
1 of 50

19. Information Architecture

INFO 202 - 31 October 2007

Bob Glushko



2 of 50

Plan for Today's Lecture

Broad and narrow definitions of Information Architecture

Model-based user interfaces

Principles for Information Architecture

Separation of content from structure and presentation

Structuring principles

Reinforcing structure with presentation

Internationalization and localization

User interface design patterns



3 of 50

Defining "Information Architecture" [1]



4 of 50

Defining "Information Architecture" [2]

Most people would include:

Content organization / data modeling

Navigation / interaction design

Some people would also include:

Visual / graphical design

Some even include:

"Experience" design

"Virtual environment" / "mediated realities" design



5 of 50

User Interface Design Idioms (Tidwell)



6 of 50

How Broad a Scope for Information 
Architecture?



7 of 50

Implications of a Broad Scope

The broader the scope of contexts to which "Information Architecture" 
applies, the fewer design principles and methods will apply to all of
them 

Those that apply will necessarily be qualitative and heuristic

Quality designs can emerge, but quality can't always be predicted

There will be little reuse of design patterns or components

Few or none of the design and implementation activities can be 
automated



8 of 50

Methodology for Broadly-scoped IA

Requirements gathering and analysis1.

Development of "personas" -- detailed and personalized depictions of 
exemplars of user types

2.

Prototyping / wireframing with static information sources3.

Iterate these steps until you run out of time or resources

Heuristic evaluation

Usability testing

Revise prototype (incremental addition of functions, features, and "business
rules")

4.

Connect to "live" information sources and deploy5.



9 of 50

Nielsen's Ten Usability Heuristics

Much IA is conducted using qualitative and heuristic guidelines

A classic set is Jakob Nielsen's 
http://www.useit.com/papers/heuristic/heuristic_list.htm

"The system should speak the users' language, with words, phrases and 
concepts familiar to the user"

"Follow real-world conventions, making information appear in a natural and 
logical order"

"Follow platform conventions"

"Dialogues should not contain information which is irrelevant or rarely 
needed"

These are certainly helpful, but they assume significant expertise and 
are not always consistent with each other



10 of 50

A Narrowly-scoped IA? 

Can we narrow the scope of "Information Architecture" to make its 
methods and principles more rigorous and deterministic?

Or, if we only apply rigorous and deterministic methods and principles, 
what is the scope of applications we can apply them to?

==> A narrowly scoped Information Architecture assumes that 
applications exist to enforce some set of rules or constraints about 
information or processes

Designs with this scope and based on these methods and principles 
will presumably be more robust, reusable, and scalable

But will these methods and principles apply to enough contexts to be 
worth learning?



11 of 50

A Narrowly-Scoped IA



12 of 50

Methodology for a Narrowly-Scoped IA [1]

Create information and process models that capture requirements and 
"business rules" in a technology-neutral and robust way

Generate the application (or a "scaffold" for it) from the models

The model can be directly used to generate the software

The model can be interpreted by a generic software platform to configure its
behavior

Some combination of code generation and platform configuration may be 
employed



13 of 50

Methodology for a Narrowly-Scoped IA [2]

Evaluate the model-based application with usability or other *-ility 
techniques

Revise the models as suggested by these evaluations

Regenerate the application from the revised models



14 of 50

Model-Based User Interfaces

User interface design started as a distinct activity in the 1980s, and 
has been dominated by iterative and heuristic techniques ever since

In the 1990s the goal of model-based UIs emerged with the hope that 
automatic generation of window and menu layouts from information 
already present in the application data model can relieve the 
application designer of unnecessary work while providing an 
opportunity to automatically apply style rules to the interface design

Some people starting calling this the search for the Big Red Button, 
and in many cases it involved user interface modeling languages 
(expressed in XML) from which UI code would be generated

The model can be used to generate one or more application / UI 
"templates" and also guide the adaptation of "single source" content to 
make appropriate use of the interaction capabilities of the device or 
context in which it operates



15 of 50

XML and User Interfaces

Custom views of information for different users, devices, or context can
be created by rendering the same XML document with different 
transforms and style sheets

Even if the complete UI cannot be generated in a completely 
automated way, models can generate prototypes, enabling more of the
design space to be examined



