‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Trajectory of a Spinning Object
Magnus Effect

#12
Serdar ARITAN

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Magnus Effect

The Magnus effect is the commonly observed effect in which a spinning ball
(or cylinder) curves away from its principal flight path. It is important in many
ball sports. It affects spinning missiles, and has some engineering uses, for
instance in the design of rotor ships and Flettner aeroplanes.

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Magnus Effect

The Magnus effect is named after Gustav Magnus, the German physicist who
investigated it. The force on a rotating cylinder is known as Kutta—Joukowski

lift, after Martin Wilhelm Kutta and Nikolai Zhukovsky (or Joukowski), who
first analyzed the effect.

T Magnus Force

..= Q
//\.

<

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Magnus Effect

Low velocity, e <SR, \ High velocity,
High Pressure 4 Véa———o llow.Pressure
ZN N N 3 Magnus

Force, F,

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Magnus Effect

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Magnus Effect

The overall behavior is similar to that around an aerofoil with a circulation
which is generated by the mechanical rotation, rather than by airfoil action.

The airfoil is a Karman-
Trefftz airfoil, with
parameters y, = -0.08,
W, = +0.08 and n = 1.94.
The angle of attack is 8°,
and the flow is a
potential flow

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Magnus Effect

In terms of ball games, topspin is defined as spin about an axis perpendicular
to the direction of travel, where the top surface of the ball is moving forward
with the spin. Under the Magnus effect, topspin produces a downward
swerve of a moving ball, greater than would be produced by gravity alone,
and backspin has the opposite effect.

Topspin Backspin

o

. | Rotation e | | Rotation

Velocity Velocity

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
The Best Example of the Magnus Effect

0 SESERT TN CANAL+S

AL, oL

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
The Best Example of the Magnus Effect

France v Brazl, Tournoi de France 3 June 1997

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES
Magnus Effect

A

|

|

|

|

|

|

|

|

|

I
Left of
center kick

o
w7

e,
LA

Right of
center kick
[
w

Serdar ARITAN 10

http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwiY_pLkssjMAhWFXRQKHU_xCSwQjRwIBw&url=http://www.real-world-physics-problems.com/physics-of-soccer.html&psig=AFQjCNHNKMaa2WLP23vYnZF_dxml1V7rQg&ust=1462725374420672

PHYSICS in COMPUTER ANIMATIONS and GAMES
$;ﬁ_fgzj(?—%‘* University of Tiukuba Soccer Balls

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
&b DL R EE: University of Tukuba Soccer Balls

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
&6 LIRS University of Tukuba Soccer Balls

Serdar ARITAN W | 13

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
&b DL R EE: University of Tukuba Soccer Balls

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
$ SR KEE University of Tiukuba Soccer Balls

T |
\
> - i
] v = -
o —— — -
> }
[\ .S 1 ~

Serdar ARITAN 15

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
$ SN University of Tukuba

6

Soccer Balls

Serdar ARITAN m

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Soccer Balls

etrajectory of the ball

The trajectory of the soccer ball were measured
by using three video cameras that were
operating at PAL standart (50Hz- interlaced).

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Soccer Balls

espin of the ball
e|nitial Velocity
eAngle of Release

The initial conditions of the soccer ball were measured by
using two high-speed video cameras that were operating at
500Hz.

Serdar ARITAN 18

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Soccer Balls

e Cardan Angles
xty»zn (*)

ZIVMXM

e Euler Angles
x'yuxn

Z'Y”Z”

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

o Experiment
250

Elevation Angle 10°
Azimuth Angle 12°
Drag Coefficient 0.27
Lift Coefficient 0.24
Spin Rate 1.1Hz

Velocity 21 ms?

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES
The Best Example of the Magnus Effect

Drag Coefficient 0.25

Lift Coefficient 0.23

Elevation Angle el eInitial Values for Simulation
Azimuth Angle 38°

Initial Velocity of the Ball 36 ms!

