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Multibody system

* Multibody system is the study of the dynamic behavior of interconnected
rigid or flexible bodies, each of which may undergo large translational and
rotational displacements

* The simplest bodies or elements of a multibody system were treated by
Newton (free particle) and Euler (rigid body). Euler introduced reaction
forces between bodies. Later, a series of formalisms were derived, only to
mention Lagrange’s formalisms based on minimal coordinates and a
second formulation that introduces constraints.
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Multibody system

While single bodies or parts of a mechanical system are studied in detail with
finite element methods, the behavior of the whole multibody system is
usually studied with multibody system methods within the following areas:

* Aerospace engineering

* Biomechanics

* Combustion engine, gears and transmissions, chain drive, belt drive

* Military applications

* Particle simulation (granular media, sand, molecules)

* Physics engine

* Robotics
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Multibody system

A body is usually considered to be a rigid or flexible part of a mechanical
system (not to be confused with the human body). An example of a body is
the arm of a robot, a wheel or axle in a car or the human forearm. A link is the
connection of two or more bodies, or a body with the ground. The link is
defined by certain (kinematical) constraints that restrict the relative motion of
the bodies.

There are two important terms in multibody systems: degree of freedom and
constraint condition.
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Multibody system

The degrees of freedom denote the number of independent kinematical
possibilities to move. In other words, degrees of freedom are the minimum
number of parameters required to completely define the position of an entity
in space.

A rigid body has six degrees of freedom in the case of general spatial motion,
three of them translational degrees of freedom and three rotational degrees
of freedom. In the case of planar motion, a body has only three degrees of
freedom with only one rotational and two translational degrees of freedom
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Rigid bodies
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Multibody system

A constraint condition implies a restriction in the kinematical degrees of
freedom of one or more bodies. The classical constraint is usually an algebraic
equation that defines the relative translation or rotation between two bodies.
There are furthermore possibilities to constrain the relative velocity between
two bodies or a body and the ground. There are furthermore possibilities to
constrain the relative velocity between two bodies or a body and the ground.
This is for example the case of a rolling disc, where the point of the disc that
contacts the ground has always zero relative velocity with respect to the
ground. In the case that the velocity constraint condition cannot be integrated
in time in order to form a position constraint, it is called non-holonomic. This
is the case for the general rolling constraint.
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Multibody system

The equations of motion are used to describe the dynamic behavior of a
multibody system. Each multibody system formulation may lead to a different
mathematical appearance of the equations of motion while the physics
behind is the same. The motion of the constrained bodies is described by
means of equations that result basically from Newton’s second law. The
equations are written for general motion of the single bodies with the
addition of constraint conditions. Usually the equations of motions are
derived from the Newton-Euler equations or Lagrange’s equations.
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Multibody sys

Newton Euler D’Alembert Lagrance

(1643 -1727) (1707 -1783) (1717 -1783) (1736 -1813)
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Multibody system

Lagrangian Dynamics
Lagrange’s equations of motion are specified in terms of the total energy of
the body in the kinematic chain.

Newton-Euler Dynamics

The Newton-Euler equations are applied to each body in the model. All forces
affecting each body must be considered, which makes this method difficult
and tedious for complex systems.
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Multibody system

D'Alembert’s Principle

Equations of motion are derived by identifying all forces on each body go
through an acceleration and writing equilibrium equations. These equilibrium
equations are simultaneously solved to obtain the dynamic system response.

Kane’s Dynamics
This method is a subset of the group of methods known as “Lagrange’s form
of D'Alembert’s Principle”. The Newton-Euler equations are multiplied by

‘special vectors’ to develop scalar representations of the forces acting on each
body.
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external force 2\ body
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Rigid bodies

* Position vector of the body's point of reference. Currently the point of
reference correspond to the body's center of mass.

* Linear velocity of the point of reference, a vector.

* Orientation of a body, represented by a quaternion or a 3x3 rotation
matrix.

* Angular velocity vector which describes how the orientation changes over
time.

* Mass of the body.

* |nertia matrix. This is a 3x3 matrix that describes how the body's mass is
distributed around the center of mass.
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Multibody system- Constraints

From the physical point of view, constraints on a mechanical system are
conditions restricting possible geometrical positions of the mechanical system
or limiting its motion. We distinguish between geometric and kinematic
constraints.
Constraints are called geometric or holonomic if they are expressed by
equations of the form;

flg.t)=0

Holonomic constraints are called skleronomic if they do not depend explicitly

on time.
fl@ =0
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Multibody system- Constraints

Constraints are called kinematic if they are expressed by
f(q.q.t) =0
Nonintegrable kinematic constraints, which cannot be reduced to geometric

ones are called nonholonomic constraints.

Holonomic or nonholonomic constraints which depend explicitly on time are
called rheonomic.
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Constraint Solvers

* A physics engine is organized into two phases: collision detection and
solving.

* Collision detection finds intersections between geometries associated
with the rigid bodies, generating appropriate collision information such as
collision points, normals and penetration depths.

