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Multibody system  
 
• Multibody system is the study of the dynamic behavior of interconnected 

rigid or flexible bodies, each of which may undergo large translational and 
rotational displacements 

• The simplest bodies or elements of a multibody system were treated by 
Newton (free particle) and Euler (rigid body). Euler introduced reaction 
forces between bodies. Later, a series of formalisms were derived, only to 
mention Lagrange’s formalisms based on minimal coordinates and a 
second formulation that introduces constraints. 
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Multibody system  
 
While single bodies or parts of a mechanical system are studied in detail with 
finite element methods, the behavior of the whole multibody system is 
usually studied with multibody system methods within the following areas: 
• Aerospace engineering  
• Biomechanics 
• Combustion engine, gears and transmissions, chain drive, belt drive 
• Military applications 
• Particle simulation (granular media, sand, molecules) 
• Physics engine 
• Robotics 
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Multibody system  
 
A body is usually considered to be a rigid or flexible part of a mechanical 
system (not to be confused with the human body). An example of a body is 
the arm of a robot, a wheel or axle in a car or the human forearm. A link is the 
connection of two or more bodies, or a body with the ground. The link is 
defined by certain (kinematical) constraints that restrict the relative motion of 
the bodies.  
 
There are two important terms in multibody systems: degree of freedom and 
constraint condition. 
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Multibody system  
 
The degrees of freedom denote the number of independent kinematical 
possibilities to move. In other words, degrees of freedom are the minimum 
number of parameters required to completely define the position of an entity 
in space. 
 
A rigid body has six degrees of freedom in the case of general spatial motion, 
three of them translational degrees of freedom and three rotational degrees 
of freedom. In the case of planar motion, a body has only three degrees of 
freedom with only one rotational and two translational degrees of freedom 
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Rigid bodies 
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Multibody system  
 
A constraint condition implies a restriction in the kinematical degrees of 
freedom of one or more bodies. The classical constraint is usually an algebraic 
equation that defines the relative translation or rotation between two bodies. 
There are furthermore possibilities to constrain the relative velocity between 
two bodies or a body and the ground. There are furthermore possibilities to 
constrain the relative velocity between two bodies or a body and the ground. 
This is for example the case of a rolling disc, where the point of the disc that 
contacts the ground has always zero relative velocity with respect to the 
ground. In the case that the velocity constraint condition cannot be integrated 
in time in order to form a position constraint, it is called non-holonomic. This 
is the case for the general rolling constraint. 
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Multibody system  
 
The equations of motion are used to describe the dynamic behavior of a 
multibody system. Each multibody system formulation may lead to a different 
mathematical appearance of the equations of motion while the physics 
behind is the same. The motion of the constrained bodies is described by 
means of equations that result basically from Newton’s second law. The 
equations are written for general motion of the single bodies with the 
addition of constraint conditions. Usually the equations of motions are 
derived from the Newton-Euler equations or Lagrange’s equations. 
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Newton 

(1643 -1727) 

Euler 

(1707 -1783) 

D’Alembert 

(1717 -1783) 

Lagrance 

(1736 -1813) 

Multibody system  



Multibody system  
 
Lagrangian Dynamics 
Lagrange’s equations of motion are specified in terms of the total energy of 
the body in the kinematic chain.  
 
Newton-Euler Dynamics 
The Newton-Euler equations are applied to each body in the model. All forces 
affecting each body must be considered, which makes this method difficult 
and tedious for complex systems.  
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Multibody system  
 
D’Alembert’s Principle 
Equations of motion are derived by identifying all forces on each body go 
through an acceleration and writing equilibrium equations. These equilibrium 
equations are simultaneously solved to obtain the dynamic system response.  
 
