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Magnus Effect

The Magnus effect is the commonly observed effect in which a spinning ball
(or cylinder) curves away from its principal flight path. It is important in many
ball sports. It affects spinning missiles, and has some engineering uses, for
instance in the design of rotor ships and Flettner aeroplanes.
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Magnus Effect

The Magnus effect is named after Gustav Magnus, the German physicist who
investigated it. The force on a rotating cylinder is known as Kutta—Joukowski

lift, after Martin Wilhelm Kutta and Nikolai Zhukovsky (or Joukowski), who
first analyzed the effect.
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Magnus Effect
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Magnus Effect
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Magnus Effect

The overall behavior is similar to that around an aerofoil with a circulation
which is generated by the mechanical rotation, rather than by airfoil action.

The airfoil is a Karman-
Trefftz  airfoil, with
parameters y, = -0.08,
W, = +0.08 and n = 1.94.
The angle of attack is 8°,
and the flow is a
potential flow
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Magnus Effect

In terms of ball games, topspin is defined as spin about an axis perpendicular
to the direction of travel, where the top surface of the ball is moving forward
with the spin. Under the Magnus effect, topspin produces a downward
swerve of a moving ball, greater than would be produced by gravity alone,
and backspin has the opposite effect.
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The Best Example of the Magnus Effect
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The Best Example of the Magnus Effect

France v Brazl, Tournoi de France 3 June 1997
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Magnus Effect
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$ SR KEE University of Tiukuba Soccer Balls
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Soccer Balls

etrajectory of the ball

The trajectory of the soccer ball were measured
by using three video cameras that were
operating at PAL standart (50Hz- interlaced).
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Soccer Balls

espin of the ball
e|nitial Velocity
eAngle of Release

The initial conditions of the soccer ball were measured by
using two high-speed video cameras that were operating at
500Hz.
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Soccer Balls

e Cardan Angles
xty»zn (*)

ZIVMXM

e Euler Angles
x'yuxn

Z'Y”Z”

Serdar ARITAN



6 PHYSICS in COMPUTER ANIMATIONS and GAMES

o Experiment
250

Elevation Angle 10°
Azimuth Angle 12°
Drag Coefficient 0.27
Lift Coefficient 0.24
Spin Rate 1.1Hz

Velocity 21 ms?
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The Best Example of the Magnus Effect

Drag Coefficient 0.25

Lift Coefficient 0.23

Elevation Angle el eInitial Values for Simulation
Azimuth Angle 38°

Initial Velocity of the Ball 36 ms!

Spin Rate 2.2 Hz

Local Gravity (Due to Latitude and Altitude)

Lyon 9.8061 m.s2 45°44’ N 248m

istanbul (Dolmabahge) 9.8025 m.s2 40° 58’ N 10m

Ankara (Beytepe) 9.7984 m.s2 39°57’ N 1030m
Local Air Density (Due to Temperature and Altitude)

Lyon 1.1670 20°C 248m

istanbul (Dolmabahge) 1.2031 20°C 10m

Ankara (Beytepe) 1.0559 20°C 1030m
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The Best Example of the Magnus Effect
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The Best Example of the Magnus Effect
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The Best Example of the Magnus Effect
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The Best Example of the Magnus Effect
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Angle of
attack

%
Flow direction
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Perfect Glide Experiment
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Perfect Glide
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Perfect Glide Experiment
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Perfect Glide Experiment
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Perfect Glide Experiment
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Perfect Glide Experiment
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Development of Inmediate Feedback Software for Optimising Glide
Performance and Time of Initiating Post-Glide Actions

Roozbeh Naemi', Serdar Aritan®, Simon Goodwill®, Steve Haake®, Ross Sanders'.

