iterate through vertices and find mins and maxes

After Transformations: Iterate through AABB
vertices and find mins and maxes

69

AABB Approach

• Initialization

iterate through all vertices of your model to find the mins and maxes
for x, y, and z

• During runtime
Test if any of the AABB mins/maxes of one object overlap with
another object’s AABB mins/maxes

MAKE SURE THAT THE AABB VALUES ARE IN THE SAME
COORDINATE FRAME (e.g., world coordinates)!

70

import pygame

import random

red = [255, 0, 0]

green = [0, 255, 0]

blue = [0, 0, 255]

white = [255, 255, 255]

black = [0, 0, 0]

UP = [0, -1]

DOWN = [0, 1]

LEFT = [-1, 0]

RIGHT = [1, 0]

NOTMOVING = [0, 0]

constants end

71

Classes

class collidable:

 x = 0

 y = 0

 w = 0

 h = 0

 rect = pygame.Rect(x, y, w, h)

 color = [0, 0, 0]

 def __init__(self, x, y, w, h, color):

 self.x = x

 self.y = y

 self.w = w

 self.h = h

 self.color = color

 self.rect = pygame.Rect(x, y, w, h)

 def draw(self):

 pygame.draw.rect(screen, self.color, [self.x,self.y,self.w, self.h], 6)

72

class player:

 x = 0

 y = 0

 speed = 0

 rect = pygame.Rect(x, y, 20, 20)

 def __init__(self, x, y, speed):

 self.x = x

 self.y = y

 self.speed = speed

 self.rect = pygame.Rect(self.x, self.y, 20, 20)

73

 def draw(self):

 if player_moving==LEFT:

 pygame.draw.polygon(screen,black,[(self.x-10,self.y),(self.x+10,self.y-

10),(self.x+10,self.y+10)])

 elif player_moving==RIGHT:

 pygame.draw.polygon(screen,black,[(self.x+10,self.y),(self.x-10,self.y-

10),(self.x-10,self.y+10)])

 elif player_moving==UP:

 pygame.draw.polygon(screen,black,[(self.x,self.y-10),(self.x+10,

self.y+10),(self.x-10,self.y+10)])

 elif player_moving==DOWN:

 pygame.draw.polygon(screen,black,[(self.x,self.y+10),(self.x+10,self.y-

10),(self.x-10,self.y-10)])

 else:

 pygame.draw.rect(screen,black,pygame.Rect(self.x-10,self.y-10,20,20), 6)

 def setpos(self, x, y):

 self.x = x

 self.y = y

 def move(self, direction):

 self.x = self.x + direction[0]*self.speed

 self.y = self.y + direction[1]*self.speed

 self.rect = pygame.Rect(self.x, self.y, 20, 20)

Classes End

74

75

globals

pygame.init()

screenSize = [800, 600]

screenBGColor = white

screen = pygame.display.set_mode(screenSize)

pygame.display.set_caption("Move the Block")

player = player(screenSize[0]/2, screenSize[1]/2, 9)

collidables = []

clock = pygame.time.Clock()

for i in range(10):

 collidables.append(collidable(random.randrange(0, screenSize[0]),

 random.randrange(0, screenSize[1]), random.randrange(10, 200),

 random.randrange(10, 200), blue))

running = True

globals end

player_moving = NOTMOVING

76

Functions

def render():

 screen.fill(screenBGColor)

 clock.tick(60)

 player.draw()

 for c in collidables:

 c.draw()

 pygame.display.flip()

def tick(player_moving):

 for c in collidables:

 if player.rect.colliderect(c.rect):

 player_moving = NOTMOVING

 print("hit"+str(c.rect)+" with "+str(player.rect))

 player.move(player_moving)

Functions End

77

main loop

while running:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 running = False

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_LEFT:

 player_moving = LEFT

 if event.key == pygame.K_RIGHT:

 player_moving = RIGHT

 if event.key == pygame.K_UP:

 player_moving = UP

 if event.key == pygame.K_DOWN:

 player_moving = DOWN

 else:

 player_moving = NOTMOVING

 tick(player_moving)

 render()

main loop end

pygame.quit()

Gilbert–Johnson–Keerthi distance algorithm
GJK distance algorithm is a method of determining the minimum distance
between two convex sets.

GJK algorithms are often used incrementally in simulation systems and
video games. In this mode, the final simplex from a previous solution is
used as the initial guess in the next iteration, or "frame". If the positions
in the new frame are close to those in the old frame, the algorithm will
converge in one or two iterations. This yields collision detection systems
which operate in near-constant time.

