
1

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

Multi Body Dynamics with Control

#14

2

Multibody system

• Multibody system is the study of the dynamic behavior of interconnected

rigid or flexible bodies, each of which may undergo large translational and
rotational displacements

• The simplest bodies or elements of a multibody system were treated by
Newton (free particle) and Euler (rigid body). Euler introduced reaction
forces between bodies. Later, a series of formalisms were derived, only to
mention Lagrange’s formalisms based on minimal coordinates and a
second formulation that introduces constraints.

3

Multibody system

While single bodies or parts of a mechanical system are studied in detail with
finite element methods, the behavior of the whole multibody system is
usually studied with multibody system methods within the following areas:
• Aerospace engineering
• Biomechanics
• Combustion engine, gears and transmissions, chain drive, belt drive
• Military applications
• Particle simulation (granular media, sand, molecules)
• Physics engine
• Robotics

4

Multibody system

A body is usually considered to be a rigid or flexible part of a mechanical
system (not to be confused with the human body). An example of a body is
the arm of a robot, a wheel or axle in a car or the human forearm. A link is the
connection of two or more bodies, or a body with the ground. The link is
defined by certain (kinematical) constraints that restrict the relative motion of
the bodies.

There are two important terms in multibody systems: degree of freedom and
constraint condition.

5

Multibody system

The degrees of freedom denote the number of independent kinematical
possibilities to move. In other words, degrees of freedom are the minimum
number of parameters required to completely define the position of an entity
in space.

A rigid body has six degrees of freedom in the case of general spatial motion,
three of them translational degrees of freedom and three rotational degrees
of freedom. In the case of planar motion, a body has only three degrees of
freedom with only one rotational and two translational degrees of freedom

6

Rigid bodies

7

Multibody system

A constraint condition implies a restriction in the kinematical degrees of
freedom of one or more bodies. The classical constraint is usually an algebraic
equation that defines the relative translation or rotation between two bodies.
There are furthermore possibilities to constrain the relative velocity between
two bodies or a body and the ground. There are furthermore possibilities to
constrain the relative velocity between two bodies or a body and the ground.
This is for example the case of a rolling disc, where the point of the disc that
contacts the ground has always zero relative velocity with respect to the
ground. In the case that the velocity constraint condition cannot be integrated
in time in order to form a position constraint, it is called non-holonomic. This
is the case for the general rolling constraint.

8

Multibody system

The equations of motion are used to describe the dynamic behavior of a
multibody system. Each multibody system formulation may lead to a different
mathematical appearance of the equations of motion while the physics
behind is the same. The motion of the constrained bodies is described by
means of equations that result basically from Newton’s second law. The
equations are written for general motion of the single bodies with the
addition of constraint conditions. Usually the equations of motions are
derived from the Newton-Euler equations or Lagrange’s equations.

9

Newton

(1643 -1727)

Euler

(1707 -1783)

D’Alembert

(1717 -1783)

Lagrance

(1736 -1813)

Multibody system

Multibody system

Lagrangian Dynamics
Lagrange’s equations of motion are specified in terms of the total energy of
the body in the kinematic chain.

Newton-Euler Dynamics
The Newton-Euler equations are applied to each body in the model. All forces
affecting each body must be considered, which makes this method difficult
and tedious for complex systems.

10

Multibody system

D’Alembert’s Principle
Equations of motion are derived by identifying all forces on each body go
through an acceleration and writing equilibrium equations. These equilibrium
equations are simultaneously solved to obtain the dynamic system response.

Kane’s Dynamics
This method is a subset of the group of methods known as “Lagrange’s form
of D’Alembert’s Principle”. The Newton-Euler equations are multiplied by
‘special vectors’ to develop scalar representations of the forces acting on each
body.

11

12

Multibody system

Multibody system

13

14

Rigid bodies

• Position vector of the body's point of reference. Currently the point of

reference correspond to the body's center of mass.
• Linear velocity of the point of reference, a vector.
• Orientation of a body, represented by a quaternion or a 3x3 rotation

matrix.
• Angular velocity vector which describes how the orientation changes over

time.
• Mass of the body.
• Inertia matrix. This is a 3x3 matrix that describes how the body's mass is

distributed around the center of mass.

