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Magnus Effect 
 
The Magnus effect is the commonly observed effect in which a spinning ball 
(or cylinder) curves away from its principal flight path. It is important in many 
ball sports. It affects spinning missiles, and has some engineering uses, for 
instance in the design of rotor ships and Flettner aeroplanes. 



Magnus Effect 
 
The Magnus effect is named after Gustav Magnus, the German physicist who 
investigated it. The force on a rotating cylinder is known as Kutta–Joukowski 
lift, after Martin Wilhelm Kutta and Nikolai Zhukovsky (or Joukowski), who 
first analyzed the effect. 
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Magnus Effect 
 
The overall behavior is similar to that around an aerofoil with a circulation 
which is generated by the mechanical rotation, rather than by airfoil action. 

The airfoil is a Kármán–
Trefftz airfoil, with 
parameters μx = −0.08, 
μy = +0.08 and n = 1.94. 
The angle of attack is 8°, 
and the flow is a 
potential flow 
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Magnus Effect 
 
In terms of ball games, topspin is defined as spin about an axis perpendicular 
to the direction of travel, where the top surface of the ball is moving forward 
with the spin. Under the Magnus effect, topspin produces a downward 
swerve of a moving ball, greater than would be produced by gravity alone, 
and backspin has the opposite effect. 
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The Best Example of the Magnus Effect 



The Best Example of the Magnus Effect 
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Magnus Effect 

http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwiY_pLkssjMAhWFXRQKHU_xCSwQjRwIBw&url=http://www.real-world-physics-problems.com/physics-of-soccer.html&psig=AFQjCNHNKMaa2WLP23vYnZF_dxml1V7rQg&ust=1462725374420672
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Soccer Balls 
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Soccer Balls 
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Soccer Balls 
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Soccer Balls 
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Soccer Balls 
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Soccer Balls 
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Soccer Balls 

The trajectory of the soccer ball were measured 
by using three video cameras that were 
operating at PAL standart (50Hz- interlaced).  

•trajectory of the ball 
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Soccer Balls 

The initial conditions of the soccer ball were measured by 
using two high-speed video cameras that were operating at 
500Hz.  

•spin of the ball 
•Initial Velocity 
•Angle of Release 
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Soccer Balls 

• Cardan Angles 

 x’y”z” (*) 

 z’y”x” 

 ... 

• Euler Angles 

 x’y”x” 

 z’y”z” 

 ... 



o   Experiment 

-    Simulation 

Elevation Angle  10°  

Azimuth Angle  12° 

Drag Coefficient 0.27  

Lift Coefficient 0.24 

Spin Rate   1.1 Hz 

Velocity  21 ms-1 



Drag Coefficient   0.25  

Lift Coefficient   0.23 

Elevation Angle   14°  

Azimuth Angle   38° 

Initial Velocity of the Ball  36 ms-1 

Spin Rate    2.2 Hz 

 Local Gravity (Due to Latitude and Altitude) 

Lyon   9.8061 m.s-2  45° 44’ N 248m 

İstanbul (Dolmabahçe)  9.8025 m.s-2  40° 58’ N 10m 

Ankara (Beytepe)  9.7984 m.s-2  39° 57’ N 1030m 

 Local Air Density (Due to Temperature and Altitude) 

Lyon   1.1670  20°C  248m 

İstanbul (Dolmabahçe)  1.2031  20°C  10m 

Ankara (Beytepe)  1.0559  20°C  1030m 

•Initial Values for Simulation 

The Best Example of the Magnus Effect 
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The Best Example of the Magnus Effect 
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- Lyons 

- İstanbul 
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The Best Example of the Magnus Effect 
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The Best Example of the Magnus Effect 
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Drag Coefficient 

- 0.24 

- 0.25 

- 0.26 
Topun havalanma sabiti       0.23 

Hava Yükselme Açısı             14°  

Topun ilk Hızı              36 m.s-1 

Topun Dönme Oranı              2.2 Hz 



Lifting Coefficient 

- 0.22 

- 0.23 

- 0.24 

The Best Example of the Magnus Effect 
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Topun hava direnme sabiti       0.25 

Hava Yükselme Açısı                    14°  

Topun ilk Hızı                    36 m.s-1 

Topun Dönme Oranı                    2.2 Hz 
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Perfect Glide Experiment 
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Perfect Glide 
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Perfect Glide Experiment 



Perfect Glide Experiment 
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Perfect Glide Experiment 



Perfect Glide Experiment 
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Magnus Effect 