* Then a solver updates the motion of rigid bodies under the influence of
the collisions that were detected and constraints that were provided by
the user.
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Constraint Solvers

* The main objective of a physics engine is to simulate the motion of bodies
in a virtual environment.

Constraints/
Collisions Qo Updated
QNEIE 7 Rigid Bodies
/ Rigid Bodies //
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Constraint Solvers

* The motion is the result of the solver interpreting the laws of physics, such
as conservation of energy and momentum. But doing this 100% accurately
is prohibitively expensive, and the trick to simulating it in real-time is to

approximate to increase performance, as long as the result is physically
realistic.

* The main idea of the physics engine is to discretize the motion using time-
stepping. The equations of motion of constrained and unconstrained rigid
bodies are very difficult to integrate directly and accurately.

Serdar ARITAN (20



‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Constraint Solvers

A link is the connection of two or more bodies,
or a body with the ground. The link is defined
by certain constraints that restrict the relative
motion of the bodies.

The discretization subdivides the motion into
small time increments, where the equations
are simplified and linearized making it possible
to solve them approximately. This means that
during each time step the motion of the
relevant parts of rigid bodies that are involved

in @ constraint is linearly approximated.
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Constraint Solvers
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Constraint Solvers

A body is usually considered to be a rigid or flexible part of a mechanical
system An example of a body is the arm of a robot, a wheel or axle in a car or
the human forearm. Having linearized the equations of motion for a time
step, we end up needing to solve a linear system or linear complementarity
problem (LCP). These systems can be arbitrarily large and can still be quite
expensive to solve exactly. Again the trick is to find an approximate solution
using a faster method.
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Constraint Solvers

A modern method to approximately solve an LCP with good convergence
properties is the Projected Gauss-Seidel (PGS). It is an iterative method,
meaning that with each iteration the approximate solution is brought closer

to the true solution, and its final accuracy depends on the number of

iterations. : L
lterative Method

Actual SolutionJ

__./
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Constraint Solvers

Constraint is defined in terms of a behavior function or
constraint function C, which takes the state of a pair of
bodies as parameters (e.g. position and orientation)
and outputs a scalar number. When the value of this
function is in the acceptable range, the constraint is
satisfied. Thus, in each step of the simulation, we must
apply forces or impulses on the rigid bodies to attempt
to keep the value of C in the allowed range.
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Equality Constraints

A common class of constraint is known as an equality
constraint. An equality constraint is one in which the
only acceptable value of C is zero. Thus, during each
step of the simulation, we want to keep C as close to
zero as possible. In other words, we want to minimize
C. Equality constraints are used when the position of
some point must always exactly match some
predefined condition. A good example is a pin joint,
where two rigid bodies must always be connected at
the location of the joint.
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Equality Constraints

The distance constraint ensures that point p, from rigid
body A and p, from rigid body B remain at fixed
distance | from each other.
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Equality Constraints

) P =Py — Pl

C=P-1=0
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Equality Constraints

outputs a scalar, so we can
2s. If we set the constraint
ooks like this.

C is a function of only twg
easily plot it and e
distance as 2 (that
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Equality Constraints

The constraint solver can not solve position constraints, but only velocity

constraints. To get the velocity constraint we get the derivative of C.
a

. d =0
Epa E - o

Now the scalar result indicates
thow fast the constraint is
:being violated.

d
1t Pb

Serdar ARITAN project this velocity on to the constraint axis to see how fast the constraint is becoming broken m
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Equality Constraints

we lose the information about how much the (position) constraint was
violated to begin with. So, it impossible for the solver to correct constraints

that ar€ already-broken.
- dc . b

F %Pa E:c:

> To get around this problem, a
“ @ push factor* v is introduced.

X,

*This is usually called Baumgarte stabilization

d
1t Pb
solving the constraint this should be 0 as the points may not move away
Serdar ARITAN or towards each other along the constraint axis
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Equality Constraints

Now v can used to bias C so that the constraint can add a velocity to the
system in order to fix already broken constraints. The solver expects the
constraints to be in the following format. P, — P, is the direction in which
the constraint can apply force, also called the constraint axis.

dc .
E:C:(Pb_Pa)(vb-I_wbXrb_va_waxra)
_(Pb_Pa) 1 (Vg
dC . |=(ryax (Pp—Py))| |®wa
dt €= (Pp — Pg) Vb ~JcVap
I (Tbx(Pb_Pa)) 1 L®p]
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Contact Constraint

The contact constraint is setup in the same way as the distance constraint
except that P, and P, are the same point. This makes it impossible to
calculate the constraint axis, so n is used instead.

n 7 m T
], = —(‘ra,L1 Xn) ], = —(raox n)
| (rp xn) | 0

The constraint can be simplified if rigid body b is static
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Joints and constraints

 Ball and Socket

Anchor
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Joints and constraints

* Hinge

Body1  Anchor Body 2
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Joints and constraints

e Slider or Prismatic

. BODY 1
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Joints and constraints

 Universal
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Joints and constraints

* Prismatic and Rotoide
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Joints and constraints