16 of 50

XML Vocabularies for Describing User 
Interfaces

Many XML vocabularies for describing user interfaces have been 
developed; they differ in numerous ways but what may ultimately 
matter the most is whether Microsoft (or the "anyone but Microsoft") 
camps support them

XUL - The elements of the XUL vocabulary include standard user interface
components like menus, input controls, dialogs and tree controls, and 
keyboard shortcuts. Used by the Mozilla browser rendering engine called
Gecko

XAML - similar approach by Microsoft 

MXML - in Macromedia / Adobe Flash

Unfortunately, these XML vocabularies describe UIs at the 
presentation layer, not at the information model layer, so they fall short 
of the vision of MBUI 



17 of 50

E-Forms

True model-based UI approaches are most promising for E-Form 
applications (especially those using XForms, a W3C specification)

Countless applications and services use a "fill-in-the-web-form" 
paradigm to automate processes that previously relied on printed forms

Filling out a form is creating a valid instance of the document type, and 
often the application is little more than "Webifying" a document 
interface to a legacy printed or client-server document application

For all but the simplest forms, however, complexity arises in the 
mapping of the logical model to the set of screens needed to collect the
instance



18 of 50

Forms and Workflow Applications



19 of 50

Model Components Reused in Transactions



20 of 50

Component-based User or Application 
Interfaces



21 of 50

Meeting in the Middle

The strongest proponents of MBUI are computer scientists who are 
comfortable with abstract models and techniques for code generation

Many MBUI proponents work in application contexts like mobile 
computing where the UI presentation repertoire is limited

Opponents of the MBUI approach argue that it de-emphasizes usability
concerns and undermines the creative aspect of UI design



22 of 50

Many Small Red Buttons?

How can we "meet in the middle" to build UIs more efficiently with more
predictable quality in UIs without eliminating creativity?

An alternative to the search for the BRB is the goal of partial 
automation for user interface generation:

Tools that generate prototypes from specifications

Tools that synthesize use cases into sequence diagrams

Tools that merge sequence diagrams to hide states that have no UI 
implications

Tools that generate UI skeletons or scaffolds while enforcing layout 
constraints

Tools that generate a family of UIs via "graceful degradation" or "content 
adaptation"

UI Design Patterns



23 of 50

UI and Content Adaptation - Example



24 of 50

Redefining "Information Architecture" [1]

Abstract patterns of information content or structure are sometimes
called architectures

An architecture describes a system's components (or "building blocks")
and their relationships with each other, using hierarchical and 
compositional structure to define the component boundaries

This gives an "architected" system an explicit model, in contrast with 
systems that are implemented incrementally without a master plan or 
without the effort to create reusable abstractions and components

So we define "Information Architecture" by combining the definitions of 
these concepts: 

"IA is designing an abstract and effective organization of information and 
then exposing that organization to facilitate navigation and information use"



25 of 50

Redefining Information Architecture [2]



26 of 50

A Semi-Rigorous Formula for Information 
Architecture

Information Architecture =
(((content + information structure) +
navigation structure) + 
presentation structure) +
+ presentation design 



27 of 50

The Most Important Principle for 
Information Architecture

From the 2nd lecture, "How to Think About Information"

We say "the document is about … the photograph is about… the movie is
about"

We're expressing a distinction between information as conceptual or as
content: and the physical container or medium, format, or technology in
which the information is conveyed

It is very useful to think abstractly about "information content" without
making any assumptions or statements about the "presentation" or
"rendition" or "implementation"

Separating content from its structure and presentation is the most 
important principle of Information Architecture



28 of 50

Three Types of "Stuff" or Kinds of 
Information

Content – "what does it mean" information

Structure
– "where is it" or "how it is organized or assembled" information

Presentation – "how does it look" or "how is it displayed" information



29 of 50

Content Components



30 of 50

Structural Information

Physical piece of a document or user interface (e.g. table, section, 
header, footer, panel, window)

Embodies the rules on how content components fit together, often 
hierarchical

Often driven by context of document use

Most applications and web sites are organized with a small set of 
structures:

Lists/hierarchies

Networks/links



31 of 50

Applying Structure

The structural components provide the hierarchical "skeleton" or 
"scaffold" into which the content components are arranged; the 
structure remains fixed when the content changes

Structural components are often identified by the names attached to
pieces of information – think of the outline or table of contents or lists
of various kinds

Frequently a close relationship between structural and presentation 
items, especially in a paper document. This goes some way to
explaining why the document-centric school places such strong 
emphasis on structural components.