Spin Rate 2.2 Hz

Local Gravity (Due to Latitude and Altitude)

Lyon 9.8061 m.s2 45°44’ N 248m

istanbul (Dolmabahge) 9.8025 m.s2 40° 58’ N 10m

Ankara (Beytepe) 9.7984 m.s2 39°57’ N 1030m
Local Air Density (Due to Temperature and Altitude)

Lyon 1.1670 20°C 248m

istanbul (Dolmabahge) 1.2031 20°C 10m

Ankara (Beytepe) 1.0559 20°C 1030m

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
The Best Example of the Magnus Effect

Serdar ARITAN (22

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

The Best Example of the Magnus Effect

-~

- Ankara

Serdar ARITAN 23

6 PHYSICS in COMPUTER ANIMATIONS and GAMES
The Best Example of the Magnus Effect

y 4 e

X jﬂmfﬁ(ﬁent
. 024

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES
The Best Example of the Magnus Effect

-0.24

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Angle of
attack

%
Flow direction

Serdar ARITAN 26

PHYSICS in COMPUTER ANIMATIONS and GAMES

Perfect Glide Experiment

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES
Perfect Glide

Serdar ARITAN 28

PHYSICS in COMPUTER ANIMATIONS and GAMES

Perfect Glide Experiment

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

Perfect Glide Experiment

Serdar ARITAN 30

PHYSICS in COMPUTER ANIMATIONS and GAMES

Perfect Glide Experiment

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Perfect Glide Experiment

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

Development of Inmediate Feedback Software for Optimising Glide
Performance and Time of Initiating Post-Glide Actions

Roozbeh Naemi', Serdar Aritan®, Simon Goodwill®, Steve Haake®, Ross Sanders'.

(1) : Centre for Aquatics Research and Education, (2) : Biomechanics Research Group, School of

The University of Edinburgh, St Leonard’s Land, Sports Sciences and Technology.,
Holyrood Road. Edinburgh, UK EH8 8AQ Beytepe, 06800.Ankara, Turkey
0044 131 651 4117 70044 131 651 6521 0090 312 297 6893 /0090 312 299 2167
E-mail : Roozbeh.naemi@education.ed.ac.uk E-mail : serdar.aritan @ hacettepe.edu.tr
(3) : Sports Engineering @ (4) : Sports Engineering @
Centre for Sport and Exercise Science Centre for Sport and Exercise Sciences
Sheffield Hallam University. Collegiate Hall Sheffield Hallam University. Collegiate
Sheffield, UK S10 2BP Crescent, Sheffield, UK S10 2BP
0044 114 225 4435 0044 114 225 2429 /0044 114 225 4356
E-mail : s.r.goodwill@shu.ac.uk E-mail : S.J.Haake @shu.ac.uk

(5) : Centre for Aquatics Research and Education, The University of Edinburgh, St Leonard’s Land
Holyrood Road. Edinburgh, UK EH8 8AQ
0044 131 651 6580/ 0044 131 6516521
E-mail : r.sanders @ed.ac.uk

TOPICS: Performance Sports, Biomechanics, Measurement Systems

Abstract: Performance in starts and turns is a major contributor to success in swimming and is influenced greatly by the glide
efficiency and the timing of commencing the post-glide action (including kick in all strokes and the underwater pull in
breaststroke starts and turns). The main aim of this research is to develop and test ‘user friendly’ software for providing
immediate feedback to swimmers and coaches to optimise glide performance and time of initiating post-glide actions in starts,

turns, and the glide phase of the breaststroke.
Serdar ARITAN 33

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Medal table Medal table
Last updated after the 2020 Summer QOlympics Retrieved from 2008 NBC Olympics website.
Rank ¢ Nation ¢ Gold ¢ Silver # - Total ¢ Rank # Nation % Gold # Silver ¢ Total #