* Prismatic - Universal

Body 1
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Degrees of Freedom of a Mechanism in 2D

* A mechanism is a collection of rigid bodies or links, connected through
pairs, provided one link is grounded.

a

Grounded
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Degrees of Freedom of a Mechanism in 2D

* If this system were not connected like this, then each link except the
ground would have 3 degrees of freedom.
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Degrees of Freedom of a Mechanism in 2D

* So total degrees of freedom, or mobility is 3(N-1). N represents total
number of links. In this case N is 3. But when we connect it together
through pairs, links will not have the same 3 degrees of freedom.

a

Grounded
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Degrees of Freedom of a Mechanism in 2D

* If joint between 2 links is having surface contact as shown below, then
both the links will have same translatonary motion, in X and Y directions.
So for each such pairs, there will be a deduction of 2 mobility from total
mobility. Where L, represents number of pairs with surface contacts. Such
pairs are called lower pairs. In this case we have 2 lower pairs.

LINE CONTACT
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Degrees of Freedom of a Mechanism in 2D

* Now consider the joint which is having a line contact. If joint between 2
links is _having line or point contact, both the link should have same
translational motion along the common normal. However it could have
different motion, in tangential direction. So for each such pairs, there will
be deduction of 1 mobility from total mobility. This kind of pair is called
higher pair (H,). Here we have got 1 higher pair.

LINE CONTACT
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Degrees of Freedom of a Mechanism in 2D

* The general equation to find out degrees of freedom of a planar
mechanism is given below. This equation is also known as Kuthbach
equation.

« Here N represent total number of links in the mechanism. LP and HP
represent number of lower pairs and higher pairs respectively.

DOF =3(N—1) —2L, — Hy=3(3-1)-2.2-1=9-3-4-1=1

* So this mechanism has got 1 degree of freedom. Means, by knowing
position of only one cam, we can completely determine this mechanism.

Serdar ARITAN 45




‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

USING A PHYSICS
WRITING PROGRAM MOTORS

C++, Python, Matlab...
. Requires programming skills BULLET, PhysiX,
i 1
. Takes long time tq develop! Tokamak, Box2D, ...
. Cheap; free compilers can be ) .
Physics engines are able to
used for development ! .
model the motion of rigid

. Source code is available, i o ¥
. Usually written for a odies in a physical wor

dedicated problem
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PyDy
PyDy is a general tool for

mutlibody dynamic analysis
written in Python
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MlﬂtibOdV system Physics engines are able to model the motion of rigid bodies in a physical world

MMI DYNAMICS o
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Multibody systeém Physics engines are able to model the motion of rigid bodies in a physical world

The integrator is responsible
for calculating a body’s
position given the forces
acting on it.

The performance of the
integrator effects the
accuracy of the simulation.

Normalized Relative Error
1 Integrators Physics Engines _
0.8
0.6
0.4 _
0.2 j l
0 - : : : . :
%‘?’\é *’a}é o‘bé qﬂe\& = 4 *?gga & & 4\":"; < 4 e.'*ﬁ’
¥ W O?b <° OQE-{\ &6* 'K“\}
S8 F

Figure 1 — Positional error from cumulative numerical integrators
relative to the ideal case normalized to the Symplectic Euler
integrator error

Boeing,A. Braunl,T. (2007) Evaluation of real-time physics simulation systems, Proceedings of the 5th international conference on
Computer graphics and interactive techniques in Australia and Southeast Asia, Pages 281-288
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Multibody systeém Physics engines are able to model the motion of rigid bodies in a physical world

The materials restitution

‘ Height for Restitution = 0.5
properties were tested by

0.35

colliding a box with a sphere. 03 AN\ Ideal Max.
. 0.25 Bullet
The box is placed on the o A\ g
ground and the sphere is g OB T \\\\ —— Newton
2001
placed one meter above. 2 o —— Novodex
0 ——ODE
-0.05 Tokamak
0.1 ‘P/ ‘\ TrueAxis
0.15

Time

Figure 4 - Bounce height for a coefficient of restitution of 0.5
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Multibody systeém Physics engines are able to model the motion of rigid bodies in a physical world

Constraint stability is one of Constraint Error
the areas in rigid body 5000
calculations. 4000 //

3000

Error

2000

If constraints are unstable
numerical errors can cause 1000 —
constrained bodies (bones) to '
slowly drift apart.