Kane’s Dynamics 
This method is a subset of the group of methods known as “Lagrange’s form 
of D’Alembert’s  Principle”. The Newton-Euler equations are multiplied by 
‘special vectors’ to develop scalar representations of the forces acting on each 
body.  
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Multibody system  



Multibody system  
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Rigid bodies 
 
• Position vector of the body's point of reference. Currently the point of 

reference correspond to the body's center of mass. 
•  Linear velocity of the point of reference, a vector. 
•  Orientation of a body, represented by a quaternion or a 3x3 rotation 

matrix. 
• Angular velocity vector which describes how the orientation changes over 

time.  
• Mass of the body. 
• Inertia matrix. This is a 3x3 matrix that describes how the body's mass is 

distributed around the center of mass.  
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Multibody system- Constraints  
 
From the physical point of view, constraints on a mechanical system are 
conditions restricting possible geometrical positions of the mechanical system 
or limiting its motion. We distinguish between geometric and kinematic 
constraints. 
Constraints are called geometric or holonomic if they are expressed by 
equations of the form;  
 
Holonomic constraints are called skleronomic if they do not depend explicitly 
on time.  

𝑓 𝑞, 𝑡 = 0 

𝑓 𝑞 = 0 
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Multibody system- Constraints  
 
Constraints are called kinematic if they are expressed by  
 
 
Nonintegrable kinematic constraints, which cannot be reduced to geometric 
ones are called nonholonomic constraints. 
 
Holonomic or nonholonomic constraints which depend explicitly on time are 
called rheonomic. 

𝑓 𝑞, 𝑞 , 𝑡 = 0 



If constraints are unstable 
numerical errors can cause 
constrained bodies (bones) to 
slowly drift apart 

The integrator is responsible 
for calculating a body’s 

position given the forces acting 
on it.   

Materials Restitution  
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Constraint Solvers 
 
• A physics engine is organized into two phases: collision detection and 

solving. 
 
• Collision detection finds intersections between geometries associated 

with the rigid bodies, generating appropriate collision information such as 
collision points, normals and penetration depths. 

 
• Then a solver updates the motion of rigid bodies under the influence of 

the collisions that were detected and constraints that were provided by 
the user.  
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Constraint Solvers 
 
• The main objective of a physics engine is to simulate the motion of bodies 

in a virtual environment. 
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Constraint Solvers 
 
• The motion is the result of the solver interpreting the laws of physics, such 

as conservation of energy and momentum. But doing this 100% accurately 
is prohibitively expensive, and the trick to simulating it in real-time is to 
approximate to increase performance, as long as the result is physically 
realistic. 
 

• The main idea of the physics engine is to discretize the motion using time-
stepping. The equations of motion of constrained and unconstrained rigid 
bodies are very difficult to integrate directly and accurately.  
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Constraint Solvers 
 
A link is the connection of two or more bodies, 
or a body with the ground. The link is defined 
by certain constraints that restrict the relative 
motion of the bodies. 
 
The discretization subdivides the motion into 
small time increments, where the equations 
are simplified and linearized making it possible 
to solve them approximately. This means that 
during each time step the motion of the 
relevant parts of rigid bodies that are involved 
in a constraint is linearly approximated.  
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Constraint Solvers  
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Constraint Solvers 
 
A body is usually considered to be a rigid or flexible part of a mechanical 
system An example of a body is the arm of a robot, a wheel or axle in a car or 
the human forearm. Having linearized the equations of motion for a time 
step, we end up needing to solve a linear system or linear complementarity 
problem (LCP). These systems can be arbitrarily large and can still be quite 
expensive to solve exactly. Again the trick is to find an approximate solution 
using a faster method.  
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Constraint Solvers 
 
A modern method to approximately solve an LCP with good convergence 
properties is the Projected Gauss-Seidel (PGS). It is an iterative method, 
meaning that with each iteration the approximate solution is brought closer 
to the true solution, and its final accuracy depends on the number of 
iterations. 