1 E= United States (USA) 257 178 144 579 1 E= United States (USA) 12 9 10 31
2 Bl Australia (AUS) 69 70 73 212 2 Bl Australia (AUS) 6 6 8 20
3 WM Fast Germany (GDR) 38 32 22 92 3 £1= Great Britain (GBR) 2 2 2 6
4 == Hungary (HUN) 28 26 20 74 4 @ Japan (JPN) 2 0 3 5
5 @ Japan (JPN) 24 27 32 83 5 B Germany (GER) 2 0 1 3
6 == Great Britain (GBR) 20 29 30 79 6 == Netherlands (NED) 2 0 0 2
7 = Netherlands (NED) 19 20 19 58 7 Bl China (CHN) 1 3 2 6
8 Bl China (CHN) 16 21 12 49 8 == Zimbabwe (ZIM) 1 3 0 4
9 B Germany (GER) 13 18 30 61 9 I I France (FRA) 1 2 3 6
10 Bl Soviet Union (URS) 12 21 26 59 10 mm Russia (RUS) 1 1 2 4

Serdar ARITAN E3

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Magnus Effect

= Gesopiabnes Y
- -~
- -

-
- ~
’4 ~

o /,’ 3 Drag \\
L) \\
Topspin
Drag S,
o Lift M
Lift Sy
Gravity

Gravity

Lift R \\\\ Lift

s v o Drag ‘3
N
\\\
e S
Drag Backspin
- \\\
RN
Gravity

Gravity

Serdar ARITAN E3

http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwjolY6qs8jMAhUJzRQKHQ35D0gQjRwIBw&url=http://hardquotes.com/tennis/spin-your-way-to-win&psig=AFQjCNGuBgVSFXAh0PJgzDCC6Fo8RBHa9Q&ust=1462725521137447

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Magnus Effect

Net Aerodynamic Force-
Sum of Drag and Lift Components

Topspin

Serdar ARITAN E3

PHYSICS in COMPUTER ANIMATIONS and GAMES

Net Force
Magnus Effect Topspin |
3 ~ Topspin
—_— V ™ o
Topspin Pl E
-
”
"” B
/’ &
/’ \\
- . v ~
’// Gravitational Net TS
-
i Force Gravitational \\
RN
Net Aerodynamic
Force
B k i ,”” \\\\\ \\\ 3
ackspin i .o Backspin
Backspin i %
‘_\9 ,"’ £ XS
-
'/” Net
Force
\\\
\\
\\
Aerodynamic Mo
o Gravitational >
ravitational g

Serdar ARITAN i ‘

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Baseline Service Line Service Line Baseline

Net Service LineT Baseline |

Iincident with Top Spin

Serdar ARITAN E3

PHYSICS in COMPUTER ANIMATIONS and GAMES

A F, V l
— ¢H

Y v,

b, m |

>

F, is the lift force stemming from the rotation of the ball (the Magnus-effect) and is%
normal to v,. With the given direction the ball rotates counter-clockwise (backspin). F,
is the fluids resistance against the motion and is parallel to v,

Serdar ARITAN E3

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

These forces are given by

! 2
Fq = ipfACDvr
L 2
F, = EpfACLvr

Cp, is the drag coefficient, C, is the lift coefficient, A is the area projected in
the velocity direction and py is the density of the fluid. Newton's second law
in x- and y-directions gives

dv, A
dvy A (C C)
dt ~ PrgmrLcse - osine) =g

Serdar ARITAN 40

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

"r’ ..-"""""
—
]
A -
A
A2 3 A4 h2 | n2 X
AJ. xn xﬂ+]
\ A
AO _y(t)
—Euler
P >

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Carl David Tolme Runge — Martin Wilhelm Kutta

Carl David
Tolmé Runge

Serdar ARITAN 3

Martin Wilhelm Kutta

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Runge —Kutta

The Runga-Kutta uses these slopes as weighted average to better approximate the
actual slope, velocity, of the object.

ol NS

=V, 6t(m+2k2+2 Fk4)

t+at

Serdar ARITAN 43

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

rt numpy as np
rt matplotlib.pyplot as plt

g = 9.81 # Gravity [m/s*2]
= 1.5e-5 # Kinematical viscosity [m*2/s]
rho £ = 1.29 {# Density of fluid [kg/m"3]
rho_s = 418 # Density of sphere [kg/m“3]
d = 67.0e-3 # Diameter of the sphere [m]
v0 = 50.0 # Initial velocity [m/s]
vEx = 0.0 # x-component of fluid's velocity
vy = 0.0 # y-component of fluid's velocity
= 0.55 # CD is typically about 0.5 - 0.6
= 0.3 # CL is normally taken to be positive for

backspin and negative for topspin.