Number of constraints

ODE

— Bullet liggle Novodex Tokamak TrueAxis

Figure 9 - Constraint error
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Mul ibody system Physics engines are able to model the motion of rigid bodies in a physical world

Qo
C0C05C

CriPMUNW®

Game Dynamics
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Coefficient of restitution s of balls BOX2 D r%
0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1

0.5
Coefficient of restitution of Ground
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Multibody system Physics engines are able to model the motion of rigid bodies in a physical world

Physi{

by NVIDIA
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Multibody systeém Physics engines are able to model the motion of rigid bodies in a physical world

oefficient of restitutions: 0, 0.2, 0.4, 0.6, 0.8, Physx

by NVIDIA
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Multibody systeém Physics engines are able to model the motion of rigid bodies in a physical world

oefficient of restitutions: 0, 0.2, 0.4, 0.6, 0.8, Physx

by NVIDIA

Serdar ARITAN Coefficient of restitution of Ground: 0.5 E
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Multibody system Physics engines are able to model the motion of rigid bodies in a physical world

Serdar ARITAN

oefficient of restitutions: 0, 0.2, 0.4, 0.6, 0.8,

Coefficient of restitution of Ground: 1

Physi{

by NVIDIA

it is natural that
most of a game
company’s efforts
will be spent on
‘how things look’
rather than ‘how

things move’



‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

n-Link Pendulum

While the double
pendulum equations
of motion can be
solved relatively
straightforwardly, the
equations for a triple
pendulum are much
more involved.
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91 = —(2((13?713 sin(QQl — 295)(4[2 — l%mg) + l% Siﬂ(?gl — 292)(?712 + ng)(ﬂ’Lnglg + 413(???,2 +
ng)))l%ﬁ'lz + (lQ(SiIl(Gl — 6'2)((m2mg(m2 + 3m;)12 + 4]),(??’12 + ﬁmgm; + Sm;))lg + 4[2(7715(?712 +
m3)l3 + 4I3(mg + 2m3))) + 3m3 sin(f; + 0 — 263)(415 — lng))Gg — 4ksls(cos(0y — B2)(ms(ma +
m;;)lg —|—413 (mg + 2m3)) l?deOS(Ql —|—I92 — 29 ))92 —|—£;m;(sm(91 - 95) (8[5??’1;12 —|—4IdelQ + 1612[3)

15 sin(0y — 202 + 03) (mamsls + 415(ma + 21'?’1»3)))5'-32 — 4kslymg(cos(0h — 03)(2msl3 +415) — 5cos(6, —
205 + 03)(ms + 2m3))03 — g(sin(6y)((ms(mymg + 2myms + 3mams + mQ)L2 + 413(m3 + 6maoms +
myms + 4m3 + dmyms))l3 + 412(ms(my + 2ma + mg)l3 + 413(my + 2ma + 2m3))) + Em3(sin(6, —
293)(4[2 — lgmg) — 2l3608(292 — 293) Siﬂ(@l)(ml + mg)) + l% Siﬂ(@l — 292)(?’?’12 + Zmd)(mgmdlg +
4[3 (mlg + de))))ll + 2’?1 (4[2(??1513 +4Id) -+ Zg(md (m2 + de)lg —|—4I5 (mg +4m5)) — 21%5%?’”?808(292 —
5412131me—|—1611[2l§m3—|—64I113l§m3—|—64IQI3lfm3—|—4I;;l%l§m1m2 —|—4fgl%l§m1m3+16[5l§l§m1m5—|—
411313 moms + 1611213 moms + 48131315maoms — 8111513m3cos (205 — 205) — 21315c0s(201 — 265)(ma +
2m3)(maomzl3 +41I3(mg+2m3)) — 21313 m3cos(20, — 203)(—mgl3 +415) + 212 1313mym3 + 612 313mam3 +
2031313m3ms + [1313mymams — 2171313mim3cos(20; — 203) — 41315153mam3cos(202 — 265))
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QQ = (2((!% Sin(291 — 292)(?712 + ng)(mgmglg + 413(??12 -+ 2?’3’13)) — l?mi SiIl(QQQ — 293)((?’]’11 +
ng)l% + 411))l§822 + ll(Siﬂ(gl — 92)((?713(??11 (mg + m3) + 2m2(2m2 + 3m5))l§ —|—413(m2 + 2m3)(m1 =+
4m2 + 4md))l% + 4[1(m3(m2 + m;g)l?} -+ 413(?712 + 2m5))) — lgmg Sjﬂ(ﬁll -+ 6‘2 — 26’3)((7?’11 + ng)l% -+
4I1))52l9'12 + 4]61!1(6‘08(91 — 92)(m3(m2 + m;)l% + 4_[3 (mg + ng)) — l§m§COS(91 + 6’2 — 293))[291 +
(—l3m3 (sin(ﬁg — 85)({?’?15 (ml +3m2)l§ +4Id(m1 +3m2 + de))l% —f—‘iIl (m;glg —|—4I{g)) — l% Siﬂ(291 — 6'2 —
93)(?’1’12?7131% —+ 415(??12 -+ 2md)))952 -+ 4]63!3?713(608(92 — 93)((?711 + 3m2 + Zmd)l% +4Il) — 1%608(291 —
92 — 6’3){?’?’12 + 2?’?’13))93 +g(sin(92){(mgm3(2m2 +3m3)£% + SI;(mg + 3m2m3 + Zm%))lf —|—4I1 {m3 (mg +
mg)lg -+ 4[3(?’?’12 -+ ij))) — l% Siﬂ(26|1 — 92)(?713(?711(?712 -+ mg) + m2(2m2 + 3m5))l§ + 4[5(?712 —+
2m5)(m1 + ng + ng)) + 32 ‘}(Siﬂ(gg — 29 )(mglg + 4[1) + £2 sin(291 + 6'2 — 29 ){ml + mg))))lg —
2k2(4fl(m312 + 4I3) + I3 (md(ml + dmg + 2m3)l3 + 4I3(my + 4m2 + 4dmg)) — 2l2!dm{cos(291 —
295))92))/(54111213 + 81;52121?12 + 8]1!12[2?’?’13 + 8125213'!?13 + 32] lQl md + 15[21 l%ml + 1611] l2m2 +
64[2[3l%ﬂ’12 + 1611[253?715 —|—6411L lgmd —|—64I213l%m3 +4I;;l%l‘2?m1m2 —|—4Ig£%l§mlm3 + 16[3l%l%m1m3 -+
AL 1312mams 4+ 161512 12momg + 48131212 moms — 811 1212m2cos (205 — 205) — 21212c0s(26, — 26’2)(m2 +
2m3)(m2m3l§ —|—4I;;(m2—|—2m3)) —2[%!:3?’?’13(308(291 — 235)( mgl2 —|—4IQ) —|—2£212£2m1m —|—612£2£2m m —|—
2031313m3ms + 1{1313mymams — 2171315mym3cos(202 — 265) — 41515153mam3cos(2602 — 263))
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6, = —(2(3211 Izks 65 — lgl;mﬁg (sin(fy — 9;)((l2(m1m2 + dmyms + 6mamg + m3) + 4l(my +
3m2 + 2m5))12 -+ 411(412 + ZQ(mQ + 4m5))) -+ l 5111(26'1 — 92 — 95)(?712 + 2m5)(412 — m212))
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Sympy