Constraint Solvers 
 
Constraint is defined in terms of a behavior function or 
constraint function C, which takes the state of a pair of 
bodies as parameters (e.g. position and orientation) 
and outputs a scalar number. When the value of this 
function is in the acceptable range, the constraint is 
satisfied. Thus, in each step of the simulation, we must 
apply forces or impulses on the rigid bodies to attempt 
to keep the value of C in the allowed range. 
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Equality Constraints 
 
A common class of constraint is known as an equality 
constraint. An equality constraint is one in which the 
only acceptable value of C is zero. Thus, during each 
step of the simulation, we want to keep C as close to 
zero as possible. In other words, we want to minimize 
C. Equality constraints are used when the position of 
some point must always exactly match some 
predefined condition. A good example is a pin joint, 
where two rigid bodies must always be connected at 
the location of the joint. 
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Equality Constraints 
 
The distance constraint ensures that point pa from rigid 
body A and pb from rigid body B remain at fixed 
distance l from each other. 

pa 

pb 

l 
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Equality Constraints 

𝑷 = 𝑷𝒃 − 𝑷𝒂  

𝑪 = 𝑷 − 𝒍 = 𝟎 
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Equality Constraints 
 
C is a function of only two variables (x, y) that outputs a scalar, so we can 
easily plot it and examine some of its properties. If we set the constraint 
distance as 2 (that is, l = 2), then the graph of C looks like this. 

𝒍 = 𝟐 
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Equality Constraints 
 
The constraint solver can not solve position constraints, but only velocity 
constraints. To get the velocity constraint we get the derivative of C. 

𝒅𝑪

𝒅𝒕
= 𝑪 = 𝟎 

Now the scalar result indicates 
how fast the constraint is 
being violated. 

project this velocity on to the constraint axis to see how fast the constraint is becoming broken 
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Equality Constraints 
 
we lose the information about how much the (position) constraint was 
violated to begin with. So, it impossible for the solver to correct constraints 
that are already broken. 

𝒅𝑪

𝒅𝒕
= 𝑪 = 𝒗 

To get around this problem, a 
push factor* υ is introduced. 

*This is usually called Baumgarte stabilization 

solving the constraint this should be 0 as the points may not move away 
or towards each other along the constraint axis 
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Equality Constraints 
 

Now 𝑣 can used to bias 𝐶  so that the constraint can add a velocity to the 
system in order to fix already broken constraints. The solver expects the 
constraints to be in the following format. 𝑃𝑏 − 𝑃𝑎 is the direction in which 
the constraint can apply force, also called the constraint axis. 

𝒅𝑪

𝒅𝒕
= 𝑪 =

− 𝑷𝒃 − 𝑷𝒂
− 𝒓𝒂 × 𝑷𝒃 − 𝑷𝒂

𝑷𝒃 − 𝑷𝒂
𝒓𝒃 × 𝑷𝒃 − 𝑷𝒂

𝑻
𝒗𝒂
𝝎𝒂

𝒗𝒃
𝝎𝒃

= 𝑱𝑪𝒗𝒂𝒃 

𝒅𝑪

𝒅𝒕
= 𝑪 = 𝑷𝒃 − 𝑷𝒂 𝒗𝒃 +𝝎𝒃 × 𝒓𝒃 − 𝒗𝒂 −𝝎𝒂 × 𝒓𝒂  
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Contact Constraint 
 
The contact constraint is setup in the same way as the distance constraint 
except that Pa and Pb are the same point. This makes it impossible to 
calculate the constraint axis, so n is used instead. 

𝑱𝑪 =

−𝒏
− 𝒓𝒂 × 𝒏

𝒏
𝒓𝒃 × 𝒏

𝑻

 𝑱𝑪 =

−𝒏
− 𝒓𝒂 × 𝒏

𝟎
𝟎

𝑻

 

The constraint can be simplified if rigid body b is static 



Joints and constraints 
 
• Ball and Socket 
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Joints and constraints 
 
• Hinge 
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Joints and constraints 
 
• Slider or Prismatic 
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Joints and constraints 
 
• Universal 
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Joints and constraints 
 
• Prismatic and Rotoide 
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Joints and constraints 
 
• Prismatic - Universal 
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Degrees of Freedom of a Mechanism in 2D 
 
• A mechanism is a collection of rigid bodies or links, connected through 

pairs, provided one link is grounded.  
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Degrees of Freedom of a Mechanism in 2D 
 
• If this system were not connected like this, then each link except the 

ground would have 3 degrees of freedom.  
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Degrees of Freedom of a Mechanism in 2D 
 
• So total degrees of freedom, or mobility is 3(N-1). N represents total 

number of links. In this case N is 3. But when we connect it together 
through pairs, links will not have the same 3 degrees of freedom. 