15

Multibody system- Constraints

From the physical point of view, constraints on a mechanical system are
conditions restricting possible geometrical positions of the mechanical system
or limiting its motion. We distinguish between geometric and kinematic
constraints.
Constraints are called geometric or holonomic if they are expressed by
equations of the form;

Holonomic constraints are called skleronomic if they do not depend explicitly
on time.

𝑓 𝑞, 𝑡 = 0

𝑓 𝑞 = 0

16

Multibody system- Constraints

Constraints are called kinematic if they are expressed by

Nonintegrable kinematic constraints, which cannot be reduced to geometric
ones are called nonholonomic constraints.

Holonomic or nonholonomic constraints which depend explicitly on time are
called rheonomic.

𝑓 𝑞, 𝑞 , 𝑡 = 0

If constraints are unstable
numerical errors can cause
constrained bodies (bones) to
slowly drift apart

The integrator is responsible
for calculating a body’s

position given the forces acting
on it.

Materials Restitution

17

Constraint Solvers

• A physics engine is organized into two phases: collision detection and

solving.

• Collision detection finds intersections between geometries associated

with the rigid bodies, generating appropriate collision information such as
collision points, normals and penetration depths.

• Then a solver updates the motion of rigid bodies under the influence of

the collisions that were detected and constraints that were provided by
the user.

18

Constraint Solvers

• The main objective of a physics engine is to simulate the motion of bodies

in a virtual environment.

19

20

Constraint Solvers

• The motion is the result of the solver interpreting the laws of physics, such

as conservation of energy and momentum. But doing this 100% accurately
is prohibitively expensive, and the trick to simulating it in real-time is to
approximate to increase performance, as long as the result is physically
realistic.

• The main idea of the physics engine is to discretize the motion using time-
stepping. The equations of motion of constrained and unconstrained rigid
bodies are very difficult to integrate directly and accurately.

21

Constraint Solvers

A link is the connection of two or more bodies,
or a body with the ground. The link is defined
by certain constraints that restrict the relative
motion of the bodies.

The discretization subdivides the motion into
small time increments, where the equations
are simplified and linearized making it possible
to solve them approximately. This means that
during each time step the motion of the
relevant parts of rigid bodies that are involved
in a constraint is linearly approximated.

22

Constraint Solvers

23

Constraint Solvers

A body is usually considered to be a rigid or flexible part of a mechanical
system An example of a body is the arm of a robot, a wheel or axle in a car or
the human forearm. Having linearized the equations of motion for a time
step, we end up needing to solve a linear system or linear complementarity
problem (LCP). These systems can be arbitrarily large and can still be quite
expensive to solve exactly. Again the trick is to find an approximate solution
using a faster method.

24

Constraint Solvers

A modern method to approximately solve an LCP with good convergence
properties is the Projected Gauss-Seidel (PGS). It is an iterative method,
meaning that with each iteration the approximate solution is brought closer
to the true solution, and its final accuracy depends on the number of
iterations.

Constraint Solvers

Constraint is defined in terms of a behavior function or
constraint function C, which takes the state of a pair of
bodies as parameters (e.g. position and orientation)
and outputs a scalar number. When the value of this
function is in the acceptable range, the constraint is
satisfied. Thus, in each step of the simulation, we must
apply forces or impulses on the rigid bodies to attempt
to keep the value of C in the allowed range.

25

Equality Constraints

A common class of constraint is known as an equality
constraint. An equality constraint is one in which the
only acceptable value of C is zero. Thus, during each
step of the simulation, we want to keep C as close to
zero as possible. In other words, we want to minimize
C. Equality constraints are used when the position of
some point must always exactly match some
predefined condition. A good example is a pin joint,
where two rigid bodies must always be connected at
the location of the joint.

26

27

Equality Constraints

The distance constraint ensures that point pa from rigid
body A and pb from rigid body B remain at fixed
distance l from each other.

pa

pb

l

28

Equality Constraints

𝑷 = 𝑷𝒃 − 𝑷𝒂

𝑪 = 𝑷 − 𝒍 = 𝟎

29

Equality Constraints

C is a function of only two variables (x, y) that outputs a scalar, so we can
easily plot it and examine some of its properties. If we set the constraint
distance as 2 (that is, l = 2), then the graph of C looks like this.

𝒍 = 𝟐

30

Equality Constraints

The constraint solver can not solve position constraints, but only velocity
constraints. To get the velocity constraint we get the derivative of C.