Fortunately, there are easier approaches than brute-force algebra, that rely on
higher abstractions: one such approach is known as Kane's Method. This
method still involves a significant amount of book-keeping for any but the most
trivial problems, but the Sympy package has a nice implementation that
handles the details for you.
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Kane’s Method in Physws/Mechamcs

mechanics provides functionality for deriving equations of motion using Kane’s method [Kane1985]. This

document will describe Kane’s method as used in this module, but not how the equations are actually
derived.

Structure of Equations

IN mechanics We are assuming there are 5 basic sets of equations needed to describe a system. They are:

holonomic constraints, non-holonomic constraints, kinematic differential equations, dynamic equations,
and differentiated non-holonomic equations.

fn(g,t) =0
Previous topic Knn (g, t)u + fan(q,t) = 0
k(9. t)d + ki (g, t)u + fic(q,) = 0
ka(q, )i+ fa(q,4,u,t) = 0

Kanh (g, £)t + fann (g, 4, u, ) = 0

IN mechanies holonomic constraints are only used for the linearization process; it is assumed that they will
be too complicated to solve for the dependent coordinate(s). If you are able to easily solve a holonomic
constraint, you should consider redefining your problem in terms of a smaller set of coordinates.
Alternatively, the time-differentiated holonomic constraints can be supplied.

Next topic

This Page

Kane's method forms two expressions, F;,. and F;*, whose sum is zero. In this module, these expressions
Quick search are rearranged into the following form:

oo M(gt)i=f(g,d,u.t)
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Kane’s Method in Physics/Mechanics

Sympy .physics.mechanics provides functionality for deriving

equations of motion using Kane’s method [Kanel985]. With all of the
necessary point velocities and particle masses defined, the KanesMethod

class can be used to derive the equations of motion of the system
automatically.

This method is a subset of the group of methods known as “Lagrange’s form
of D’Alembert’s Principle”. The Newton-Euler equations are multiplied by
‘special vectors’ to develop scalar representations of the forces acting on each
body.
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Thomas R. Kane taught mechanics and computation for 45 years, has published
10 textbooks and 172 technical papers, and is the preeminent expert and
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Kanisms - sayings by Thomas Kane

Kane's 1st theorem - "Nothing is equal to anything."

Kane's 2nd theorem - "Everything is equal to everything else."

"When you're not sure whether you know or not - you don't know."

“Lets go slow - we do not have time to go fast."

"Differential equations come in two kinds, good and bad - and there are no good ones."
“Linear algebra is simply a method of bookkeeping."

"Always keep an extra negative sign in your pocket."

"Avoid differentiation, especially vectors."

Newton's 1st law: "An object moves in a straight line with a constant speed, unless it
doesn't."

"UHT: useful half-truth."

"Your boss doesn't know anything - by definition."

"Always be scared to say anything."

"When in doubt - cheat."