32 of 50

Structure is Independent of Content



33 of 50

Structural Relationships Among 
Components Expressed as a Hierarchy



34 of 50

Lists

Common types of lists in user interfaces and applications:

Lists of objects -- e.g., an inbox full of email messages

Lists of actions or tasks -- e.g., browse, buy, sell, register

Lists of subject categories (or facets) -- e.g, health, science, technology

Lists of tools -- e.g., calendar, address book, notepad



35 of 50

Entry Points

Similar to list structures are "entry points" -- structures that are
"wrapped around" some set of content components to provide an 
organized way to access them

Most familiar examples are tables of contents and topical indexes; 
these are created from the names or other descriptive metadata for 
each component (which might first be extracted by processing the 
component content)

An entry point can be created as a static structure at design time, but 
preferably would be dynamically generated at run time

There are many similar examples of entry point structures generated 
from the names or descriptors of content components (Tables or Lists 
of content of type "X")



36 of 50

Table of Contents as "Entry Point"



37 of 50

Topical Index as "Entry Point"



38 of 50

Structural Relationships Among 
Components Expressed as a Network



39 of 50

Links

Links are relationships between components that can express content 
as well as structural information

A link is represented in a logical model by its: 

Anchors -- the point, region, or span within the components to which it
refers

Type -- the semantics that the link relationship represents; not always 
explicit

Directionality -- is the link one or two-way? Is the relationship meaningful in 
both directions? Does the reverse direction link mean the inverse?

Cardinality -- 1 to 1 to many?



40 of 50

Link Structures



41 of 50

Navigation Structures

Navigation structures support finding or moving between components

Forward or back in some structural organization

Forward or back in a temporal organization (history list) or according to 
other relationships associated with the content components



42 of 50

Presentation Information

Human-oriented attributes for visual (or other sensory) differentiation 
(type font, type size, color, background, indentation, pitch, ...)

Good user interface design correlates this with structural or content 
information

Presentation affects structure and content by applying transformation 
rules to them

Some transform rules are explicit

Some transform rules are implicit or ambiguous or misleading



43 of 50

Binding Structure to Presentation - 
Alternatives



44 of 50

Gestalt Principles to Reinforce Structure



45 of 50

Internationalization

Internationalization is the design of products and services so that they 
can be easily localized for specific languages and cultures 

Many of the architectural and design principles for internationalization 
are specializations of the "mother" principle to separate content from 
presentation:

Leave text outside of graphics

Separate strings/labels from code in scripts

Use variable names that are not words in the scripts



46 of 50

Localization

Localization is the process of adapting the content and applications of 
a product or service to make it acceptable for a particular cultural or 
language market

Translation is the primary localization activity

The ease / automatability of localization depends on the principles and 
techniques used in internationalization



47 of 50

User Interface Design Patterns

A very promising approach to making UI design more efficient, 
systematic and predictable

Patterns are solutions to common UI design problems that embody 
best practices for using structures and presentations for specific types 
of content

You can think of them as a very high level design vocabulary that 
guides designers toward better solutions than they would build if they 
started from less principled and tested starting points

Pattern libraries help even experienced designers, but provide the 
most value for relatively inexperienced ones



48 of 50

The UC Berkeley UIDP Project



49 of 50

The UC Berkeley UIDP Project

I-School '06: Kelly Snow, Mano Marks, Tim Dennis, David Hong

Target audience is UC Berkeley web developers, most of whom lack 
time or formal training in UI design

Very systematic and well-documented project to:

Understand the skills and design practices of intended user community 

Analyze the kinds of applications they build 

Analyze existing pattern collections and "metamodels"

Develop a methodology for developing patterns

Develop 21 patterns in 5 categories (forms, information organization, 
navigation, profile management, and search)

Design and test the user interface to the pattern repository 

Build and deploy the pattern repository



50 of 50

Readings for Lecture #20

Marti Hearst draft of Chapter 2, "Search User Interfaces" for 2nd 
edition of Modern Information Retrieval