𝒅𝑪

𝒅𝒕
= 𝑪 = 𝟎

Now the scalar result indicates
how fast the constraint is
being violated.

project this velocity on to the constraint axis to see how fast the constraint is becoming broken

31

Equality Constraints

we lose the information about how much the (position) constraint was
violated to begin with. So, it impossible for the solver to correct constraints
that are already broken.

𝒅𝑪

𝒅𝒕
= 𝑪 = 𝒗

To get around this problem, a
push factor* υ is introduced.

*This is usually called Baumgarte stabilization

solving the constraint this should be 0 as the points may not move away
or towards each other along the constraint axis

32

Equality Constraints

Now 𝑣 can used to bias 𝐶 so that the constraint can add a velocity to the
system in order to fix already broken constraints. The solver expects the
constraints to be in the following format. 𝑃𝑏 − 𝑃𝑎 is the direction in which
the constraint can apply force, also called the constraint axis.

𝒅𝑪

𝒅𝒕
= 𝑪 =

− 𝑷𝒃 − 𝑷𝒂
− 𝒓𝒂 × 𝑷𝒃 − 𝑷𝒂

𝑷𝒃 − 𝑷𝒂
𝒓𝒃 × 𝑷𝒃 − 𝑷𝒂

𝑻
𝒗𝒂
𝝎𝒂

𝒗𝒃
𝝎𝒃

= 𝑱𝑪𝒗𝒂𝒃

𝒅𝑪

𝒅𝒕
= 𝑪 = 𝑷𝒃 − 𝑷𝒂 𝒗𝒃 +𝝎𝒃 × 𝒓𝒃 − 𝒗𝒂 −𝝎𝒂 × 𝒓𝒂

33

Contact Constraint

The contact constraint is setup in the same way as the distance constraint
except that Pa and Pb are the same point. This makes it impossible to
calculate the constraint axis, so n is used instead.

𝑱𝑪 =

−𝒏
− 𝒓𝒂 × 𝒏

𝒏
𝒓𝒃 × 𝒏

𝑻

 𝑱𝑪 =

−𝒏
− 𝒓𝒂 × 𝒏

𝟎
𝟎

𝑻

The constraint can be simplified if rigid body b is static

Joints and constraints

• Ball and Socket

34

35

Joints and constraints

• Hinge

36

Joints and constraints

• Slider or Prismatic

37

Joints and constraints

• Universal

38

Joints and constraints

• Prismatic and Rotoide

39

Joints and constraints

• Prismatic - Universal

40

Degrees of Freedom of a Mechanism in 2D

• A mechanism is a collection of rigid bodies or links, connected through

pairs, provided one link is grounded.

41

Degrees of Freedom of a Mechanism in 2D

• If this system were not connected like this, then each link except the

ground would have 3 degrees of freedom.

42

Degrees of Freedom of a Mechanism in 2D

• So total degrees of freedom, or mobility is 3(N-1). N represents total

number of links. In this case N is 3. But when we connect it together
through pairs, links will not have the same 3 degrees of freedom.

1 2

3

43

Degrees of Freedom of a Mechanism in 2D

• If joint between 2 links is having surface contact as shown below, then

both the links will have same translatonary motion, in X and Y directions.
So for each such pairs, there will be a deduction of 2 mobility from total
mobility. Where LP represents number of pairs with surface contacts. Such
pairs are called lower pairs. In this case we have 2 lower pairs.

44

Degrees of Freedom of a Mechanism in 2D

• Now consider the joint which is having a line contact. If joint between 2

links is having line or point contact, both the link should have same
translational motion along the common normal. However it could have
different motion, in tangential direction. So for each such pairs, there will
be deduction of 1 mobility from total mobility. This kind of pair is called
higher pair (HP). Here we have got 1 higher pair.

45

Degrees of Freedom of a Mechanism in 2D

• The general equation to find out degrees of freedom of a planar

mechanism is given below. This equation is also known as Kuthbach
equation.

• Here N represent total number of links in the mechanism. LP and HP
represent number of lower pairs and higher pairs respectively.

𝑫𝑶𝑭 = 𝟑 𝑵 − 𝟏 − 𝟐𝑳𝒑 −𝑯𝒑= 3(3 - 1) - 2.2 - 1= 9 – 3 – 4 – 1 = 1

• So this mechanism has got 1 degree of freedom. Means, by knowing

position of only one cam, we can completely determine this mechanism.