Topspin 

Backspin 

http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwjolY6qs8jMAhUJzRQKHQ35D0gQjRwIBw&url=http://hardquotes.com/tennis/spin-your-way-to-win&psig=AFQjCNGuBgVSFXAh0PJgzDCC6Fo8RBHa9Q&ust=1462725521137447
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Magnus Effect 



Magnus Effect 
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Fl is the lift force stemming from the rotation of the ball (the Magnus-effect) and is 
normal to vr. With the given direction the ball rotates counter-clockwise (backspin). Fd 
is the fluids resistance against the motion and is parallel to vr.  
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These forces are given by 
 
 
 
 
 CD is the drag coefficient, CL is the lift coefficient, A is the area projected in 
the velocity direction and ρf is the density of the fluid.  Newton's second law 
in x- and y-directions gives  

𝐹𝑑 =
1

2
𝜌𝑓𝐴𝐶𝐷𝑣𝑟

2 

𝐹𝑙 =
1

2
𝜌𝑓𝐴𝐶𝐿𝑣𝑟

2 

𝑑𝑣𝑥
𝑑𝑡

= −𝜌𝑓
𝐴

2𝑚
𝑣𝑟
2 𝐶𝐷 cos𝜑 + 𝐶𝐿 sin𝜑  

𝑑𝑣𝑦

𝑑𝑡
= 𝜌𝑓

𝐴

2𝑚
𝑣𝑟
2 𝐶𝐿 cos𝜑 − 𝐶𝐷 sin𝜑 − 𝑔 
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Carl David Tolme Runge – Martin Wilhelm Kutta 



Runge –Kutta 
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The Runga-Kutta uses these slopes as weighted average to better approximate the 
actual slope, velocity, of the object.  
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import numpy as np 

import matplotlib.pyplot as plt 

 

g = 9.81      # Gravity [m/s^2] 

nu = 1.5e-5   # Kinematical viscosity [m^2/s] 

rho_f = 1.29  # Density of fluid [kg/m^3] 

rho_s = 418   # Density of sphere [kg/m^3] 

d = 67.0e-3   # Diameter of the sphere [m] 

v0 = 50.0     # Initial velocity [m/s] 

vfx = 0.0     # x-component of fluid's velocity 

vfy = 0.0     # y-component of fluid's velocity 

CD = 0.55     # CD is typically about 0.5 - 0.6 

CL = 0.3      # CL is normally taken to be positive for  

   # backspin and negative for topspin.  
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def rk4(func, z0, time): 

    """The Runge-Kutta 4 scheme for solution of systems of ODEs. 

    z0 is a vector for the initial conditions, 

    the right hand side of the system is represented by func which returns 

    a vector with the same size as z0 .""" 

 

    z = np.zeros((size(time), size(z0))) 

    z[0, :] = z0 

 

    for i, t in enumerate(time[0:-1]): 

        dt = time[i+1] - time[i] 

        dt2 = dt/2.0 

        k1 = np.asarray(func(z[i, :], t))                 # predictor step 1 

        k2 = np.asarray(func(z[i, :] + k1*dt2, t + dt2))  # predictor step 2 

        k3 = np.asarray(func(z[i, :] + k2*dt2, t + dt2))  # predictor step 3 

        k4 = np.asarray(func(z[i, :] + k3*dt, t + dt))    # predictor step 4 

        z[i+1, :] = z[i, :] + dt/6.0*(k1 + 2.0*k2 + 2.0*k3 + k4)# Corrector step 

    return z 

.  
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# tennis ball without lift 

def f2(z, t): 

    """4x4 system for golf ball with drag in two directions.""" 

    zout = np.zeros_like(z) 

    C = 3.0*rho_f/(4.0*rho_s*d) 

    vrx = z[2] - vfx 

    vry = z[3] - vfy 

    vr = np.sqrt(vrx**2 + vry**2) 

    zout[:] = [z[2], z[3], -C*vr*(CD*vrx), C*vr*(-CD*vry) - g] 

    return zout 

# tennis ball with lift 

def f3(z, t): 

    """4x4 system for golf ball with drag and lift in two directions.""" 

    zout = np.zeros_like(z) 

    C = 3.0*rho_f/(4.0*rho_s*d) 

    vrx = z[2] - vfx 

    vry = z[3] - vfy 

    vr = np.np.sqrt(vrx**2 + vry**2) 

    zout[:] = [z[2], z[3], -C*vr*(CD*vrx + CL*vry), C*vr*(CL*vrx - CD*vry) - g] 

    return zout 
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# main program starts here 