The algorithm's stability, speed, and small storage footprint make it
popular for realtime collision detection, especially in physics engines for
video games.

78

79

80

81

The simplest method to detect a collision in 2D space is to treat all objects
as circles (Gilbert, Johnson and Keerthi, 1988:193); if the sum of the circles’
radii is greater than or equal to the difference between their centres, then
the circles must be touching or overlapping and a collision would be
detected.

GJK (Gilbert–Johnson–Keerthi)

82

This idea can be generalised to 3D space by treating objects as spheres, as
well as to any higher dimensions. However, it is unrealistic to easily simplify
every shape into a circle. One such widely-used method is the Gilbert-
Johnson-Keerthi (GJK) algorithm by Gilbert, Johnson and Keerthi (1988). To
develop an understanding of how this algorithm works, we’ll first go over
some fundamental concepts.

GJK (Gilbert–Johnson–Keerthi)

83

Simplex

In collision detection, the term Simplex is used a lot. A Simplex refers to
either a point, line segment, triangle or tetrahedron. For example, the 0-
simplex is a point, the 1-simplex is a line segment, the 2-simplex is a
triangle, and the 3-simplex is a tetrahedron.

84

Convex and Concave Shapes

In a convex shape, a line segment between any two points within the shape
always falls completely inside the shape.

85

Convex Hull

The convex hull of a shape is the smallest convex shape that fully contains it.

86

Supporting Point

In a convex object, the supporting point is the most distant point in a given
direction. In some books, they are referred as extreme points. In the
illustration below, the supporting point in direction d is P.

87

Minkowski Sum

In collision detection, there are two important operations which you need to
understand. They are the Minkowski Sum and the Minkowski Difference.
Visually, the Minkowski sum can be seen as the region swept by Object A
translated to every point in Object B.

88

Minkowski Difference

The Minkowski difference is the region swept by Object A translated to
every point negated in Object B. The Minkowski difference is a significant
operation in collision detection because two objects A and B collide if their
Minkowski difference contains the origin. The GJK algorithm uses this fact to
determine if two convex objects have collided.

from scipy.spatial import ConvexHull

import numpy as np

import matplotlib.pyplot as plt

A = [(1,4),(1,1),(3,1),(3,4)]

B = [(0,3),(0,2),(2,2)]

points = np.asarray([(xA-xB, yA-yB) for xA, yA in A for xB, yB in B])

hull = ConvexHull(points)

plt.plot(points[:,0], points[:,1], 'o')

plt.plot(0, 0, 'ro')

for simplex in hull.simplices:

 plt.plot(points[simplex, 0], points[simplex, 1], 'k-')

plt.plot(0, 0, 'ro')

plt.axhline(linewidth=2, color='r')

plt.axvline(linewidth=2, color='r')

plt.axis('equal')

plt.grid()

89

90

Minkowski Difference

Inside the Polygon

91

determine if a point is inside a given polygon or not

Polygon is a list of (x,y) pairs.

def point_inside_polygon(x,y,poly):

 n = len(poly)

 inside =False

 p1x,p1y = poly[0]

 for i in range(n+1):

 p2x,p2y = poly[i % n]

 if y > min(p1y,p2y):

 if y <= max(p1y,p2y):

 if x <= max(p1x,p2x):

 if p1y != p2y:

 xinters = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x

 if p1x == p2x or x <= xinters:

 inside = not inside

 p1x,p1y = p2x,p2y

 return inside

92

1. The algorithm arbitrarily starts with the vertex A as the
initial simplex in set Q, Q={A}.

2. Searching for the supporting point in direction -A results in
B. B is added to the Simplex set, Q={A, B}

3. The point in the convex hull Q closest to the origin is C.
Because both A and B are needed to express C as a convex
combination, both are kept in Q.

4. D is the supporting point in direction -C and it is added to
Q, giving Q={A, B, D}.

5. The closest point in the convex hull Q closest to the origin is
now E.

6. Because only B and D are needed to express E as a convex
combination of vertices in Q, Q is updated to Q={B, D}. The
supporting point in direction -E is F, which is added to Q.

7. The point on the convex hull Q closest to the origin is now
G.

8. D and F are the smallest set of vertices in Q need to express
G as a convex combination. Q is updated to Q={D, F}.

9. At this point, because no vertex is closer to the origin in
direction -G than G itself, G must be the closest point to the
origin, and the algorithm terminates. No collision occurred.

https://winter.dev/articles/gjk-algorithm/app/demo.html

93