SIMULATION

WRITING PROGRAM
USING A PHYSICS

MOTORS

C++, Python, Matlab…
. Requires programming skills
. Takes long time to develop!
. Cheap; free compilers can be
used for development
. Source code is available,
. Usually written for a
dedicated problem

BULLET, PhysiX,
Tokamak, Box2D, …
Physics engines are able to
model the motion of rigid
bodies in a physical world

46

PyDy

PyDy is a general tool for
mutlibody dynamic analysis
written in Python

47

48

Multibody system Physics engines are able to model the motion of rigid bodies in a physical world

49

Multibody system Physics engines are able to model the motion of rigid bodies in a physical world

Boeing,A. Bräunl,T. (2007) Evaluation of real-time physics simulation systems, Proceedings of the 5th international conference on
Computer graphics and interactive techniques in Australia and Southeast Asia, Pages 281-288

The integrator is responsible
for calculating a body’s
position given the forces
acting on it.

 The performance of the
integrator effects the
accuracy of the simulation.

50

Multibody system Physics engines are able to model the motion of rigid bodies in a physical world

The materials restitution
properties were tested by
colliding a box with a sphere.
The box is placed on the
ground and the sphere is
placed one meter above.

51

Multibody system Physics engines are able to model the motion of rigid bodies in a physical world

Constraint stability is one of
the areas in rigid body
calculations.

If constraints are unstable
numerical errors can cause
constrained bodies (bones) to
slowly drift apart.

52

Multibody system Physics engines are able to model the motion of rigid bodies in a physical world

53

Multibody system Physics engines are able to model the motion of rigid bodies in a physical world

Coefficient of restitution s of balls
 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Coefficient of restitution of Ground

0 0.5 1

54

Multibody system Physics engines are able to model the motion of rigid bodies in a physical world

55

Multibody system Physics engines are able to model the motion of rigid bodies in a physical world

Coefficient of restitution s : 0, 0.2, 0.4, 0.6, 0.8, 1

Coefficient of restitution of Ground: 0

56

Multibody system Physics engines are able to model the motion of rigid bodies in a physical world

Coefficient of restitution s : 0, 0.2, 0.4, 0.6, 0.8, 1

Coefficient of restitution of Ground: 0.5

57

Multibody system Physics engines are able to model the motion of rigid bodies in a physical world

Coefficient of restitution s : 0, 0.2, 0.4, 0.6, 0.8, 1

Coefficient of restitution of Ground: 1

it is natural that
most of a game
company’s efforts
will be spent on
‘how things look’
rather than ‘how
things move’

n-Link Pendulum

While the double
pendulum equations
of motion can be
solved relatively
straightforwardly, the
equations for a triple
pendulum are much
more involved.

58

59

60

61

Sympy

Fortunately, there are easier approaches than brute-force algebra, that rely on
higher abstractions: one such approach is known as Kane's Method. This
method still involves a significant amount of book-keeping for any but the most
trivial problems, but the Sympy package has a nice implementation that
handles the details for you.

63

Kane’s Method in Physics/Mechanics

Sympy.physics.mechanics provides functionality for deriving
equations of motion using Kane’s method [Kane1985]. With all of the
necessary point velocities and particle masses defined, the KanesMethod
class can be used to derive the equations of motion of the system
automatically.

This method is a subset of the group of methods known as “Lagrange’s form
of D’Alembert’s Principle”. The Newton-Euler equations are multiplied by
‘special vectors’ to develop scalar representations of the forces acting on each
body.

64

65

Thomas R. Kane taught mechanics and computation for 45 years, has published
10 textbooks and 172 technical papers, and is the preeminent expert and
author of modern dynamics theory (known as "Kane Dynamics").

 Kanisms - sayings by Thomas Kane

Kane's 1st theorem - "Nothing is equal to anything."
Kane's 2nd theorem - "Everything is equal to everything else."
"When you're not sure whether you know or not - you don't know."
"Lets go slow - we do not have time to go fast."
"Differential equations come in two kinds, good and bad - and there are no good ones."
"Linear algebra is simply a method of bookkeeping."
"Always keep an extra negative sign in your pocket."
"Avoid differentiation, especially vectors."
Newton's 1st law: "An object moves in a straight line with a constant speed, unless it
doesn't."
"UHT: useful half-truth."
"Your boss doesn't know anything - by definition."
"Always be scared to say anything."
"When in doubt - cheat."