 

1 2 

3 
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Degrees of Freedom of a Mechanism in 2D 
 
• If joint between 2 links is having surface contact as shown below, then 

both the links will have same translatonary motion, in X and Y directions. 
So for each such pairs, there will be a deduction of 2 mobility from total 
mobility. Where LP represents number of pairs with surface contacts. Such 
pairs are called lower pairs. In this case we have 2 lower pairs. 
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Degrees of Freedom of a Mechanism in 2D 
 
• Now consider the joint which is having a line contact. If joint between 2 

links is having line or point contact, both the link should have same 
translational motion along the common normal. However it could have 
different motion, in tangential direction. So for each such pairs, there will 
be deduction of 1 mobility from total mobility. This kind of pair is called 
higher pair (HP). Here we have got 1 higher pair.  
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Degrees of Freedom of a Mechanism in 2D 
 
• The general equation to find out degrees of freedom of a planar 

mechanism is given below. This equation is also known as Kuthbach 
equation.  
 

• Here N represent total number of links in the mechanism. LP and HP 
represent number of lower pairs and higher pairs respectively. 

 
𝑫𝑶𝑭 = 𝟑 𝑵 − 𝟏 − 𝟐𝑳𝒑 −𝑯𝒑= 3(3 - 1) - 2.2 - 1= 9 – 3 – 4 – 1 = 1 

 
• So this mechanism has got 1 degree of freedom. Means, by knowing 

position of only one cam, we can completely determine this mechanism. 



SIMULATION 

WRITING PROGRAM 
USING A PHYSICS 

MOTORS 

C++, Python, Matlab…   
.  Requires programming skills 
.  Takes long time to develop! 
.  Cheap; free compilers can be 
used for development 
.  Source code is available, 
.  Usually written for a 
dedicated problem 

 

BULLET, PhysiX, 
Tokamak, Box2D, …  
Physics engines are able to 
model the motion of rigid 
bodies in a physical world 
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PyDy 
 
PyDy is a general tool for 
mutlibody dynamic analysis 
written in Python 

47 
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Multibody system Physics engines are able to model the motion of rigid bodies in a physical world   
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Multibody system Physics engines are able to model the motion of rigid bodies in a physical world   

Boeing,A. Bräunl,T. (2007) Evaluation of real-time physics simulation systems, Proceedings of the 5th international conference on 
Computer graphics and interactive techniques in Australia and Southeast Asia, Pages 281-288   

The integrator is responsible 
for calculating a body’s 
position given the forces 
acting on it. 
 
 The performance of the 
integrator effects the 
accuracy of the simulation. 
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Multibody system Physics engines are able to model the motion of rigid bodies in a physical world   

The materials restitution 
properties were tested by 
colliding a box with a sphere. 
The box is placed on the 
ground and the sphere is 
placed one meter above. 
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Multibody system Physics engines are able to model the motion of rigid bodies in a physical world   

Constraint stability is one of 
the areas in rigid body 
calculations. 
 
If constraints are unstable 
numerical errors can cause 
constrained bodies (bones) to 
slowly drift apart. 
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Multibody system Physics engines are able to model the motion of rigid bodies in a physical world   
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Multibody system Physics engines are able to model the motion of rigid bodies in a physical world   

Coefficient of restitution s of balls 
   0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 

Coefficient of restitution of Ground 

0    0.5    1 
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Multibody system Physics engines are able to model the motion of rigid bodies in a physical world   
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Multibody system Physics engines are able to model the motion of rigid bodies in a physical world   

Coefficient of restitution s :   0, 0.2, 0.4, 0.6, 0.8, 1 

Coefficient of restitution of Ground:   0 
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Multibody system Physics engines are able to model the motion of rigid bodies in a physical world   

Coefficient of restitution s :   0, 0.2, 0.4, 0.6, 0.8, 1 

Coefficient of restitution of Ground:   0.5 
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Multibody system Physics engines are able to model the motion of rigid bodies in a physical world   