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

rk4 (func, z0, time):

"""The Runge-Kutta 4 scheme for solution of systems of ODEs.

z0 is a vector for the initial conditions,

the right hand side of the system is represented by func which returns
a vector with the same size as z0 ."""

\D
h

z = np.zeros((size(time), size(z0)))
z[0, :] = z0

for i, t in enumerate(time[0:-1]):
dt = time[i+l] - time[i]
dt2 = dt/2.0
kl np.asarray (func(z[i, :], t)) # predictor step 1
k2 np.asarray (func(z[i, :] + kl*dt2, t + dt2)) # predictor step 2
3
4

k3 = np.asarray(func(z[i, :] + k2*dt2, t + dt2)) # predictor step
k4 = np.asarray(func(z[i, :] + k3*dt, t + dt)) # predictor step
z[i+l, :] = z[i, :] + dt/6.0*(kl + 2.0*k2 + 2.0*k3 + k4)# Corrector step

return z

Serdar ARITAN 45

PHYSICS in COMPUTER ANIMATIONS and GAMES

tennis ball without lift
def £2(z, t):
"""4x4 system for golf ball with drag in two directions."""
zout = np.zeros_like(z)
C = 3.0*rho_£/(4.0*rho_s*d)
vrx z[2] - vEx
vry z[3] - viy
vr = np.sqrt(vex**2 + vry**2)
zout[:] = [z[2], z[3], -C*vr*(CD*vrx), C*vr*(-CD*vry) - gl
return zout
tennis ball with lift
def £3(z, t):
"""4x4 system for golf ball with drag and lift in two directions."""
zout = np.zeros_like(z)

C = 3.0*rho_£/(4.0*rho_s*d)
vex = z[2] - vEx
vry = z[3] - viy

vr = np.np.sqrt(vex**2 + vry**2)
zout[:] = [z[2], z[3], -C*vr*(CD*vrx + CL*vry), C*vr*(CL*vrx - CD*vry) - g]

return zout
Serdar ARITAN 46

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

main program starts here

T =3 # end of simulation

N = 60 # no of time steps

time = np.linspace(0, T, N+1)

N2 = 4

alfa = np.linspace (30, 15, N2) # Angle of elevation [degrees]
angle = alfa*np.pi/180.0 # convert to radians

legends = []
line color = ['k', 'm', 'b', 'r']
fig, ax = plt.subplots(figsize = (20, 8))# width, height in inches

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

computing and plotting
tennis ball with drag
for i in range(0, N2):
z0 = np.zeros (4)
z0[2] = vO*np.cos(angle[i])
z0[3] = vO*np.sin(angle[i])
z = rkd4(£f2, z0, time)
ax.plot(z[:, 0], z[:, 1], '-', color=line_color[i])
legends.append('angle=' + str(alfa[i]) + ', with drag')

tennis ball with drag and lift
‘or i in range(0, N2):
z0 = np.zeros (4)
z0[2] = vO0*np.cos(angle[i])
z0[3] = vO0*np.sin(angle[i])
z = rk4(£f3, z0, time)
ax.plot(z[:, 0], z[:, 1], '.', color=line color[i])
legends.append('angle=' + str(alfa[i]) + ', with drag and with 1lift')

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

ax.legend(legends, loc='best', frameon=False)
ax.xlabel('x [m]"')

ax.ylabel('y [m]')

ax.axis ([0, 100, 0, 30])

Plt.show()
30 :
— angle=30.0, with drag
— angle=25.0, with drag
— angle=20.0, with drag
= — angle=15.0, with drag
LR TP . = + angle=30.0, with drag and with lift
. o + angle=25.0, with drag and with lift
20 e i + + angle=20.0, with drag and with lift |
* FPEER R P . =« angle=15.0, with drag and with lift
E L e s T
S
10
5
0 I I I I
0 20 40 60 80 100
x[m]