(1) : Centre for Aquatics Research and Education, (2) : Biomechanics Research Group, School of

The University of Edinburgh, St Leonard’s Land, Sports Sciences and Technology.,
Holyrood Road. Edinburgh, UK EH8 8AQ Beytepe, 06800.Ankara, Turkey
0044 131 651 4117 70044 131 651 6521 0090 312 297 6893 /0090 312 299 2167
E-mail : Roozbeh.naemi@education.ed.ac.uk E-mail : serdar.aritan @ hacettepe.edu.tr
(3) : Sports Engineering @ (4) : Sports Engineering @
Centre for Sport and Exercise Science Centre for Sport and Exercise Sciences
Sheffield Hallam University. Collegiate Hall Sheffield Hallam University. Collegiate
Sheffield, UK S10 2BP Crescent, Sheffield, UK S10 2BP
0044 114 225 4435 0044 114 225 2429 /0044 114 225 4356
E-mail : s.r.goodwill@shu.ac.uk E-mail : S.J.Haake @shu.ac.uk

(5) : Centre for Aquatics Research and Education, The University of Edinburgh, St Leonard’s Land
Holyrood Road. Edinburgh, UK EH8 8AQ
0044 131 651 6580/ 0044 131 6516521
E-mail : r.sanders @ed.ac.uk

TOPICS: Performance Sports, Biomechanics, Measurement Systems

Abstract: Performance in starts and turns is a major contributor to success in swimming and is influenced greatly by the glide
efficiency and the timing of commencing the post-glide action (including kick in all strokes and the underwater pull in
breaststroke starts and turns). The main aim of this research is to develop and test ‘user friendly’ software for providing
immediate feedback to swimmers and coaches to optimise glide performance and time of initiating post-glide actions in starts,

turns, and the glide phase of the breaststroke.
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Medal table Medal table
Last updated after the 2020 Summer QOlympics Retrieved from 2008 NBC Olympics website.
Rank ¢ Nation ¢ Gold ¢ Silver # - Total ¢ Rank # Nation % Gold # Silver ¢ Total #

1 E= United States (USA) 257 178 144 579 1 E= United States (USA) 12 9 10 31
2 Bl Australia (AUS) 69 70 73 212 2 Bl Australia (AUS) 6 6 8 20
3 WM Fast Germany (GDR) 38 32 22 92 3 £1= Great Britain (GBR) 2 2 2 6
4 == Hungary (HUN) 28 26 20 74 4 @ Japan (JPN) 2 0 3 5
5 @ Japan (JPN) 24 27 32 83 5 B Germany (GER) 2 0 1 3
6 == Great Britain (GBR) 20 29 30 79 6 == Netherlands (NED) 2 0 0 2
7 = Netherlands (NED) 19 20 19 58 7 Bl China (CHN) 1 3 2 6
8 Bl China (CHN) 16 21 12 49 8 == Zimbabwe (ZIM) 1 3 0 4
9 B Germany (GER) 13 18 30 61 9 I I France (FRA) 1 2 3 6
10 Bl Soviet Union (URS) 12 21 26 59 10 mm Russia (RUS) 1 1 2 4
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Magnus Effect
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Magnus Effect

Net Aerodynamic Force-
Sum of Drag and Lift Components

Topspin
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Baseline Service Line Service Line Baseline
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A F, V l
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F, is the lift force stemming from the rotation of the ball (the Magnus-effect) and is%
normal to v,. With the given direction the ball rotates counter-clockwise (backspin). F,
is the fluids resistance against the motion and is parallel to v,
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These forces are given by

! 2
Fq = ipfACDvr
L 2
F, = EpfACLvr

Cp, is the drag coefficient, C, is the lift coefficient, A is the area projected in
the velocity direction and py is the density of the fluid. Newton's second law
in x- and y-directions gives

dv, A
dvy A (C C )
dt ~ PrgmrLcse - osine) =g
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Carl David Tolme Runge — Martin Wilhelm Kutta

Carl David
Tolmé Runge
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Runge —Kutta

The Runga-Kutta uses these slopes as weighted average to better approximate the
actual slope, velocity, of the object.

ol NS

=V, 6t(m+2k2+2 Fk4)

t+at

Serdar ARITAN 43



‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

rt numpy as np
rt matplotlib.pyplot as plt

g = 9.81 # Gravity [m/s*2]
= 1.5e-5 # Kinematical viscosity [m*2/s]
rho £ = 1.29 {# Density of fluid [kg/m"3]
rho_s = 418 # Density of sphere [kg/m“3]
d = 67.0e-3 # Diameter of the sphere [m]
v0 = 50.0 # Initial velocity [m/s]
vEx = 0.0 # x-component of fluid's velocity
vy = 0.0 # y-component of fluid's velocity
= 0.55 # CD is typically about 0.5 - 0.6
= 0.3 # CL is normally taken to be positive for

# backspin and negative for topspin.
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rk4 (func, z0, time):

"""The Runge-Kutta 4 scheme for solution of systems of ODEs.

z0 is a vector for the initial conditions,

the right hand side of the system is represented by func which returns
a vector with the same size as z0 ."""