Serdar ARITAN 66




‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Integrate the pendulum
# Step 1: construct the pendulum model

# Generalized coordinates and velocities

# (in this case, angular positions & velocities of each mass)
q = mechanics.dynamicsymbols('q:{0}"'.format(n))

u = mechanics.dynamicsymbols('u:{0}'.format(n))

# mass and length

m = symbols('m:{0}"'.format(n))

l = symbols('1:{0}"'.format(n))

# gravity and time symbols
g, t = symbols('g,t'")
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Integrate the pendulum
# Step 2: build the model using Kane's Method

Create pivot point reference frame
mechanics.ReferenceFrame ('A')
mechanics.Point('P"')

P.set vel (A, 0)

# lists to hold particles, forces, and kinetic ODEs
# for each pendulum in the chain

particles = []

forces = []

kinetic_odes = []

#
A
P

# Generate equations of motion
KM = mechanics.KanesMethod (A, q_ind=q, u_ind=u,
kd _egs=kinetic_odes)

fr, fr star = KM.kanes_equations (forces, particles)
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Integrate the pendulum
# Step 3: numerically evaluate equations and integrate

# initial positions and velocities - assumed to be given in degrees
y0 = np.deg2rad(np.concatenate([np.broadcast_to(initial positions, n),
np.broadcast to(initial velocities, n)]))

# lengths and masses
1f lengths is lNone:
lengths = np.ones(n) / n
lengths = np.broadcast_to(lengths, n)
masses = np.broadcast_ to(masses, n)

# ODE integration
creturn odeint (gradient, y0, times, args=(parameter vals,))
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Integrating the pendulum returns generalized coordinates, which in this case
are the angular position and velocity of each pendulum segment, relative to

vertical.

In order to visualize the pendulum, we need a utility to extract x and vy
coordinates from these angular coordinates

def get xy coords(p, lengths=None):
"""Get (x, y) coordinates from generalized coordinates p"""
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Double Pendulum
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Double Pendulum
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Double Pendulum

LRSS TR

Number of pendulum 2

LRSS TR SRR LT

Matrix ([

[-g*10*mO0*sin(q0(t)) - g*1l0*ml*sin(q0(t))],
[ -g*11*ml*sin(ql(t))]])

Matrix ([

[-10*11*ml* (sin(qg0(t)) *sin(ql(t)) + cos(q0(t))*cos(ql(t)))*Derivative(ul(t), t) + 10*1l*ml*(-
sin(q0(t)) *cos(gql(t)) + sin(ql(t))*cos(gO(t)))*ul(t)**2 - (10**2*m0 +

10**2*m]l) *Derivative (uO(t), t)1],

[ -10*11*ml* (sin(qg0(t)) *sin(gl(t)) + cos(q0(t))*cos(ql(t)))*Derivative(uO(t), t) +
10*11*ml* (sin(q0(t))*cos(ql(t)) - sin(ql(t))*cos(q0(t)))*ul(t)**2 - 1ll**2*ml*Derivative (ul(t),
t)11)

Serdar ARITAN



‘ PHYSICS in COMPUTER ANIMATIONS and GAMES

Triple Pendulum
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Triple Pendulum
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Triple Pendulum
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SRR E R EE R R L LT

Number of pendulum 3

EEE RS R R R R R LT

Matrix ([

[-g*10*mO0*sin(q0(t)) - g*1l0*ml*sin(gO(t)) - g*1l0*m2*sin(qO0(t))],

[ -g*ll*ml*sin(ql(t)) - g*ll*m2*sin(ql(t))],

[ -g*12*m2*sin(q2(t))11])

Matrix ([

[10*11*ml* (-sin (g0 (t))*cos(ql(t)) + sin(gl(t))*cos(qgO0(t)))*ul(t)**2 + 10*11l*m2* (-
sin(g0(t))*cos(gl(t)) + sin(ql(t))*cos(qO0(t)))*ul(t)**2 - 10*12*m2* (sin(qg0(t))*sin(g2(t)) +
cos (g0 (t)) *cos(g2(t))) *Derivative(u2(t), t) + 10*12*m2* (-sin(qg0(t)) *cos(g2(t)) +

sin(gq2(t)) *cos(q0(t))) *u2(t) **2 - (10*11l*ml*(sin(g0(t))*sin(ql(t)) + cos(g0(t))*cos(ql(t))) +
10*11*m2* (sin (g0 (t)) *sin(ql(t)) + cos(qg0(t))*cos(ql(t))))*Derivative(ul(t), t) - (10**2*m0 +
10**2+*m]l + 10**2*m2) *Derivative(ulO(t), t)],

[ 10*11*ml* (sin(g0(t))*cos(ql(t)) - sin(qgl(t))*cos(gO(t)))*ul(t)**2 +
10*11*m2* (sin (g0 (t) ) *cos (gl (t)) - sin(gl(t))*cos(gO(t)))*ul(t)**2 - 11*12*m2* (sin(gl(t))*sin(q2(t))
+ cos(ql(t))*cos(g2(t))) *Derivative (u2(t), t) + 1l1*12*m2* (-sin(ql(t))*cos(g2(t)) +

sin(g2(t)) *cos(ql(t))) *u2(t) **2 - (1l1**2*ml + 11**2*m2) *Derivative(ul(t), t) -

(10*11*ml* (sin(q0(t)) *sin(ql(t)) + cos(q0(t))*cos(qgl(t))) + 10*11l*m2* (sin(qg0(t))*sin(gql(t)) +
cos(q0(t))*cos(ql(t)))) *Derivative(ul(t), t)],