 

T = 3   # end of simulation 

N = 60  # no of time steps 

time = np.linspace(0, T, N+1) 

N2 = 4 

alfa = np.linspace(30, 15, N2)     # Angle of elevation [degrees] 

angle = alfa*np.pi/180.0           # convert to radians 

 

legends = [] 

line_color = ['k', 'm', 'b', 'r'] 

fig, ax = plt.subplots(figsize = (20, 8))# width, height in inches 
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# computing and plotting 

# tennis ball with drag 

for i in range(0, N2): 

    z0 = np.zeros(4) 

    z0[2] = v0*np.cos(angle[i]) 

    z0[3] = v0*np.sin(angle[i]) 

    z = rk4(f2, z0, time) 

    ax.plot(z[:, 0], z[:, 1], '-', color=line_color[i]) 

    legends.append('angle=' + str(alfa[i]) + ', with drag') 

 

# tennis ball with drag and lift 

for i in range(0, N2): 

    z0 = np.zeros(4) 

    z0[2] = v0*np.cos(angle[i]) 

    z0[3] = v0*np.sin(angle[i]) 

    z = rk4(f3, z0, time) 

    ax.plot(z[:, 0], z[:, 1], '.', color=line_color[i]) 

    legends.append('angle=' + str(alfa[i]) + ', with drag and with lift') 
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ax.legend(legends, loc='best', frameon=False) 

ax.xlabel('x [m]') 

ax.ylabel('y [m]') 

ax.axis([0, 100, 0, 30]) 

Plt.show() 
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Comprehensive Biomechanical Modeling and Simulation of the Upper Body 

Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. 
Graph. 28, 4, Article 99 (August 2009) 
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A total of 814 actuators are modeled 

Physically Based Modeling 
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Arıtan S. et al. (1997) Program for generation of three-dimensional finite element mesh from magnetic imaging scans. Medical 
Enginering & Physics. 59 
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The SGI Origin 2000 is a family of mid-range and high-end server computers developed and 
manufactured by Silicon Graphics (SGI). They were introduced in 1996 to succeed the SGI Challenge 
and POWER Challenge. 

ABAQUS is a software suite for finite element analysis and computer-aided engineering, originally released in 1978. 
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Axis-Aligned minimum Bounding Box (AABB) 
 
An axis-aligned bounding box (AABB) is also a very quick way of determining 
collisions. The fit is generally better than a bounding sphere (especially if the 
object you are bounding is a box itself).  
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Axis-Aligned minimum Bounding Box (AABB) 
 
• A box that is  

Defined by the min and max  
coordinates of an object 
Always aligned with the 
 coordinate axes 

Initial Airplane Orientation  

Airplane Orientation 2 



Axis-Aligned minimum Bounding Box (AABB) 
• How can we tell if a point p 

 is inside the box? 

• Do a bunch of ifs 
◦ if  

  px<= maxx and 

  py<= maxy and 

  px>= minx and 

  py>= miny : 

     collide = True 

 elif 

    collide = False 
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P 

minx maxx 

maxy 

miny 

px<= maxx  

p
y
<
=
 
m
a
x
y
 

 

px>= minx  
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Comparing AABBs 
 

if mins/maxes overlap: 
    collide = True 
else: 

    collide = False 

Bminx Bmaxx 

Bmaxy 

Bminy 

Aminx Amaxx 
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AABB  Approach 
Initialization: Iterate through vertices and find mins and maxes 

After Transformations: Iterate through AABB 
vertices and find mins and maxes 
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AABB  Approach 
 
• Initialization 

iterate through all vertices of your model to find the mins and maxes 
for x, y, and z 

• During runtime 
Test if any of the AABB mins/maxes of one object overlap with 
another object’s AABB mins/maxes 

MAKE SURE THAT THE AABB VALUES ARE IN THE SAME 
COORDINATE FRAME (e.g., world coordinates)! 
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import pygame 

import random 

 

red = [255, 0, 0] 

green = [0, 255, 0] 

blue = [0, 0, 255] 

white = [255, 255, 255] 

black = [0, 0, 0] 

UP = [0, -1] 

DOWN = [0, 1] 

LEFT = [-1, 0] 

RIGHT = [1, 0] 

NOTMOVING = [0, 0] 