\D
h

z = np.zeros((size(time), size(z0)))
z[0, :] = z0

for i, t in enumerate(time[0:-1]):
dt = time[i+l] - time[i]
dt2 = dt/2.0
kl np.asarray (func(z[i, :], t)) # predictor step 1
k2 np.asarray (func(z[i, :] + kl*dt2, t + dt2)) # predictor step 2
3
4

k3 = np.asarray(func(z[i, :] + k2*dt2, t + dt2)) # predictor step
k4 = np.asarray(func(z[i, :] + k3*dt, t + dt)) # predictor step
z[i+l, :] = z[i, :] + dt/6.0*(kl + 2.0*k2 + 2.0*k3 + k4)# Corrector step

return z
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# tennis ball without lift
def £2(z, t):
"""4x4 system for golf ball with drag in two directions."""
zout = np.zeros_like(z)
C = 3.0*rho_£/(4.0*rho_s*d)
vrx z[2] - vEx
vry z[3] - viy
vr = np.sqrt(vex**2 + vry**2)
zout[:] = [z[2], z[3], -C*vr*(CD*vrx), C*vr*(-CD*vry) - gl
return zout
# tennis ball with lift
def £3(z, t):
"""4x4 system for golf ball with drag and lift in two directions."""
zout = np.zeros_like(z)

C = 3.0*rho_£/(4.0*rho_s*d)
vex = z[2] - vEx
vry = z[3] - viy

vr = np.np.sqrt(vex**2 + vry**2)
zout[:] = [z[2], z[3], -C*vr*(CD*vrx + CL*vry), C*vr*(CL*vrx - CD*vry) - g]

return zout
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# main program starts here

T =3 # end of simulation

N = 60 # no of time steps

time = np.linspace(0, T, N+1)

N2 = 4

alfa = np.linspace (30, 15, N2) # Angle of elevation [degrees]
angle = alfa*np.pi/180.0 # convert to radians

legends = []
line color = ['k', 'm', 'b', 'r']
fig, ax = plt.subplots(figsize = (20, 8))# width, height in inches
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# computing and plotting
# tennis ball with drag
for i in range(0, N2):
z0 = np.zeros (4)
z0[2] = vO*np.cos(angle[i])
z0[3] = vO*np.sin(angle[i])
z = rkd4(£f2, z0, time)
ax.plot(z[:, 0], z[:, 1], '-', color=line_color[i])
legends.append('angle=' + str(alfa[i]) + ', with drag')

# tennis ball with drag and lift
‘or i in range(0, N2):
z0 = np.zeros (4)
z0[2] = vO0*np.cos(angle[i])
z0[3] = vO0*np.sin(angle[i])
z = rk4(£f3, z0, time)
ax.plot(z[:, 0], z[:, 1], '.', color=line color[i])
legends.append('angle=' + str(alfa[i]) + ', with drag and with 1lift')
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ax.legend(legends, loc='best', frameon=False)
ax.xlabel('x [m]"')

ax.ylabel('y [m]')

ax.axis ([0, 100, 0, 30])

Plt.show()
30 :
— angle=30.0, with drag
— angle=25.0, with drag
— angle=20.0, with drag
= — angle=15.0, with drag
LR TP . = + angle=30.0, with drag and with lift
. o + angle=25.0, with drag and with lift
20 e i + + angle=20.0, with drag and with lift |
* FPEER R P . =« angle=15.0, with drag and with lift
E L e s T
S
10
5
0 I I I I
0 20 40 60 80 100
x[m]
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Comprehensive Biomechanical Modeling and Simulation of the Upper Body

/
4

Comprehensive Biomechanical
Modeling and Simulation

of the Upper Body

Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. m

Serdar ARITAN Graph. 28, 4, Article 99 (August 2009)
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Physically Based Modeling

A total of 814 actuators are modeled
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Fig. 10. Bulk properties of muscular bulk tissue in contracted condition.