[

-10*12*m2* (sin (g0 (t) ) *sin(g2(t)) + cos(g0(t))*cos(g2(t))) *Derivative(ul(t), t) +
10*12*m2* (sin (g0 (t) ) *cos (g2 (t)) - sin(g2(t))*cos(gO(t)))*ul(t)**2 - 11*12*m2* (sin(gl(t))*sin(q2(t))
+ cos(ql(t))*cos(g2(t))) *Derivative(ul(t), t) + 1l1*12*m2* (sin(ql(t))*cos(q2(t)) -
sin(g2(t))*cos(gl(t))) *ul(t)**2 - 12**2*m2*Derivative(u2(t), t)11)
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Why Pendulum is so important ?
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So We Need To Control! B
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What Is Pid Control?
The Setpoint (SP) is The PID controller looks at
the value that we the Setpoint and compares
want the process it with the actual value of Disturbances(s)
to be the Process Variable (PV).

Setpoint (SP) Process Variable (PV)

PID CONTROLLER PROCESS —

Measured
Process Variable

SENSOR ‘

If the SP and the PV are the same — then the controller is a very
happy little box. It doesn’t have to do anything, it will set its output
to zero. However, if there is a disparity between the SP and the PV
we have an error and corrective action is needed.
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Understanding The Controller?

Calculate control actions
and multiply each by Error

add up all 3

(subtract PV
from SP)
sp ¥ Err¢ Controller
Output
PV
Serdar ARITAN

The PV is subtracted from the SP to create
the Error. The error is simply multiplied by
one, two or all of the calculated P, | and D
actions (depending which ones are turned
on). Then the resulting “error x control
actions” are added together and sent to
the controller output.

These 3 modes are used in different
combinations:

P — Sometimes used
Pl - Most often used

PID — Sometimes used

PD - rare, but it can be useful for
controlling servomotors ???
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Forward Dynamics Without Feedback Control

E.Kavafoglu, S.Aritan (2017) Real-time Physics-based
Motion Control With An Efficient Inverse Dynamics
Method. .MSc Thesis.

Institute of Informatics of Hacettepe University
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4A

Serdar ARITAN 83



6 PHYSICS in COMPUTER ANIMATIONS and GAMES

PD Controllers

1.5 . T
reference signal
— Kp=05
P
Kp=2
1 -
Y ,
"Kp=1 Ki=1 Kd=1
05F .
0 -
| 1 1 | 1 1 | | 1
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& pygame window

PD Controllers
pymunkPD.py
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1] Motion generator

O PD r
@| | Spline ()H— _‘PD
trajectories 1 control

Swing foot y(¢)
a ) e T
2] IP \ Ig Jg

M'Odel b xd’zd= |K

/ ,
Velocity | /'y T

Reaching tuning
goals

R— N
Simulation —

v

T,

Coros, S. Beaudoin, P. van de Panne, M. (2010) Generalized Biped Walking
Control. ACM Transactions on Graphics, Vol. 29, No. 4, Article 130,
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Boston Dynamics

Generalized Biped Walking Control algorithms by Coros , et.al. used for the Agile Anthropomorphic Robot
"Atlas" .
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Controllers in Human
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Controllers in Human

The cart can perform o O
a sequence of moves

to maneuver from
position y=-1.0 to
y=0.0 within 6.2
seconds.

.

start objective

T T T T T T T
-1.50 -1.25 -1.00 -0.75 —-0.50 —0.25 0.00 0.25 0.50
position
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Inverted Pendulum Optimal Control

Verify that v, 8, and q are zero The inverted pendulum is described by the

the velocity of the cart, 0 is the angle of the

pendulum relative to the cart, m1=10, m2=1,

and q is the rate of angle change. Tune the
y—| o controller to minimize the use of force applied
to the cart either in the forward or reverse
direction

before and after the maneuver. following dynamic equations:

!—* y Y] 01 0 0]y 0
| m, ] 100 — O v N 1 u
1 gl |o o o 1]|]|#@ 0
| g | 00 1 0flg -1

sl | . . .
- where u is the force applied to the cart, € is
! , m2/(m1+m2), y is the position of the cart, v is
|
|

VAV A A v v iV A GV A A e
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Inverted Pendulum Optimal Control

There are many methods to implement control including basic strategies such as a
proportional-integral-derivative (PID) controller or more advanced methods such
as model predictive techniques.