Coefficient of restitution s :   0, 0.2, 0.4, 0.6, 0.8, 1 

Coefficient of restitution of Ground:   1 

it is natural that 
most of a game 
company’s efforts 
will be spent on 
‘how things look’ 
rather than ‘how 
things move’ 



n-Link Pendulum 
 
While the double 
pendulum equations 
of motion can be 
solved relatively 
straightforwardly, the 
equations for a triple 
pendulum are much 
more involved. 
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Sympy 
 
Fortunately, there are easier approaches than brute-force algebra, that rely on 
higher abstractions: one such approach is known as Kane's Method. This 
method still involves a significant amount of book-keeping for any but the most 
trivial problems, but the Sympy package has a nice implementation that 
handles the details for you.  
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Kane’s Method in Physics/Mechanics 
 
Sympy.physics.mechanics provides functionality for deriving 
equations of motion using Kane’s method [Kane1985]. With all of the 
necessary point velocities and particle masses defined, the KanesMethod 
class can be used to derive the equations of motion of the system 
automatically. 
 
This method is a subset of the group of methods known as “Lagrange’s form 
of D’Alembert’s  Principle”. The Newton-Euler equations are multiplied by 
‘special vectors’ to develop scalar representations of the forces acting on each 
body.  
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Thomas R. Kane taught mechanics and computation for 45 years, has published 
10 textbooks and 172 technical papers, and is the preeminent expert and 
author of modern dynamics theory (known as "Kane Dynamics"). 



 Kanisms - sayings by Thomas Kane 
 

Kane's 1st theorem - "Nothing is equal to anything." 
Kane's 2nd theorem - "Everything is equal to everything else." 
"When you're not sure whether you know or not - you don't know." 
"Lets go slow - we do not have time to go fast." 
"Differential equations come in two kinds, good and bad - and there are no good ones." 
"Linear algebra is simply a method of bookkeeping." 
"Always keep an extra negative sign in your pocket." 
"Avoid differentiation, especially vectors." 
Newton's 1st law: "An object moves in a straight line with a constant speed, unless it 
doesn't." 
"UHT: useful half-truth." 
"Your boss doesn't know anything - by definition." 
"Always be scared to say anything." 
"When in doubt - cheat." 
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Integrate the pendulum 
    # Step 1: construct the pendulum model 

     

    # Generalized coordinates and velocities 

    # (in this case, angular positions & velocities of each mass)  

    q = mechanics.dynamicsymbols('q:{0}'.format(n)) 

    u = mechanics.dynamicsymbols('u:{0}'.format(n)) 

 

    # mass and length 

    m = symbols('m:{0}'.format(n)) 

    l = symbols('l:{0}'.format(n)) 

 

    # gravity and time symbols 

    g, t = symbols('g,t') 

… 
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Integrate the pendulum 

68 

    # Step 2: build the model using Kane's Method 

 

    # Create pivot point reference frame 

    A = mechanics.ReferenceFrame('A') 

    P = mechanics.Point('P') 

    P.set_vel(A, 0) 

    # lists to hold particles, forces, and kinetic ODEs 

    # for each pendulum in the chain 

    particles = [] 

    forces = [] 

    kinetic_odes = [] 

… 
    # Generate equations of motion 

    KM = mechanics.KanesMethod(A, q_ind=q, u_ind=u, 

                               kd_eqs=kinetic_odes) 

    fr, fr_star = KM.kanes_equations(forces, particles) 



Integrate the pendulum 

69 

    # Step 3: numerically evaluate equations and integrate 

     

    # initial positions and velocities – assumed to be given in degrees 

    y0 = np.deg2rad(np.concatenate([np.broadcast_to(initial_positions, n), 

                                    np.broadcast_to(initial_velocities, n)])) 

         

    # lengths and masses 

    if lengths is None: 

        lengths = np.ones(n) / n 

    lengths = np.broadcast_to(lengths, n) 

    masses = np.broadcast_to(masses, n) 

… 

    # ODE integration 

    return odeint(gradient, y0, times, args=(parameter_vals,)) 



Integrating the pendulum returns generalized coordinates, which in this case 
are the angular position and velocity of each pendulum segment, relative to 
vertical.  
 
