DOK 324: Principles of Information Retrieval

Hacettepe University
Department of Information Management

IR Models: Boolean, Vector Space

Slides taken from Prof. Ray R. Larson, http://www.sims.berkeley.edu

Review: Central Concepts in IR

σ Documents
σ Queries

- Collections
σ Evaluation
- Relevance

Relevance

* "Intuitively, we understand quite well what relevance means. It is a primitive 'y' know' concept, as is information, for which we hardly need a definition. ... if and when any productive contact [in communication] is desired, consciously or not, we involve and use this intuitive notion of relevance."
- Saracevic, 1975 p. 324

Relevance

๙. How relevant is the document

- for this user for this information need.
© Subjective, but
- Measurable to some extent
- How often do people agree a document is relevant to a query
© How well does it answer the question?
- Complete answer? Partial?
- Background Information?
- Hints for further exploration?

Saracevic

σ Relevance is considered as a measure of effectiveness of the contact between a source and a destination in a communications process

- Systems view
- Destinations view
- Subject Literature view
- Subject Knowledge view
- Pertinence
- Pragmatic view

Froehlich

σ Centrality and inadequacy of Topicality as the basis for relevance
σ Suggestions for a synthesis of views

Janes' View

IR Models

σ Set Theoretic Models

- Boolean
- Fuzzy
- Extended Boolean

๘ Vector Models (Algebraic)

- Probabilistic Models (probabilistic)
* Others (e.g., neural networks)

Boolean Model for IR

σ Based on Boolean Logic (Algebra of Sets).
\leftrightarrow Fundamental principles established by George Boole in the 1850's

- Deals with set membership and operations on sets
${ }_{\square}$ Set membership in IR systems is usually based on whether (or not) a document contains a keyword (term)

Boolean Logic

$$
\begin{aligned}
& \hline C=A \\
& C=\bar{A} \\
& C=A \cap B \\
& C=A \cup B \\
& \text { DeMorgan's Law : } \\
& \overline{A \cap B}=\bar{A} \cup \bar{B} \\
& \overline{A \cup B}=\bar{A} \cap \bar{B} \\
& \hline
\end{aligned}
$$

Query Languages

ศ A way to express the query (formal expression of the information need) © Types:

- Boolean
- Natural Language
- Stylized Natural Language
- Form-Based (GUI)

Simple query language: Boolean

๘ Terms + Connectors

- terms
- words
- normalized (stemmed) words
- phrases
- thesaurus terms
- connectors
- AND
- OR
- NOT

Boolean Queries

© Cat
ศ Cat OR Dog

* Cat AND Dog
© (Cat AND Dog)
* (Cat AND Dog) OR Collar
® (Cat AND Dog) OR (Collar AND Leash)
* (Cat OR Dog) AND (Collar OR Leash)

Boolean Queries

* (Cat OR Dog) AND (Collar OR Leash)
 - Each of the following combinations satisfies this statement:

* Cat
 - Dog
 - Collar
 - Leash

Boolean Queries

σ (Cat OR Dog) AND (Collar OR Leash)

- None of the following combinations work:

\author{

- Cat
 - Dog
 ๔ Collar
 ๔- Leash
}

Boolean Searching

Formal Query:
cracks AND beams
AND Width_measurement
AND Prestressed_concrete

Beams

```
Width
measurement
```


Prestressed concrete

Relaxed Query:
(C AND B AND P) OR
(C AND B AND W) OR
(C AND W AND P) OR
(B AND W AND P)

Boolean Logic

Precedence Ordering

©* In what order do we evaluate the components of the Boolean expression?

- Parenthesis get done first
- (a or b) and (c or d)
- (a or (b and c) or d)
- Usually start from the left and work right (in case of ties)
- Usually (if there are no parentheses)
- NOT before AND
- AND before OR

Pseudo-Boolean Queries

© A new notation, from web search
+cat dog +collar leash
These are prefix operators
© Does not mean the same thing as AND/OR!

+ means "mandatory, must be in document"
- means "cannot be in the document"

๔ Phrases:
"stray cat" AND "frayed collar" is equivalent to
+"stray cat" +"frayed collar"

Result Sets

ซ Run a query, get a result set
\odot Two choices

- Reformulate query, run on entire collection
- Reformulate query, run on result set
© Example: Dialog query
- (Redford AND Newman)
- -> S1 1450 documents
- (S1 AND Sundance)
- ->S2 898 documents