S. Aritan et al. ‘A mechanical model representation of the in vivo creep behaviour of -
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Finite Element Modelling

eELEMENT MESHES CAN BE COMPLICATED

2D Element Geometry of Elements

k k k k
sotropic .

k+k,€k-fk

anisotropic
3D Element D [I
- 48 ! k : stifne
: displacement vector
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IMAGE 22
STUDY 6

File Edit Search Run Compile Debug Project Options
SBORLANDCNEXAMPLESNUCIRC . CPP
TCDISPLY.C

Window Help

—Lul
void setcolor(int color)

»% Sets the current color using the color table »/
1

textattr(colortabl
} /= setcolor =~

Borland C++
void writef (int col,

caod
## Prints a string i Version 3.1 n a color =~

va_list arg_ptr: Copyright (c) 1990, 1992 by
char output[811:
int len:

Borland Intermational, Inc.

F1 Help ficcept the settings in this dialog box

Antan S. et al. (1997) Program
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() Arm Coordinates

File Zoom Layers Slicez Help

Version 3.1

Copyright £ Mictosoft Coepormtion 1085 - 1992 .
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The SGI Origin 2000 is a family of mid-range and high-end server computers developed and
manufactured by Silicon Graphics (SGI). They were introduced in 1996 to succeed the SGI Challenge

and POWER Challenge.
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ABAQUS is a software suite for finite element analysis and computer-aided engineering, originally released in 1978.
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Axis-Aligned minimum Bounding Box (AABB)

An axis-aligned bounding box (AABB) is also a very quick way of determining
collisions. The fit is generally better than a bounding sphere (especially if the
object you are bounding is a box itself).
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Axis-Aligned minimum Bounding Box (AABB)| Initial Airplane Orientation

St

* Aboxthatis
Defined by the min and max
coordinates of an object
Always aligned with the
coordinate axes

Airplane Orientation 2
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Axis-Aligned minimum Bounding BoxﬁAABB) min,

* How can we tell if a point p
is inside the box?

Do a bunch of ifs
o if

P,<= max, and

pP,<= max, and
P,>= min, and
pP,>= min, :
collide =
elif
collide

Txrue

False
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Comparing AABBs ﬂ B;nin, Brri
| |
Bmax

if mins/maxes overlap: - -I— -------- JI
collide = True Amin,: : : Amax, :
collide = False : : : :
I . I
i . I
i ! I
I Bmin, | [ I
I R e
i I I
| N 1

|

=
|
| |
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AABB Approach
Initialization: Iterate through vertices and find mins and maxes

After Transformations: Iterate through AABB
vertices and find mins and maxes

7
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AABB Approach

* Initialization
iterate through all vertices of your model to find the mins and maxes
forx,y,and z
* During runtime
Test if any of the AABB mins/maxes of one object overlap with
another object’s AABB mins/maxes
MAKE SURE THAT THE AABB VALUES ARE IN THE SAME
COORDINATE FRAME (e.g., world coordinates)!
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red = [255, 0, 0]
green = [0, 255, 0]
blue = [0, 0, 255]
white = [255, 255, 255]
black = [0, 0, 0]
= [0, -1]
DOWN = [0, 1]
LEFT = [-1, 0]
RIGHT = [1, O]
NOTMOVING = [0, 0]
# constants end
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# Classes
' collidable:
0

R ER

(=]

rect = pygame.Rect(x, y, w, h)
color = [0, O, O]

def _ init (self, x, y, w, h, color):

self.x = x
self.y =y
self.w=w
self.h = h

self.color = color
self.rect = pygame.Rect(x, y, w, h)