In order to visualize the pendulum, we need a utility to extract x and y 
coordinates from these angular coordinates 
 
def get_xy_coords(p, lengths=None): 

    """Get (x, y) coordinates from generalized coordinates p""" 
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Double Pendulum 
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Double Pendulum 



#################### 

Number of pendulum 2 

#################### 

Matrix([ 

[-g*l0*m0*sin(q0(t)) - g*l0*m1*sin(q0(t))], 

[                     -g*l1*m1*sin(q1(t))]]) 

 

Matrix([ 

[-l0*l1*m1*(sin(q0(t))*sin(q1(t)) + cos(q0(t))*cos(q1(t)))*Derivative(u1(t), t) + l0*l1*m1*(-

sin(q0(t))*cos(q1(t)) + sin(q1(t))*cos(q0(t)))*u1(t)**2 - (l0**2*m0 + 

l0**2*m1)*Derivative(u0(t), t)], 

[              -l0*l1*m1*(sin(q0(t))*sin(q1(t)) + cos(q0(t))*cos(q1(t)))*Derivative(u0(t), t) + 

l0*l1*m1*(sin(q0(t))*cos(q1(t)) - sin(q1(t))*cos(q0(t)))*u0(t)**2 - l1**2*m1*Derivative(u1(t), 

t)]]) 

Double Pendulum 
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Triple Pendulum 
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Triple Pendulum 
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Triple Pendulum 
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#################### 

Number of pendulum 3 

#################### 

Matrix([ 

[-g*l0*m0*sin(q0(t)) - g*l0*m1*sin(q0(t)) - g*l0*m2*sin(q0(t))], 

[                     -g*l1*m1*sin(q1(t)) - g*l1*m2*sin(q1(t))], 

[                                          -g*l2*m2*sin(q2(t))]]) 

Matrix([ 

[l0*l1*m1*(-sin(q0(t))*cos(q1(t)) + sin(q1(t))*cos(q0(t)))*u1(t)**2 + l0*l1*m2*(-

sin(q0(t))*cos(q1(t)) + sin(q1(t))*cos(q0(t)))*u1(t)**2 - l0*l2*m2*(sin(q0(t))*sin(q2(t)) + 

cos(q0(t))*cos(q2(t)))*Derivative(u2(t), t) + l0*l2*m2*(-sin(q0(t))*cos(q2(t)) + 

sin(q2(t))*cos(q0(t)))*u2(t)**2 - (l0*l1*m1*(sin(q0(t))*sin(q1(t)) + cos(q0(t))*cos(q1(t))) + 

l0*l1*m2*(sin(q0(t))*sin(q1(t)) + cos(q0(t))*cos(q1(t))))*Derivative(u1(t), t) - (l0**2*m0 + 

l0**2*m1 + l0**2*m2)*Derivative(u0(t), t)], 

[             l0*l1*m1*(sin(q0(t))*cos(q1(t)) - sin(q1(t))*cos(q0(t)))*u0(t)**2 + 

l0*l1*m2*(sin(q0(t))*cos(q1(t)) - sin(q1(t))*cos(q0(t)))*u0(t)**2 - l1*l2*m2*(sin(q1(t))*sin(q2(t)) 

+ cos(q1(t))*cos(q2(t)))*Derivative(u2(t), t) + l1*l2*m2*(-sin(q1(t))*cos(q2(t)) + 

sin(q2(t))*cos(q1(t)))*u2(t)**2 - (l1**2*m1 + l1**2*m2)*Derivative(u1(t), t) - 

(l0*l1*m1*(sin(q0(t))*sin(q1(t)) + cos(q0(t))*cos(q1(t))) + l0*l1*m2*(sin(q0(t))*sin(q1(t)) + 

cos(q0(t))*cos(q1(t))))*Derivative(u0(t), t)], 

[                                                                                                                                                           

-l0*l2*m2*(sin(q0(t))*sin(q2(t)) + cos(q0(t))*cos(q2(t)))*Derivative(u0(t), t) + 

l0*l2*m2*(sin(q0(t))*cos(q2(t)) - sin(q2(t))*cos(q0(t)))*u0(t)**2 - l1*l2*m2*(sin(q1(t))*sin(q2(t)) 