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

Comprehensive Biomechanical Modeling and Simulation of the Upper Body

/
4

Comprehensive Biomechanical
Modeling and Simulation

of the Upper Body

Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. m

Serdar ARITAN Graph. 28, 4, Article 99 (August 2009)

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Physically Based Modeling

A total of 814 actuators are modeled

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

in (] (a5)

o tn

Ritbon Cable

Power Supply

1 Main frame

2 Runer

3 Tp

4 Lood cell cairier

5 Lood cell

6 “olves

T Emergency step bBulton
8 Close loop bell

9 Sgueezing Chomber

10 Adusting boil

11 Slrain gouge omplifies
12 Conirol box

13 Preumalle evilnder

14 Pressure requictor and lubrlcal or
15 Preumalic peppel wolve
18 Stablilser

17 Tohle

ey

WGA Screen

B Cerap.
486 Dx 33 MHz

Serdar ARITAN

from Al Pressure Tonk

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Serdar ARITAN 54

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Serdar ARITAN 55

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

PHYSICS in COMPUTER ANIMATIONS and GAMES

500— T __
4504 — |
Fa00y—
x -
3504 — |
S 300
= 2504
% 200 -
@ 150 —
100l

BLOOD
VESSEL

ETC. MUSCLE FAT SKIN

Fig. 10. Bulk properties of muscular bulk tissue in contracted condition.

S. Aritan et al. ‘A mechanical model representation of the in vivo creep behaviour of -

Serdar ARITAN muscular bulk tissue’ [Journal of Biomechanics

6 PHYSICS in COMPUTER ANIMATIONS and GAMES
Finite Element Modelling

eELEMENT MESHES CAN BE COMPLICATED

2D Element Geometry of Elements

k k k k
sotropic .

k+k,€k-fk

anisotropic
3D Element D [I
- 48 ! k : stifne
: displacement vector
Serdar ARITAN 58

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

DABNICHKL PETER (OR) North Staffs Hospit

a
MAGNETOM EXPER
F-SP-CR VB21C

+:FAL

IMAGE 22
STUDY 6

File Edit Search Run Compile Debug Project Options
SBORLANDCNEXAMPLESNUCIRC . CPP
TCDISPLY.C

Window Help

—Lul
void setcolor(int color)

»% Sets the current color using the color table »/
1

textattr(colortabl
} /= setcolor =~

Borland C++
void writef (int col,

caod
Prints a string i Version 3.1 n a color =~

va_list arg_ptr: Copyright (c) 1990, 1992 by
char output[811:
int len:

Borland Intermational, Inc.

F1 Help ficcept the settings in this dialog box

Antan S. et al. (1997) Program

Serdar ARITAN Enginering & Physics.

r
Sf_,/'

@9 PHYSICS in COMPUTER ANIMATIONS and GAMES

() Arm Coordinates

File Zoom Layers Slicez Help

Version 3.1

Copyright £ Mictosoft Coepormtion 1085 - 1992 .

’ T Bighs Reserved
h-'__v:_ et

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

QrerGL

8 / 7] 5 I] 7

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Serdar ARITAN 62

PHYSICS in COMPUTER ANIMATIONS and GAMES

The SGI Origin 2000 is a family of mid-range and high-end server computers developed and
manufactured by Silicon Graphics (SGI). They were introduced in 1996 to succeed the SGI Challenge

and POWER Challenge.

LT
gt
il 7sre

7

1ELII
4:’::6’.‘!_
v se s A
e,
£

7

A,
7107y,

1

)

\:\
3

100.00 (mm)

5000

0

5.0 75.00

ABAQUS is a software suite for finite element analysis and computer-aided engineering, originally released in 1978.

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
Axis-Aligned minimum Bounding Box (AABB)

An axis-aligned bounding box (AABB) is also a very quick way of determining
collisions. The fit is generally better than a bounding sphere (especially if the
object you are bounding is a box itself).