# constants end 
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# Classes 

class collidable: 

    x = 0 

    y = 0 

    w = 0 

    h = 0 

    rect = pygame.Rect(x, y, w, h) 

    color = [0, 0, 0] 

 

    def __init__(self, x, y, w, h, color): 

        self.x = x 

        self.y = y 

        self.w = w 

        self.h = h 

        self.color = color 

        self.rect = pygame.Rect(x, y, w, h) 

 

    def draw(self): 

        pygame.draw.rect(screen, self.color, [self.x,self.y,self.w, self.h], 6) 
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class player: 

    x = 0 

    y = 0 

    speed = 0 

    rect = pygame.Rect(x, y, 20, 20) 

 

    def __init__(self, x, y, speed): 

        self.x = x 

        self.y = y 

        self.speed = speed 

        self.rect = pygame.Rect(self.x, self.y, 20, 20) 
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  def draw(self): 

    if player_moving==LEFT: 

      pygame.draw.polygon(screen,black,[(self.x-10,self.y),(self.x+10,self.y- 

10),(self.x+10,self.y+10)]) 

    elif player_moving==RIGHT: 

      pygame.draw.polygon(screen,black,[(self.x+10,self.y),(self.x-10,self.y-

10),(self.x-10,self.y+10)]) 

    elif player_moving==UP: 

      pygame.draw.polygon(screen,black,[(self.x,self.y-10),(self.x+10, 

self.y+10),(self.x-10,self.y+10)]) 

    elif player_moving==DOWN: 

      pygame.draw.polygon(screen,black,[(self.x,self.y+10),(self.x+10,self.y-

10),(self.x-10,self.y-10)]) 

    else: 

      pygame.draw.rect(screen,black,pygame.Rect(self.x-10,self.y-10,20,20), 6) 



    def setpos(self, x, y): 

      self.x = x 

      self.y = y 

 

    def move(self, direction): 

      self.x = self.x + direction[0]*self.speed 

      self.y = self.y + direction[1]*self.speed 

      self.rect = pygame.Rect(self.x, self.y, 20, 20) 

# Classes End 
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# globals 

pygame.init() 

screenSize = [800, 600] 

screenBGColor = white 

screen = pygame.display.set_mode(screenSize) 

pygame.display.set_caption("Move the Block") 

player = player(screenSize[0]/2, screenSize[1]/2, 9) 

collidables = [] 

clock = pygame.time.Clock() 

for i in range(10): 

    collidables.append(collidable(random.randrange(0, screenSize[0]),   

 random.randrange(0, screenSize[1]), random.randrange(10, 200), 

 random.randrange(10, 200), blue)) 

 

running = True 

# globals end 

player_moving = NOTMOVING 
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# Functions 

def render(): 

    screen.fill(screenBGColor) 

    clock.tick(60) 

    player.draw() 

    for c in collidables: 

        c.draw() 

    pygame.display.flip() 

 

 

def tick(player_moving): 

    for c in collidables: 

        if player.rect.colliderect(c.rect): 

            player_moving = NOTMOVING 

            print("hit"+str(c.rect)+" with "+str(player.rect)) 

    player.move(player_moving) 

 

# Functions End 
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# main loop 

while running: 

  for event in pygame.event.get(): 

     if event.type == pygame.QUIT: 

      running = False 

     if event.type == pygame.KEYDOWN: 

       if event.key == pygame.K_LEFT: 

         player_moving = LEFT 

       if event.key == pygame.K_RIGHT: 

         player_moving = RIGHT 

       if event.key == pygame.K_UP: 

         player_moving = UP 

       if event.key == pygame.K_DOWN: 

         player_moving = DOWN 

     else: 

       player_moving = NOTMOVING 

  tick(player_moving) 

  render() 

# main loop end 

pygame.quit() 



Gilbert–Johnson–Keerthi distance algorithm 
GJK distance algorithm is a method of determining the minimum distance 
between two convex sets. 
 
GJK algorithms are often used incrementally in simulation systems and 
video games. In this mode, the final simplex from a previous solution is 
used as the initial guess in the next iteration, or "frame". If the positions 
in the new frame are close to those in the old frame, the algorithm will 
converge in one or two iterations. This yields collision detection systems 
which operate in near-constant time. 
 
The algorithm's stability, speed, and small storage footprint make it 
popular for realtime collision detection, especially in physics engines for 
video games. 

78 



79 



80 



81 

The simplest method to detect a collision in 2D space is to treat all objects 
as circles (Gilbert, Johnson and Keerthi, 1988:193); if the sum of the circles’ 
radii is greater than or equal to the difference between their centres, then 
the circles must be touching or overlapping and a collision would be 
detected. 