Faceted Boolean Query

- Strategy: break query into facets (polysemous with earlier meaning of facets)
- conjunction of disjunctions
$\left\{\begin{array}{l}\text { (a1 OR a2 OR a3) } \\ \text { (b1 OR b2) } \\ \text { (c1 OR c2 OR c3 OR c4) }\end{array}\right\}$ AND
- each facet expresses a topic
(("rain forest" OR jungle OR amazon))
$\left\{\begin{array}{l}\text { (medicine OR remedy OR cure) } \\ \text { (Smith OR Zhou) }\end{array}\right\}$ AND

Ordering of Retrieved Documents

© Pure Boolean has no ordering

- In practice:
- order chronologically
- order by total number of "hits" on query terms
- What if one term has more hits than others?
- Is it better to one of each term or many of one term?
* Fancier methods have been investigated
- p-norm is most famous
- usually impractical to implement
- usually hard for user to understand

Boolean Implementation: Inverted Files

ब We have not yet seen "Vector files" in detail conceptually, an Inverted File is a vector file "inverted" so that rows become columns and columns become rows

docs	$\boldsymbol{t 1}$	$\boldsymbol{t} 2$	$\boldsymbol{t} \mathbf{3}$
D1	1	$\mathbf{0}$	$\mathbf{1}$
D2	1	0	0
D3	0	1	1
D4	1	0	0
D5	1	1	1
D6	1	1	0
D7	0	1	0
D8	0	1	0
D9	0	0	1
D10	0	1	1

Terms	D1	D2	D3	D4	D5	D6	D7		\cdots			
$\boldsymbol{t 1}$		1		1	0		1	1	1	0		
$\boldsymbol{t} 2$		0		0	1		0	1		1	1	
$\boldsymbol{t} 3$		1		0	1		0	1		0	0	

How Are Inverted Files

 Created© Documents are parsed to extract words (or stems) and these are saved with the Document ID.

Doc 1

Now is the time for all good men to come to the aid of their country

Doc 2
It was a dark and stormy night in the country manor. The time was past midnight

Term	Doc \#
now	1
is	1
the	1
time	1
for	1
all	1
good	1
men	1
to	1
come	1
to	1
the	1
aid	1
of	1
their	2
country	2
it	2
was	2
a	2
dark	2
and	2
stormy	2
night	2
in	2
the	2
country	2
manor	2
the	2
time	2
was	2
past	2
midnight	2
	2
	2

How Inverted Files are

Created

σ After all documents have been parsed the inverted file is sorted

Term	Doc \#
now	1
is	1
the	1
time	1
for	1
all	1
good	1
men	1
to	1
come	1
to	1
the	1
aid	1
of	1
their	1
country	1
it	2
was	2
a	2
dark	2
and	2
stormy	2
night	2
in	2
the	2
country	2
manor	2
the	2
time	2
was	2
past	2
midnight	2
	2
	2

Term	Doc \#
a	2
aid	1
all	1
and	2
come	1
country	1
country	2
dark	2
for	1
good	1
in	2
is	1
it	2
manor	2
men	2
midnight	2
night	1
now	1
of	2
past	2
stormy	1
the	1
the	2
the	2
the	1
their	2
time	2
time	2
to	2
to	2
was	2
was	2
	2
	2

How Inverted Files are

Created

- Multiple term entries for a single document are merged and frequency information added

Term	Doc \#
a	2
aid	1
all	1
and	2
come	1
country	1
country	2
dark	2
for	1
good	1
in	2
is	1
it	2
manor	2
men	1
midnight	2
night	2
now	1
of	1
past	2
stormy	2
the	1
the	1
the	2
the	2
their	1
time	1
time	2
to	1
to	1
was	2
was	2

Term	Doc \#	Freq
a	2	1
aid	1	1
all	1	1
and	2	1
come	1	1
country	1	1
country	2	1
dark	2	1
for	1	1
good	1	1
in	2	1
is	2	1
it	2	1
manor	2	1
men	2	1
midnight	1	1
night	1	1
now	2	1
of	2	1
past	1	1
stormy	2	1
the	1	2
the	1	2
their	1	1
time	2	2
time	2	1
to	2	2
was	1	1
	2	1