Serdar ARITAN 64

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

Axis-Aligned minimum Bounding Box (AABB)| Initial Airplane Orientation

St

* Aboxthatis
Defined by the min and max
coordinates of an object
Always aligned with the
coordinate axes

Airplane Orientation 2

Serdar ARITAN 65

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Axis-Aligned minimum Bounding BoxﬁAABB) min,

* How can we tell if a point p
is inside the box?

Do a bunch of ifs
o if

P,<= max, and

pP,<= max, and
P,>= min, and
pP,>= min, :
collide =
elif
collide

Txrue

False

Serdar ARITAN

maxv- - - J

max,

Py<=

P>= min,
———————————

max,

PHYSICS in COMPUTER ANIMATIONS and GAMES

Comparing AABBs ﬂ B;nin, Brri
| |
Bmax

if mins/maxes overlap: - -I— -------- JI
collide = True Amin,: : : Amax, :
collide = False : : : :
I . I
i . I
i ! I
I Bmin, | [I
I R e
i I I
| N 1

|

=
|
| |

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

AABB Approach
Initialization: Iterate through vertices and find mins and maxes

After Transformations: Iterate through AABB
vertices and find mins and maxes

7

Serdar ARITAN 3

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
AABB Approach

* Initialization
iterate through all vertices of your model to find the mins and maxes
forx,y,and z
* During runtime
Test if any of the AABB mins/maxes of one object overlap with
another object’s AABB mins/maxes
MAKE SURE THAT THE AABB VALUES ARE IN THE SAME
COORDINATE FRAME (e.g., world coordinates)!

Serdar ARITAN 69

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

red = [255, 0, 0]
green = [0, 255, 0]
blue = [0, 0, 255]
white = [255, 255, 255]
black = [0, 0, 0]
= [0, -1]
DOWN = [0, 1]
LEFT = [-1, 0]
RIGHT = [1, O]
NOTMOVING = [0, 0]
constants end

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

Classes
' collidable:
0

R ER

(=]

rect = pygame.Rect(x, y, w, h)
color = [0, O, O]

def _ init (self, x, y, w, h, color):

self.x = x
self.y =y
self.w=w
self.h = h

self.color = color
self.rect = pygame.Rect(x, y, w, h)

° draw(self):
pygame.draw.rect (screen, self.color, [self.x,self.y,self.w, self.h], 6)

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

class player:
x=0
y=2=0
speed = 0
rect = pygame.Rect(x, y, 20, 20)

def __init (self, x, y, speed):
self.x = x
self.y =y
self.speed = speed
self.rect = pygame.Rect(self.x, self.y, 20, 20)

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

=f draw(self):
. player moving==LEFT:
pygame .draw.polygon (screen,black, [(self.x-10,self.y), (self.x+10,self.y-
10), (self.x+10,self.y+10)])
© player moving==RIGHT:
pygame .draw.polygon (screen,black, [(self.x+10,self.y), (self.x-10,self.y-
10) , (self.x-10,self.y+10)])
player moving==UP:
pygame .draw.polygon (screen,black, [(self.x,self.y-10), (self.x+10,
self.y+10), (self.x-10,self.y+10)])
¢ player moving==DOWN:
pygame .draw.polygon (screen,black, [(self.x,self.y+10), (self.x+10,self.y-
10) , (self.x-10,self.y-10)])

pygame .draw.rect (screen,black,pygame.Rect (self.x-10,self.y-10,20,20), 6)

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

def setpos(self, x, y):
self.x = x
self.y =y

def move (self, direction):
self.x = self.x + direction[0] *self.speed
self.y = self.y + direction[l]*self.speed
self.rect = pygame.Rect(self.x, self.y, 20, 20)

Classes End

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

globals

pygame.init ()

screenSize = [800, 600]

screenBGColor = white

screen = pygame.display.set mode (screenSize)

pygame.display.set caption("Move the Block")

player = player (screenSize[0]/2, screenSize[l]/2, 9)

collidables = []

clock = pygame. time.Clock()