° draw(self):
pygame.draw.rect (screen, self.color, [self.x,self.y,self.w, self.h], 6)
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class player:
x=0
y=2=0
speed = 0
rect = pygame.Rect(x, y, 20, 20)

def __init (self, x, y, speed):
self.x = x
self.y =y
self.speed = speed
self.rect = pygame.Rect(self.x, self.y, 20, 20)
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=f draw(self):
. player moving==LEFT:
pygame .draw.polygon (screen,black, [ (self.x-10,self.y), (self.x+10,self.y-
10), (self.x+10,self.y+10)])
© player moving==RIGHT:
pygame .draw.polygon (screen,black, [ (self.x+10,self.y), (self.x-10,self.y-
10) , (self.x-10,self.y+10)])
player moving==UP:
pygame .draw.polygon (screen,black, [ (self.x,self.y-10), (self.x+10,
self.y+10), (self.x-10,self.y+10)])
¢ player moving==DOWN:
pygame .draw.polygon (screen,black, [ (self.x,self.y+10), (self.x+10,self.y-
10) , (self.x-10,self.y-10)])

pygame .draw.rect (screen,black,pygame.Rect (self.x-10,self.y-10,20,20), 6)
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def setpos(self, x, y):
self.x = x
self.y =y

def move (self, direction):
self.x = self.x + direction[0] *self.speed
self.y = self.y + direction[l]*self.speed
self.rect = pygame.Rect(self.x, self.y, 20, 20)

# Classes End
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# globals

pygame.init ()

screenSize = [800, 600]

screenBGColor = white

screen = pygame.display.set mode (screenSize)

pygame.display.set caption("Move the Block")

player = player (screenSize[0]/2, screenSize[l]/2, 9)

collidables = []

clock = pygame. time.Clock()

‘or 1 in range(1l0):

collidables.append(collidable (random.randrange (0, screenSize[0]),

random.randrange (0, screenSize[l]), random.randrange (10, 200),
random.randrange (10, 200), blue))

running = True

# globals end
player moving = NOTMOVING

Serdar ARITAN



‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

# Functions

def render():
screen.fill (screenBGColor)
clock.tick (60)
player.draw()
for ¢ in collidables:

c.draw()

pygame .display.flip()

def tick(player moving):
for ¢ in collidables:
if player.rect.colliderect(c.rect):
player moving = NOTMOVING
print ("hit"+str(c.rect)+" with "+str(player.rect))
player.move (player moving)

# Functions End
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# main loop

while running:
or event in pygame.event.get():
- event.type == pygame.QUIT:
running = Ffalse

- event.type == pygame.KEYDOWN:
. event.key == pygame.K LEFT:
player moving = LEFT

. event.key == pygame.K RIGHT:

player moving = RIGHT

.f event.key == pygame.K UP:
player moving = UP

.f event.key == pygame.K DOWN:
player moving = DOWN

player moving = NOTMOVING
tick (player moving)
render ()
# main loop end

pPygame.quit()

Serdar ARITAN



‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Gilbert-Johnson—Keerthi distance algorithm
GJK distance algorithm is a method of determining the minimum distance
between two convex sets.

GJK algorithms are often used incrementally in simulation systems and
video games. In this mode, the final simplex from a previous solution is
used as the initial guess in the next iteration, or "frame". If the positions
in the new frame are close to those in the old frame, the algorithm will
converge in one or two iterations. This yields collision detection systems
which operate in near-constant time.

The algorithm's stability, speed, and small storage footprint make it
popular for realtime collision detection, especially in physics engines for

video games.
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prmunk

Collision Detection Algorithm

Just as the impulse solver, the collision detection is also handled by the underlying C-
library Chipmunk2D.

Chipmunk uses GJK/EPA to find collisions between the tricky cases (e.g. polygons,
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%pymunk GJK (Gilbert-Johnson—Keerthi)

The simplest method to detect a collision in 2D space is to treat all objects
as circles (Gilbert, Johnson and Keerthi, 1988:193); if the sum of the circles’
radii is greater than or equal to the difference between their centres, then

the circles must be touching or overlapping and a collision would be
detected.

ri r2
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&pymunk GJK (Gilbert-Johnson—Keerthi)

This idea can be generalised to 3D space by treating objects as spheres, as
well as to any higher dimensions. However, it is unrealistic to easily simplify
every shape into a circle. One such widely-used method is the Gilbert-
Johnson-Keerthi (GJK) algorithm by Gilbert, Johnson and Keerthi (1988). To

develop an understanding of how this algorithm works, we’ll first go over
some fundamental concepts.
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Iﬁpymunk Slmplex

In collision detection, the term Simplex is used a lot. A Simplex refers to
either a point, line segment, triangle or tetrahedron. For example, the O-
simplex is a point, the 1l-simplex is a line segment, the 2-simplex is a
triangle, and the 3-simplex is a tetrahedron.