66

Integrate the pendulum
 # Step 1: construct the pendulum model

 # Generalized coordinates and velocities

 # (in this case, angular positions & velocities of each mass)

 q = mechanics.dynamicsymbols('q:{0}'.format(n))

 u = mechanics.dynamicsymbols('u:{0}'.format(n))

 # mass and length

 m = symbols('m:{0}'.format(n))

 l = symbols('l:{0}'.format(n))

 # gravity and time symbols

 g, t = symbols('g,t')

…

67

Integrate the pendulum

68

 # Step 2: build the model using Kane's Method

 # Create pivot point reference frame

 A = mechanics.ReferenceFrame('A')

 P = mechanics.Point('P')

 P.set_vel(A, 0)

 # lists to hold particles, forces, and kinetic ODEs

 # for each pendulum in the chain

 particles = []

 forces = []

 kinetic_odes = []

…
 # Generate equations of motion

 KM = mechanics.KanesMethod(A, q_ind=q, u_ind=u,

 kd_eqs=kinetic_odes)

 fr, fr_star = KM.kanes_equations(forces, particles)

Integrate the pendulum

69

 # Step 3: numerically evaluate equations and integrate

 # initial positions and velocities – assumed to be given in degrees

 y0 = np.deg2rad(np.concatenate([np.broadcast_to(initial_positions, n),

 np.broadcast_to(initial_velocities, n)]))

 # lengths and masses

 if lengths is None:

 lengths = np.ones(n) / n

 lengths = np.broadcast_to(lengths, n)

 masses = np.broadcast_to(masses, n)

…

 # ODE integration

 return odeint(gradient, y0, times, args=(parameter_vals,))

Integrating the pendulum returns generalized coordinates, which in this case
are the angular position and velocity of each pendulum segment, relative to
vertical.

In order to visualize the pendulum, we need a utility to extract x and y
coordinates from these angular coordinates

def get_xy_coords(p, lengths=None):

 """Get (x, y) coordinates from generalized coordinates p"""

70

71

Double Pendulum

72

Double Pendulum

####################

Number of pendulum 2

####################

Matrix([

[-g*l0*m0*sin(q0(t)) - g*l0*m1*sin(q0(t))],

[-g*l1*m1*sin(q1(t))]])

Matrix([

[-l0*l1*m1*(sin(q0(t))*sin(q1(t)) + cos(q0(t))*cos(q1(t)))*Derivative(u1(t), t) + l0*l1*m1*(-

sin(q0(t))*cos(q1(t)) + sin(q1(t))*cos(q0(t)))*u1(t)**2 - (l0**2*m0 +

l0**2*m1)*Derivative(u0(t), t)],

[-l0*l1*m1*(sin(q0(t))*sin(q1(t)) + cos(q0(t))*cos(q1(t)))*Derivative(u0(t), t) +

l0*l1*m1*(sin(q0(t))*cos(q1(t)) - sin(q1(t))*cos(q0(t)))*u0(t)**2 - l1**2*m1*Derivative(u1(t),

t)]])

Double Pendulum

73

74

Triple Pendulum

75

Triple Pendulum

76

Triple Pendulum

77

####################

Number of pendulum 3

####################

Matrix([

[-g*l0*m0*sin(q0(t)) - g*l0*m1*sin(q0(t)) - g*l0*m2*sin(q0(t))],

[-g*l1*m1*sin(q1(t)) - g*l1*m2*sin(q1(t))],

[-g*l2*m2*sin(q2(t))]])

Matrix([

[l0*l1*m1*(-sin(q0(t))*cos(q1(t)) + sin(q1(t))*cos(q0(t)))*u1(t)**2 + l0*l1*m2*(-

sin(q0(t))*cos(q1(t)) + sin(q1(t))*cos(q0(t)))*u1(t)**2 - l0*l2*m2*(sin(q0(t))*sin(q2(t)) +

cos(q0(t))*cos(q2(t)))*Derivative(u2(t), t) + l0*l2*m2*(-sin(q0(t))*cos(q2(t)) +

sin(q2(t))*cos(q0(t)))*u2(t)**2 - (l0*l1*m1*(sin(q0(t))*sin(q1(t)) + cos(q0(t))*cos(q1(t))) +

l0*l1*m2*(sin(q0(t))*sin(q1(t)) + cos(q0(t))*cos(q1(t))))*Derivative(u1(t), t) - (l0**2*m0 +

l0**2*m1 + l0**2*m2)*Derivative(u0(t), t)],

[l0*l1*m1*(sin(q0(t))*cos(q1(t)) - sin(q1(t))*cos(q0(t)))*u0(t)**2 +

l0*l1*m2*(sin(q0(t))*cos(q1(t)) - sin(q1(t))*cos(q0(t)))*u0(t)**2 - l1*l2*m2*(sin(q1(t))*sin(q2(t))