‘or 1 in range(1l0):

collidables.append(collidable (random.randrange (0, screenSize[0]),

random.randrange (0, screenSize[l]), random.randrange (10, 200),
random.randrange (10, 200), blue))

running = True

globals end
player moving = NOTMOVING

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Functions

def render():
screen.fill (screenBGColor)
clock.tick (60)
player.draw()
for ¢ in collidables:

c.draw()

pygame .display.flip()

def tick(player moving):
for ¢ in collidables:
if player.rect.colliderect(c.rect):
player moving = NOTMOVING
print ("hit"+str(c.rect)+" with "+str(player.rect))
player.move (player moving)

Functions End

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

main loop

while running:
or event in pygame.event.get():
- event.type == pygame.QUIT:
running = Ffalse

- event.type == pygame.KEYDOWN:
. event.key == pygame.K LEFT:
player moving = LEFT

. event.key == pygame.K RIGHT:

player moving = RIGHT

.f event.key == pygame.K UP:
player moving = UP

.f event.key == pygame.K DOWN:
player moving = DOWN

player moving = NOTMOVING
tick (player moving)
render ()
main loop end

pPygame.quit()

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Gilbert-Johnson—Keerthi distance algorithm
GJK distance algorithm is a method of determining the minimum distance
between two convex sets.

GJK algorithms are often used incrementally in simulation systems and
video games. In this mode, the final simplex from a previous solution is
used as the initial guess in the next iteration, or "frame". If the positions
in the new frame are close to those in the old frame, the algorithm will
converge in one or two iterations. This yields collision detection systems
which operate in near-constant time.

The algorithm's stability, speed, and small storage footprint make it
popular for realtime collision detection, especially in physics engines for

video games.
Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

prmunk

Collision Detection Algorithm

Just as the impulse solver, the collision detection is also handled by the underlying C-
library Chipmunk2D.

Chipmunk uses GJK/EPA to find collisions between the tricky cases (e.g. polygons,

Serdar ARITAN 80

PHYSICS in COMPUTER ANIMATIONS and GAMES
%pymunk GJK (Gilbert-Johnson—Keerthi)

The simplest method to detect a collision in 2D space is to treat all objects
as circles (Gilbert, Johnson and Keerthi, 1988:193); if the sum of the circles’
radii is greater than or equal to the difference between their centres, then

the circles must be touching or overlapping and a collision would be
detected.

ri r2

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES
&pymunk GJK (Gilbert-Johnson—Keerthi)

This idea can be generalised to 3D space by treating objects as spheres, as
well as to any higher dimensions. However, it is unrealistic to easily simplify
every shape into a circle. One such widely-used method is the Gilbert-
Johnson-Keerthi (GJK) algorithm by Gilbert, Johnson and Keerthi (1988). To

develop an understanding of how this algorithm works, we’ll first go over
some fundamental concepts.

Serdar ARITAN 82

PHYSICS in COMPUTER ANIMATIONS and GAMES
Iﬁpymunk Slmplex

In collision detection, the term Simplex is used a lot. A Simplex refers to
either a point, line segment, triangle or tetrahedron. For example, the O-
simplex is a point, the 1l-simplex is a line segment, the 2-simplex is a
triangle, and the 3-simplex is a tetrahedron.

-

0-Simplex 1-Simplex 2-sSimplex 3-Simplex

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES
%pymunk Convex and Concave Shapes

In a convex shape, a line segment between any two points within the shape
always falls completely inside the shape.

Serdar ARITAN 84

PHYSICS in COMPUTER ANIMATIONS and GAMES
prmunk Convex Hull

The convex hull of a shape is the smallest convex shape that fully contains it.

Serdar ARITAN 85

PHYSICS in COMPUTER ANIMATIONS and GAMES
prmunk Supporting Point

In a convex object, the supporting point is the most distant point in a given
direction. In some books, they are referred as extreme points. In the
illustration below, the supporting point in direction d is P.