-

0-Simplex 1-Simplex 2-sSimplex 3-Simplex
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%pymunk Convex and Concave Shapes

In a convex shape, a line segment between any two points within the shape
always falls completely inside the shape.
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prmunk Convex Hull

The convex hull of a shape is the smallest convex shape that fully contains it.
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prmunk Supporting Point

In a convex object, the supporting point is the most distant point in a given
direction. In some books, they are referred as extreme points. In the
illustration below, the supporting point in direction d is P.

/G/P
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IQPYmunk Minkowski Sum

In collision detection, there are two important operations which you need to
understand. They are the Minkowski Sum and the Minkowski Difference.
Visually, the Minkowski sum can be seen as the region swept by Object A

translated to every point in Object B.
A@B

(-3.4) (-1.4)
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IQPYmunk Minkowski Difference

The Minkowski difference is the region swept by Object A translated to
every point negated in Object B. The Minkowski difference is a significant
operation in collision detection because two objects A and B collide if their
Minkowski difference contains the origin. The GJK algorithm uses this fact to
determine if two convex objects have collided.

0.3)
0.2) .g B (1,2) (3.2)
° @.1) ¢ ¢
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from scipy.spatial import ConvexHull
LMPOorct numpy as np
import matplotlib.pyplot as plt

A
B

[(1,4),(1,1),(3,1),(3,4)]
[(0,3),(0,2),(2,2)]

points = np.asarray ([ (xA-xB, yA-yB) for xA, yA in A for xB, yB in B])
hull = ConvexHull (points)

plt.plot(points[:,0], points[:,1l], 'o')
plt.plot (0, 0, 'ro')

simplex in hull.simplices:
plt.plot(points[simplex, 0], points[simplex, 1], 'k-"'")

5
¢
~

plt.plot(0, 0, 'ro')
plt.axhline (linewidth=2, color='r')
plt.axvline (linewidth=2, color='r')

plt.axis('equal')
plt.grid()
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Minkowski Difference

20 1 T - :
15 1
10 1 L L
05 +
0.0 »

—0.5 1

-1.0 4 \ L 1
—-1.5 1
I I
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Inside the Polygon

# determine if a point is inside a given polygon or not
# Polygon is a list of (x,y) pairs.

(1)
g,

point_inside polygon(x,y,poly):

n = len(poly)
inside =Ffalse

plx,ply = poly[0]
for i in range(n+l):
P2x,p2y = poly[i % n]
if y > min(ply,p2y):
if y <= max(ply,p2y):
if x <= max(plx,p2x):
if ply !'= p2y:
xinters = (y-ply)* (p2x-plx)/(p2y-ply) +plx
if plx == p2x or x <= xinters:
inside = not inside
plx,ply = p2x,p2y

return inside
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A

Oq\___

origin

1. The algorithm arbitrarily starts with the vertex A as the

initial simplex in set Q, Q={A}.

2. Searching for the supporting point in direction -A results in

B. B is added to the Simplex set, Q={A, B}

3. The point in the convex hull Q closest to the origin is C.

Because both A and B are needed to express C as a convex
combination, both are kept in Q.

4. D is the supporting point in direction -C and it is added to

Q, giving Q={A, B, D}.

5. The closest point in the convex hull Q closest to the origin is

now E.

6. Because only B and D are needed to express E as a convex

combination of vertices in Q, Q is updated to Q={B, D}. The
supporting point in direction -E is F, which is added to Q.

7. The point on the convex hull Q closest to the origin is now

G.

8. D and F are the smallest set of vertices in Q need to express

G as a convex combination. Q is updated to Q={D, F}.

9. At this point, because no vertex is closer to the origin in

direction -G than G itself, G must be the closest point to the
origin, and the algorithm terminates. No collision occurred.
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https://winter.dev/articles/gjk-algorithm/app/demo.html

(shift focuses iframe)

Controlls:

Key 0-5/+-: Debug level/iteration

Key R/T: Toggle response/randomize shapes

Arrow keys: Move shape B (Key S: Slowmo)

Mouse click: Move shape A

Mouse wheel: Zoom infout

Key H: Hide all this nonsense winter.dev
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