+ cos(q1(t))*cos(q2(t)))*Derivative(u2(t), t) + l1*l2*m2*(-sin(q1(t))*cos(q2(t)) +

sin(q2(t))*cos(q1(t)))*u2(t)**2 - (l1**2*m1 + l1**2*m2)*Derivative(u1(t), t) -

(l0*l1*m1*(sin(q0(t))*sin(q1(t)) + cos(q0(t))*cos(q1(t))) + l0*l1*m2*(sin(q0(t))*sin(q1(t)) +

cos(q0(t))*cos(q1(t))))*Derivative(u0(t), t)],

[

-l0*l2*m2*(sin(q0(t))*sin(q2(t)) + cos(q0(t))*cos(q2(t)))*Derivative(u0(t), t) +

l0*l2*m2*(sin(q0(t))*cos(q2(t)) - sin(q2(t))*cos(q0(t)))*u0(t)**2 - l1*l2*m2*(sin(q1(t))*sin(q2(t))

+ cos(q1(t))*cos(q2(t)))*Derivative(u1(t), t) + l1*l2*m2*(sin(q1(t))*cos(q2(t)) -

sin(q2(t))*cos(q1(t)))*u1(t)**2 - l2**2*m2*Derivative(u2(t), t)]])

Why Pendulum is so important ?

78

SERVO MOTOR

So We Need To Control! But How

79

80

What Is Pid Control?

The Setpoint (SP) is
the value that we
want the process
to be

The PID controller looks at
the Setpoint and compares
it with the actual value of
the Process Variable (PV).

If the SP and the PV are the same – then the controller is a very
happy little box. It doesn’t have to do anything, it will set its output
to zero. However, if there is a disparity between the SP and the PV
we have an error and corrective action is needed.

81

Understanding The Controller? The PV is subtracted from the SP to create
the Error. The error is simply multiplied by
one, two or all of the calculated P, I and D
actions (depending which ones are turned
on). Then the resulting “error x control
actions” are added together and sent to
the controller output.

These 3 modes are used in different
combinations:

P – Sometimes used

PI - Most often used

PID – Sometimes used

PD – rare, but it can be useful for
controlling servomotors ???

E.Kavafoğlu, S.Aritan (2017) Real-time Physics-based
Motion Control With An Efficient Inverse Dynamics
Method. .MSc Thesis.
Institute of Informatics of Hacettepe University

Forward Dynamics Without Feedback Control

82

83

84

PD Controllers

85

PD Controllers
pymunkPD.py

86

Coros , S. Beaudoin, P. van de Panne, M. (2010) Generalized Biped Walking
Control. ACM Transactions on Graphics, Vol. 29, No. 4, Article 130,

87

Generalized Biped Walking Control algorithms by Coros , et.al. used for the Agile Anthropomorphic Robot
"Atlas" .

Controllers in Human

88

Controllers in Human

89

The cart can perform
a sequence of moves
to maneuver from
position y=-1.0 to
y=0.0 within 6.2
seconds.

Verify that v, θ, and q are zero
before and after the maneuver.

90

Inverted Pendulum Optimal Control

The inverted pendulum is described by the
following dynamic equations:

where u is the force applied to the cart, ε is
m2/(m1+m2), y is the position of the cart, v is
the velocity of the cart, θ is the angle of the
pendulum relative to the cart, m1=10, m2=1,
and q is the rate of angle change. Tune the
controller to minimize the use of force applied
to the cart either in the forward or reverse
direction

Inverted Pendulum Optimal Control

There are many methods to implement control including basic strategies such as a
proportional-integral-derivative (PID) controller or more advanced methods such
as model predictive techniques.

Model predictive control (MPC) is a type of control algorithm that is used to control
systems with dynamics. It is a model-based method that uses a predictive model of
the system to compute control actions that optimize a performance criterion over a
finite horizon. The basic idea of MPC is to optimize a control policy that minimizes
the difference between the desired reference signal and the output of the system,
subject to constraints on the control inputs and the states of the system.