How Inverted Files are

 Dictionary and a Postings file| | | | Term | N docs | Tot Freq | Doc \# | Freq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term | Doc \# | Freq | a | 1 | 1 | 2 | 1 |
| a | 2 | 1 | aid | 1 | 1 | 1 | 1 |
| aid | 1 | 1 | all | 1 | 1 | 1 | 1 |
| all | 1 | 1 | and | 1 | 1 | 2 | 1 |
| and | 2 | 1 | come | 1 | 1 | 1 | 1 |
| come | 1 | 1 | country | 2 | 2 | 1 | 1 |
| country | 1 | 1 | dark | 1 | 1 | 2 | 1 |
| country | 2 | 1 | for | 1 | 1 | 2 | 1 |
| dark | 2 | 1 | good | 1 | 1 | 1 | 1 |
| for | 1 | 1 | in | 1 | 1 | 1 | 1 |
| good | 1 | 1 | is | 1 | 1 | 2 | 1 |
| in | 2 | 1 | it | 1 | 1 | 1 | 1 |
| is | 1 | 1 | manor | 1 | 1 | 2 | 1 |
| it | 2 | 1 | men | 1 | 1 | 2 | 1 |
| manor | 2 | 1 | midnight | 1 | 1 | 1 | 1 |
| men | 1 | 1 | night | 1 | | 2 | 1 |
| midnight | 2 | 1 | now | 1 | 1 | 2 | 1 |
| night | 2 | 1 | of | 1 | 1 | 1 | 1 |
| now | 1 | 1 | past | 1 | 1 | 1 | 1 |
| of | 1 | 1 | stormy | 1 | 1 | 2 | 1 |
| past | 2 | 1 | the | 2 | 4 | 2 | 1 |
| stormy | 2 | 1 | their | 1 | 1 | 1 | 2 |
| the | 1 | 2 | time | 2 | 2 | 2 | 2 |
| the | 2 | 2 | to | 1 | 2 | 1 | 1 |
| their | 1 | 1 | was | 1 | 2 | 1 | 1 |
| time | 1 | 1 | | | | 2 | 1 |
| time | 2 | 1 | | | | 1 | 2 |
| to | 1 | 2 | | | | 2 | 2 |
| was | 2 | 2 | | | | | |

Boolean AND Algorithm

2
5
7
8
15
29
35
100
135
140
155
189
190
195
198

2	
8	
9	
12	
15	2
22	8
28	15
50	100
68	135
77	155
84	
100	
120	189
128	
135	
138	
141	
150	
155	
188	
189	
195	

Boolean OR Algorithm

2
5
7
8
12
15
22
28
29
35
50
68
77
84
100
120
128
135
138
140
141
150
155
188
189
190
195
198

2
8
9
12
15
22
28
50
68
77
84
100
120
128
135
1381
141
150
155
188
189
195

II

2 5

Boolean AND NOT Algorithm

\author{

2
5
7
8
15
29
35
100
135
140
155
189
190
195
198

}

2	
8	
9	5
12	7
15	29
22	35
28	140
50	
68	190
77	198
84	
100	
120	
128	
135	
138	
141	
150	
155	
188	
189	
195	

Inverted files

๔- Permit fast search for individual terms
© Search results for each term is a list of document IDs (and optionally, frequency and/or positional information)
\odot These lists can be used to solve Boolean queries:

- country: d1, d2
- manor: d2
- country and manor: d2

Boolean Summary

- Advantages
- simple queries are easy to understand
- relatively easy to implement
© Disadvantages
- difficult to specify what is wanted, particularly in complex situations
- too much returned, or too little
- ordering not well determined
- Dominant IR model in commercial systems until the WWW

IR Models: Vector Space

Non-Boolean?

© Need to measure some similarity between the query and the document

- Need to consider the characteristics of the document and the query
- Assumption that similarity of language use between the query and the document implies similarity of topic and hence, potential relevance.

Similarity Measures

$|Q \cap D|$
$2 \frac{|Q \cap D|}{|Q|+|D|}$ $|Q \cap D|$ $|Q \cup D|$ $|Q \cap D|$
$|Q|^{1 / 2} \times|D|^{1 / 2}$ $\mid Q \cap D$
$\min (|Q|,|D|)$

Simple matching (coordination level match)
Dice's Coefficient

Jaccard's Coefficient

Cosine Coefficient

Overlap Coefficient

What form should these take?

Each of the queries and documents might be considered as:

- A set of terms (Boolean approach)
-"index terms"
-"words", stems, etc.
- Some other form?

Vector Representation (see Salton article in Readings)

- Documents and Queries are represented as vectors.
๔ Position 1 corresponds to term 1, position 2 to term 2, position t to term t
* The weight of the term is stored in each position

$$
\begin{aligned}
& D_{i}=w_{d_{i 1}}, w_{d_{i 2}}, \ldots, w_{d_{i t}} \\
& Q=w_{q 1}, w_{q 2}, \ldots, w_{q t} \\
& w=0 \text { if a term is absent }
\end{aligned}
$$

Vector Space Model

- Documents are represented as vectors in term space
- Terms are usually stems or individual words, but may also be phrases, word pairs, etc.
- Documents represented by weighted vectors of terms
* Queries represented the same as documents
- Query and Document weights for retrieval are based on length and direction of their vector
* A vector distance measure between the query and documents is used to rank retrieved documents

Documents in 3D Space

Assumption: Documents that are "close together" in space are similar in meaning.