Model predictive control (MPC) is a type of control algorithm that is used to control
systems with dynamics. It is a model-based method that uses a predictive model of
the system to compute control actions that optimize a performance criterion over a
finite horizon. The basic idea of MPC is to optimize a control policy that minimizes
the difference between the desired reference signal and the output of the system,
subject to constraints on the control inputs and the states of the system.
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Inverted Pendulum Optimal Control

GEKKO is a Python package for machine learning
GEHHD and optimization of mixed-integer and
DYAAMIC OPTIMI=ATION — differential algebraic equations. It is coupled
with large-scale solvers for linear, quadratic,
nonlinear, and mixed integer programming (LP,
QP, NLP, MILP, MINLP). Modes of operation
include parameter regression, data
reconciliation, real-time optimization, dynamic
simulation, and nonlinear predictive control.

i objective

https://gekko.readthedocs.io/en/latest/
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This collection of 188 nonlinear programing test examples is a supplement of the
test problem collection published by Hock and Schittkowski.

min x1x4(x1 + X2 + xg) + X3

X1X2X3Xy > 25

X12+xZ2+ x32+x42=40

1< X1,X2,X3,X4 <5

xO —-— (11 5» 5» 1)
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from gekko import GEKKO

#Initialize Model

m = GEKKO()

#define parameter

eq = m.Param(value=40)

#initialize variables

x1,x2,x3,x4 = [m.Var(lb=1, ub=5) for i in range(4)]
#initial values

x1l.value =1
x2.value = 5
x3.value = 5
x4 .value =1
#Equations

m.Equation (x1*x2*x3*x4>=25)
m.Equation (x1**2+x2**2+x3**2+x4**2==eq)
#Objective
m.Minimize (x1*x4* (x1+x2+x3) +x3)
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#Set global options
m.options.IMODE = 3 {steady state optimization

. . EXIT: timal Solution Found.
#Solve simulation op

m.solve () The solution was found.

The final value of the objective function is
#Results 17.0140171270735
=3 1 1 -3 (L T e
print ('Results') iiﬁifon time Ii?zzoéggbgzt))lzzzm—ooz sec
print( 'x1l: ' + str(xl.value)) Objective : 17.0140171270735

Successful solution

str(x2.value)) e
str(x3.value)) Results

str(x4.value)) x1: [1.000000057]
x2: [4.74299963]

x3: [3.8211500283]
x4: [1.3794081795]

print('=2: '
print('=3: '
print('=4: '

+ + +
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rename variables
change guess

from gekko import GEKKO

LMport numpy as np

m = GEKKO ()

x = m.Array(m.Var,4,value=1,1b=1,ub=5)
x1,x2,x3,x4 = x #*
x2.value = 5; x3.value = 5 i
m.Equation (np.prod (x) >=25) #

m.Equation(m.sum([xi**2 for xi in
m.Minimize (x1*x4* (x1+x2+x3)+x3) #
m.solve ()
print (x)
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objective
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Press Handstand Performance of the Gymnast

Frame rate: 1000fps
Shutter speed: 1/2000sec

PD_autotune_saturation.avi

Ozgéren, NS. Antan, S. (2016) Evaluating responses of a feedback control system for a multi - link biomechanical model. 8t National
Biomechanics Congress. Ankara.
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PID with MoCap PID with
Kane Dynamics Newton-Euler E.Kavafoglu, S.Aritan (2017) Real-time Physics-based

v Motion Control With An Efficient Inverse Dynamics
"f Method. .MSc Thesis.
t L Institute of Informatics of Hacettepe University
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‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
HOW TO INCLUDE MUSCLES INTO THE MODEL?
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Optimizing Locomotion Controllers Using Biologically-Based

Actuators and Objectives
Wang, JM., Hamner, SR., Delp, SL., Koltun V. from Stanford University

A more biologically faithful force generation mechanism is
needed to generate more human-like motions

Graphics bipeds:
*Controller directly output joint torques

Humans:
*Controller output neural excitation levels to musculotendon units (MTUs)
*MTUs generate forces constrained by muscle physiology
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‘ PHYSICS in COMPUTER ANIMATIONS and GAMES
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Optimization

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives
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Evaluation of Objective

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives
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Changing Muscle Properties

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives
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Walking and Running at a Range of Speeds

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives
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Robustnhess

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives
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Game Engine Architecture

Palicy Man-

Networking

Physics Engine
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Learning to Simulate Dynamic Envi with GameGAN

Learning to Simulate
with GameGAN

Seung Wook Kim
: Yuhao Zhou
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https://research.nvidia.com/labs/toronto-ai/gameGAN/
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Learning to Simulate Dynamic Environments with

GameGAN--
-
Seung Wook Kim 23 Yuhao Zhou 2 Jonah Philion 23 Antonio Torralba* Sanja Fidler 1?
NVIDIA! University of Toronto? Vector Institute? MIT 4
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https://www.latent-technology.com/technology

"Instead of loading the characters
with thousands of hand-crafted
animations, we allow them to decide
their movements in real time."

Our tech:

GENERATIVE
PHYSICS
ANIMATION

« Characters are physics-based.

« Movements are generated by neural networks in
real-time.

« We train them using deep reinforcement

learning and generative modelling techniques.
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On starting Latent Technology

Updated: Feb 7,2023

I'm very excited to announce that we closed a $2.1M pre-seed round led by Root
Ventures and Spark Capital, with participation from gaming fund Bitkraft. We are
excited to grow the team and release the first version of our product, which will
allow game developers to build worlds with unprecedented interactivity and
immersiveness.

This milestone calls for a reflection on our company and our vision.
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https://www.latent-technology.com/
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