GJK (Gilbert–Johnson–Keerthi) 
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This idea can be generalised to 3D space by treating objects as spheres, as 
well as to any higher dimensions. However, it is unrealistic to easily simplify 
every shape into a circle. One such widely-used method is the Gilbert-
Johnson-Keerthi (GJK) algorithm by Gilbert, Johnson and Keerthi (1988). To 
develop an understanding of how this algorithm works, we’ll first go over 
some fundamental concepts. 

GJK (Gilbert–Johnson–Keerthi) 
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Simplex 

In collision detection, the term Simplex is used a lot. A Simplex refers to 
either a point, line segment, triangle or tetrahedron. For example, the 0-
simplex is a point, the 1-simplex is a line segment, the 2-simplex is a 
triangle, and the 3-simplex is a tetrahedron. 
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Convex and Concave Shapes 

In a convex shape, a line segment between any two points within the shape 
always falls completely inside the shape. 
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Convex Hull 

The convex hull of a shape is the smallest convex shape that fully contains it.  
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Supporting Point 

In a convex object, the supporting point is the most distant point in a given 
direction. In some books, they are referred as extreme points. In the 
illustration below, the supporting point in direction d is P. 



87 

Minkowski Sum 

In collision detection, there are two important operations which you need to 
understand. They are the Minkowski Sum and the Minkowski Difference. 
Visually, the Minkowski sum can be seen as the region swept by Object A 
translated to every point in Object B.  
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Minkowski Difference  

The Minkowski difference is the region swept by Object A translated to 
every point negated in Object B. The Minkowski difference is a significant 
operation in collision detection because two objects A and B collide if their 
Minkowski difference contains the origin. The GJK algorithm uses this fact to 
determine if two convex objects have collided.  



from scipy.spatial import ConvexHull 

import numpy as np 

import matplotlib.pyplot as plt 

 

A = [(1,4),(1,1),(3,1),(3,4)] 

B = [(0,3),(0,2),(2,2)] 

 

points = np.asarray([(xA-xB, yA-yB) for xA, yA in A for xB, yB in B]) 

hull = ConvexHull(points) 

 

plt.plot(points[:,0], points[:,1], 'o') 

plt.plot(0, 0, 'ro') 

 

for simplex in hull.simplices: 

    plt.plot(points[simplex, 0], points[simplex, 1], 'k-') 

 

plt.plot(0, 0, 'ro') 

plt.axhline(linewidth=2, color='r') 

plt.axvline(linewidth=2, color='r') 

 

plt.axis('equal') 

plt.grid() 
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Minkowski Difference  



Inside the Polygon 
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# determine if a point is inside a given polygon or not 

# Polygon is a list of (x,y) pairs. 

 

def point_inside_polygon(x,y,poly): 

 

    n = len(poly) 

    inside =False 

 

    p1x,p1y = poly[0] 

    for i in range(n+1): 

        p2x,p2y = poly[i % n] 

        if y > min(p1y,p2y): 

            if y <= max(p1y,p2y): 

                if x <= max(p1x,p2x): 

                    if p1y != p2y: 

                        xinters = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x 

                    if p1x == p2x or x <= xinters: 

                        inside = not inside 

        p1x,p1y = p2x,p2y 

 

    return inside 



92 

1. The algorithm arbitrarily starts with the vertex A as the 
initial simplex in set Q, Q={A}. 

2. Searching for the supporting point in direction -A results in 
B. B is added to the Simplex set, Q={A, B} 

3. The point in the convex hull Q closest to the origin is C. 
Because both A and B are needed to express C as a convex 
combination, both are kept in Q. 

4. D is the supporting point in direction -C and it is added to 
Q, giving Q={A, B, D}. 

5. The closest point in the convex hull Q closest to the origin is 
now E. 

6. Because only B and D are needed to express E as a convex 
combination of vertices in Q, Q is updated to Q={B, D}. The 
supporting point in direction -E is F, which is added to Q. 

7. The point on the convex hull Q closest to the origin is now 
G. 

8. D and F are the smallest set of vertices in Q need to express 
G as a convex combination. Q is updated to Q={D, F}. 

9. At this point, because no vertex is closer to the origin in 
direction -G than G itself, G must be the closest point to the 
origin, and the algorithm terminates. No collision occurred. 



https://winter.dev/articles/gjk-algorithm/app/demo.html 
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