+ cos(q1(t))*cos(q2(t)))*Derivative(u1(t), t) + l1*l2*m2*(sin(q1(t))*cos(q2(t)) - 

sin(q2(t))*cos(q1(t)))*u1(t)**2 - l2**2*m2*Derivative(u2(t), t)]]) 



Why Pendulum is so important ? 
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SERVO MOTOR 

So We Need To Control!   But How 
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What Is Pid Control? 

The Setpoint (SP) is 
the value that we 
want the process 
to be 

The PID controller looks at 
the Setpoint and compares 
it with the actual value of 
the Process Variable (PV). 

If the SP and the PV are the same – then the controller is a very 
happy little box. It doesn’t have to do anything, it will set its output 
to zero. However, if there is a disparity between the SP and the PV 
we have an error and corrective action is needed. 
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Understanding The Controller? The PV is subtracted from the SP to create 
the Error. The error is simply multiplied by 
one, two or all of the calculated P, I and D 
actions (depending which ones are turned 
on). Then the resulting “error x control 
actions” are added together and sent to 
the controller output. 
 
These 3 modes are used in different 
combinations: 
 
P – Sometimes used 
 
PI - Most often used 
 
PID – Sometimes used 
 

PD – rare, but it can be useful for 
controlling servomotors ??? 



E.Kavafoğlu, S.Aritan (2017) Real-time Physics-based 
Motion Control With An Efficient Inverse Dynamics 
Method. .MSc Thesis. 
Institute of Informatics of Hacettepe University 
  

Forward Dynamics Without Feedback Control 
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PD Controllers 
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PD Controllers 
pymunkPD.py 



86 

Coros , S. Beaudoin, P.   van de Panne, M. (2010) Generalized Biped Walking 
Control. ACM Transactions on Graphics, Vol. 29, No. 4, Article 130, 



87 

Generalized Biped Walking Control algorithms by Coros , et.al. used for the Agile Anthropomorphic Robot 
"Atlas" . 



Controllers in Human 
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Controllers in Human 
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The cart can perform 
a sequence of moves 
to maneuver from 
position y=-1.0 to 
y=0.0 within 6.2 
seconds. 



Verify that v, θ, and q are zero 
before and after the maneuver.  
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Inverted Pendulum Optimal Control 

The inverted pendulum is described by the 
following dynamic equations:  

where u is the force applied to the cart, ε is 
m2/(m1+m2), y is the position of the cart, v is 
the velocity of the cart, θ is the angle of the 
pendulum relative to the cart, m1=10, m2=1, 
and q is the rate of angle change. Tune the 
controller to minimize the use of force applied 
to the cart either in the forward or reverse 
direction 



Inverted Pendulum Optimal Control 

There are many methods to implement control including basic strategies such as a 
proportional-integral-derivative (PID) controller or more advanced methods such 
as model predictive techniques.  
 
Model predictive control (MPC) is a type of control algorithm that is used to control 
systems with dynamics. It is a model-based method that uses a predictive model of 
the system to compute control actions that optimize a performance criterion over a 
finite horizon. The basic idea of MPC is to optimize a control policy that minimizes 
the difference between the desired reference signal and the output of the system, 
subject to constraints on the control inputs and the states of the system. 
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Inverted Pendulum Optimal Control 

GEKKO is a Python package for machine learning 
and optimization of mixed-integer and 
differential algebraic equations. It is coupled 
with large-scale solvers for linear, quadratic, 
nonlinear, and mixed integer programming (LP, 
QP, NLP, MILP, MINLP). Modes of operation 
include parameter regression, data 
reconciliation, real-time optimization, dynamic 
simulation, and nonlinear predictive control. 

https://gekko.readthedocs.io/en/latest/ 
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min  𝑥1𝑥4 𝑥1 + 𝑥2 + 𝑥3 + 𝑥3 

𝑥1𝑥2𝑥3𝑥4 ≥ 25 

𝑥1
2+ 𝑥2

2 + 𝑥3
2+ 𝑥4

2 = 40 

1 ≤ 𝑥1 , 𝑥2, 𝑥3, 𝑥4 ≤ 5 
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This collection of 188 nonlinear programing test examples is a supplement of the 
test problem collection published by Hock and Schittkowski. 