91

Inverted Pendulum Optimal Control

GEKKO is a Python package for machine learning
and optimization of mixed-integer and
differential algebraic equations. It is coupled
with large-scale solvers for linear, quadratic,
nonlinear, and mixed integer programming (LP,
QP, NLP, MILP, MINLP). Modes of operation
include parameter regression, data
reconciliation, real-time optimization, dynamic
simulation, and nonlinear predictive control.

https://gekko.readthedocs.io/en/latest/
92

min 𝑥1𝑥4 𝑥1 + 𝑥2 + 𝑥3 + 𝑥3

𝑥1𝑥2𝑥3𝑥4 ≥ 25

𝑥1
2+ 𝑥2

2 + 𝑥3
2+ 𝑥4

2 = 40

1 ≤ 𝑥1 , 𝑥2, 𝑥3, 𝑥4 ≤ 5

93

This collection of 188 nonlinear programing test examples is a supplement of the
test problem collection published by Hock and Schittkowski.

𝑥0 = 1, 5, 5, 1

94

from gekko import GEKKO

#Initialize Model

m = GEKKO()

#define parameter

eq = m.Param(value=40)

#initialize variables

x1,x2,x3,x4 = [m.Var(lb=1, ub=5) for i in range(4)]

#initial values

x1.value = 1

x2.value = 5

x3.value = 5

x4.value = 1

#Equations

m.Equation(x1*x2*x3*x4>=25)

m.Equation(x1**2+x2**2+x3**2+x4**2==eq)

#Objective

m.Minimize(x1*x4*(x1+x2+x3)+x3)

#Set global options

m.options.IMODE = 3 #steady state optimization

#Solve simulation

m.solve()

#Results

print('')

print('Results')

print('x1: ' + str(x1.value))

print('x2: ' + str(x2.value))

print('x3: ' + str(x3.value))

print('x4: ' + str(x4.value))

EXIT: Optimal Solution Found.

 The solution was found.

 The final value of the objective function is

17.0140171270735

 Solver : IPOPT (v3.12)

 Solution time : 1.310000000012224E-002 sec

 Objective : 17.0140171270735

 Successful solution

Results

x1: [1.000000057]

x2: [4.74299963]

x3: [3.8211500283]

x4: [1.3794081795]

95

96

from gekko import GEKKO

import numpy as np

m = GEKKO()

x = m.Array(m.Var,4,value=1,lb=1,ub=5)

x1,x2,x3,x4 = x # rename variables

x2.value = 5; x3.value = 5 # change guess

m.Equation(np.prod(x)>=25) # prod>=25

m.Equation(m.sum([xi**2 for xi in x])==40) # sum=40

m.Minimize(x1*x4*(x1+x2+x3)+x3) # objective

m.solve()

print(x)

Özgören, NŞ. Arıtan, S. (2016) Evaluating responses of a feedback control system for a multi - link biomechanical model. 8th National
Biomechanics Congress. Ankara.

97

98

E.Kavafoğlu, S.Aritan (2017) Real-time Physics-based
Motion Control With An Efficient Inverse Dynamics
Method. .MSc Thesis.
Institute of Informatics of Hacettepe University

PID with KANE DYNAMICS

This is the Kane Dynamics Equation

Has to Be Calculated 60 Times per Second

99

10
0

HOW TO INCLUDE MUSCLES INTO THE MODEL?

10
1

Optimizing Locomotion Controllers Using Biologically-Based
Actuators and Objectives

Wang, JM., Hamner, SR., Delp, SL., Koltun V. from Stanford University

A more biologically faithful force generation mechanism is
needed to generate more human-like motions

Graphics bipeds:
•Controller directly output joint torques

Humans:
•Controller output neural excitation levels to musculotendon units (MTUs)
•MTUs generate forces constrained by muscle physiology

10
2

Optimizing Locomotion
Controllers Using Biologically-

Based Actuators and Objectives

10
3

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives

10
4

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives

10
5

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives

10
6

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives

10
7

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives

Game Engine Architecture

108

109

110

https://research.nvidia.com/labs/toronto-ai/gameGAN/

111

https://www.latent-technology.com/technology

"Instead of loading the characters
with thousands of hand-crafted
animations, we allow them to decide
their movements in real time."

112

https://www.latent-technology.com/