/G/P

Serdar ARITAN m

PHYSICS in COMPUTER ANIMATIONS and GAMES
IQPYmunk Minkowski Sum

In collision detection, there are two important operations which you need to
understand. They are the Minkowski Sum and the Minkowski Difference.
Visually, the Minkowski sum can be seen as the region swept by Object A

translated to every point in Object B.
A@B

(-3.4) (-1.4)

Serdar ARITAN

PHYSICS in COMPUTER ANIMATIONS and GAMES

IQPYmunk Minkowski Difference

The Minkowski difference is the region swept by Object A translated to
every point negated in Object B. The Minkowski difference is a significant
operation in collision detection because two objects A and B collide if their
Minkowski difference contains the origin. The GJK algorithm uses this fact to
determine if two convex objects have collided.

0.3)
0.2) .g B (1,2) (3.2)
° @.1) ¢ ¢

Serdar ARITAN

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

from scipy.spatial import ConvexHull
LMPOorct numpy as np
import matplotlib.pyplot as plt

A
B

[(1,4),(1,1),(3,1),(3,4)]
[(0,3),(0,2),(2,2)]

points = np.asarray ([(xA-xB, yA-yB) for xA, yA in A for xB, yB in B])
hull = ConvexHull (points)

plt.plot(points[:,0], points[:,1l], 'o')
plt.plot (0, 0, 'ro')

simplex in hull.simplices:
plt.plot(points[simplex, 0], points[simplex, 1], 'k-"'")

5
¢
~

plt.plot(0, 0, 'ro')
plt.axhline (linewidth=2, color='r')
plt.axvline (linewidth=2, color='r')

plt.axis('equal')
plt.grid()

Serdar ARITAN

6 PHYSICS in COMPUTER ANIMATIONS and GAMES

Minkowski Difference

20 1 T - :
15 1
10 1 L L
05 +
0.0 »

—0.5 1

-1.0 4 \ L 1
—-1.5 1
I I

Serdar ARITAN 90

PHYSICS in COMPUTER ANIMATIONS and GAMES
Inside the Polygon

determine if a point is inside a given polygon or not
Polygon is a list of (x,y) pairs.

(1)
g,

point_inside polygon(x,y,poly):

n = len(poly)
inside =Ffalse

plx,ply = poly[0]
for i in range(n+l):
P2x,p2y = poly[i % n]
if y > min(ply,p2y):
if y <= max(ply,p2y):
if x <= max(plx,p2x):
if ply !'= p2y:
xinters = (y-ply)* (p2x-plx)/(p2y-ply) +plx
if plx == p2x or x <= xinters:
inside = not inside
plx,ply = p2x,p2y

return inside

Serdar ARITAN

‘ PHYS

’

. -
A’/ M
O
&

origin

origin

Serdar ARITAN

ICS in COMPUTER ANIMATIONS and GAMES

A

Oq___

origin

1. The algorithm arbitrarily starts with the vertex A as the

initial simplex in set Q, Q={A}.

2. Searching for the supporting point in direction -A results in

B. B is added to the Simplex set, Q={A, B}

3. The point in the convex hull Q closest to the origin is C.

Because both A and B are needed to express C as a convex
combination, both are kept in Q.

4. D is the supporting point in direction -C and it is added to

Q, giving Q={A, B, D}.

5. The closest point in the convex hull Q closest to the origin is

now E.

6. Because only B and D are needed to express E as a convex

combination of vertices in Q, Q is updated to Q={B, D}. The
supporting point in direction -E is F, which is added to Q.

7. The point on the convex hull Q closest to the origin is now

G.

8. D and F are the smallest set of vertices in Q need to express

G as a convex combination. Q is updated to Q={D, F}.

9. At this point, because no vertex is closer to the origin in

direction -G than G itself, G must be the closest point to the
origin, and the algorithm terminates. No collision occurred.

‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

https://winter.dev/articles/gjk-algorithm/app/demo.html

(shift focuses iframe)

Controlls:

Key 0-5/+-: Debug level/iteration

Key R/T: Toggle response/randomize shapes

Arrow keys: Move shape B (Key S: Slowmo)

Mouse click: Move shape A

Mouse wheel: Zoom infout

Key H: Hide all this nonsense winter.dev

Serdar ARITAN 93