𝑥0 = 1, 5, 5, 1  
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from gekko import GEKKO 

 

#Initialize Model 

m = GEKKO() 

#define parameter 

eq = m.Param(value=40) 

#initialize variables 

x1,x2,x3,x4 = [m.Var(lb=1, ub=5) for i in range(4)] 

#initial values 

x1.value = 1 

x2.value = 5 

x3.value = 5 

x4.value = 1 

#Equations 

m.Equation(x1*x2*x3*x4>=25) 

m.Equation(x1**2+x2**2+x3**2+x4**2==eq) 

#Objective 

m.Minimize(x1*x4*(x1+x2+x3)+x3) 



#Set global options 

m.options.IMODE = 3 #steady state optimization 

 

#Solve simulation 

m.solve() 

 

#Results 

print('') 

print('Results') 

print('x1: ' + str(x1.value)) 

print('x2: ' + str(x2.value)) 

print('x3: ' + str(x3.value)) 

print('x4: ' + str(x4.value)) 

EXIT: Optimal Solution Found. 

  

 The solution was found. 

  

 The final value of the objective function is    

17.0140171270735      

  

 --------------------------------------------------- 

 Solver         :  IPOPT (v3.12) 

 Solution time  :   1.310000000012224E-002 sec 

 Objective      :    17.0140171270735      

 Successful solution 

 --------------------------------------------------- 

  

Results 

x1: [1.000000057] 

x2: [4.74299963] 

x3: [3.8211500283] 

x4: [1.3794081795] 
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from gekko import GEKKO 

import numpy as np 

m = GEKKO() 

x = m.Array(m.Var,4,value=1,lb=1,ub=5) 

x1,x2,x3,x4 = x                 # rename variables 

x2.value = 5; x3.value = 5      # change guess 

m.Equation(np.prod(x)>=25)      # prod>=25 

m.Equation(m.sum([xi**2 for xi in x])==40) # sum=40 

m.Minimize(x1*x4*(x1+x2+x3)+x3) # objective 

m.solve() 

print(x) 



Özgören,  NŞ.  Arıtan, S.  (2016) Evaluating responses of a feedback control system for a multi - link  biomechanical model. 8th National 
Biomechanics Congress. Ankara. 
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E.Kavafoğlu, S.Aritan (2017) Real-time Physics-based 
Motion Control With An Efficient Inverse Dynamics 
Method. .MSc Thesis. 
Institute of Informatics of Hacettepe University 
  



PID with KANE DYNAMICS 

This is the Kane Dynamics Equation  
 

Has to Be Calculated 60 Times per Second   
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HOW TO INCLUDE MUSCLES INTO THE MODEL? 
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Optimizing Locomotion Controllers Using Biologically-Based 
Actuators and Objectives  

Wang, JM., Hamner, SR.,  Delp, SL.,  Koltun V. from  Stanford University 

A more biologically faithful force generation mechanism is 
needed to generate more human-like motions 

Graphics bipeds:  
•Controller directly output joint torques 

Humans:  
•Controller output neural excitation levels to musculotendon units (MTUs) 
•MTUs generate forces constrained by muscle physiology  
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Optimizing Locomotion 
Controllers Using Biologically-

Based Actuators and Objectives  
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Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives  
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Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives  
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Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives  
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Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives  



10
7 

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives  



Game Engine Architecture 
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https://research.nvidia.com/labs/toronto-ai/gameGAN/ 
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https://www.latent-technology.com/technology 

"Instead of loading the characters 
with thousands of hand-crafted 
animations, we allow them to decide 
their movements in real time." 
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https://www.latent-technology.com/ 