Vector Space Documents

and Queries

docs	t1	t2	t3	RSV=Q.Di
D1	1	0	1	4
D2	1	0	0	1
D3	0	1	1	5
D4	1	0	0	1
D5	1	1	1	6
D6	1	1	0	3
D7	0	1	0	2
D8	0	1	0	2
D9	0	0	1	3
D10	0	1	1	5
D11	1	0	1	4
Q	$\begin{gathered} 1 \\ \text { q1 } \end{gathered}$	$\begin{gathered} 2 \\ q 2 \end{gathered}$	$\begin{gathered} 3 \\ q 3 \end{gathered}$	

Document Space has High Dimensionality

What happens beyond 2 or 3 dimensions?
© Similarity still has to do with how many tokens are shared in common.

* More terms -> harder to understand which subsets of words are shared among similar documents.
- We will look in detail at ranking methods
\& One approach to handling high dimensionality:Clustering

Word Frequency vs. Resolving Power (from van Rijsbergen 79)

The most frequent words are not the most descriptive.

tf x idf

$$
w_{i k}=t f_{i k} * \log \left(N / n_{k}\right)
$$

$T_{k}=$ term k in document D_{i}
$t f_{i k}=$ frequency of term T_{k} in document D_{i}
idf ${ }_{k}=$ inverse document frequency of term T_{k} in C
$N=$ total number of documents in the collection C
$n_{k}=$ the number of documents in C that contain T_{k}
$i d f_{k}=\log \left(\frac{N}{n_{k}}\right)$

Inverse Document Frequency

- IDF provides high values for rare words and low values for common words
$\log \left(\frac{10000}{10000}\right)=0$
$\log \left(\frac{10000}{5000}\right)=0.301$
$\log \left(\frac{10000}{20}\right)=2.698$
$\log \left(\frac{10000}{1}\right)=4$

tf x idf normalization

* Normalize the term weights (so longer documents are not unfairly given more weight)
- normalize usually means force all values to fall within a certain range, usually between 0 and 1, inclusive.

$$
w_{i k}=\frac{t f_{i k} \log \left(N / n_{k}\right)}{\sqrt{\sum_{k=1}^{t}\left(t f_{i k}\right)^{2}\left[\log \left(N / n_{k}\right)\right]^{2}}}
$$

Assigning Weights to Terms

- Binary Weights
- Raw term frequency
σ tf x idf
- Recall the Zipf distribution (next slide)
- Want to weight terms highly if they are
» frequent in relevant documents ... BUT
- infrequent in the collection as a whole
- Automatically derived thesaurus terms

Zipf Distribution

 (linear and log scale)

Zipf Distribution

๔- The product of the frequency of words (f) and their rank (r) is approximately constant

- Rank = order of words' frequency of occurrence

$$
\begin{aligned}
& f=C * 1 / r \\
& C \cong N / 10
\end{aligned}
$$

* Another way to state this is with an approximately correct rule of thumb:
- Say the most common term occurs C times
- The second most common occurs C/2 times
- The third most common occurs C/3 times

Assigning Weights

\propto tf x idf measure:

- term frequency (tf)
-inverse document frequency (idf) -- a way to deal with the problems of the Zipf distribution
${ }_{\sigma}$ Goal: assign a tf * idf weight to each term in each document

Binary Weights

σ Only the presence (1) or absence (0) of a term is included in the vector

docs	$\boldsymbol{t} 1$	$t 2$	$t 3$
D1	1	0	1
D2	1	0	0
D3	0	1	1
D4	1	0	0
D5	1	1	1
D6	1	1	0
D7	0	1	0
D8	0	1	0
D9	0	0	1
D10	0	1	1
D11	1	0	1

Raw Term Weights

*The frequency of occurrence for the term in each document is included in the vector

docs	$\boldsymbol{t} 1$	t2	$\boldsymbol{t} 3$
D1	2	0	3
D2	$\mathbf{1}$	0	0
D3	$\mathbf{0}$	4	7
D4	3	0	0
D5	1	6	3
D6	3	5	0
D7	$\mathbf{0}$	8	0
D8	$\mathbf{0}$	10	0
D9	$\mathbf{0}$	0	1
D10	$\mathbf{0}$	3	5
D11	4	0	1

Vector space similarity (use the weights to compare the documents)

Now, the similarity of two documents is :

$$
\operatorname{sim}\left(D_{i}, D_{j}\right)=\sum_{k=1}^{t} w_{i k} * w_{j k}
$$

This is also called the cosine, or normalized inner product. (Normalization was done when weighting the terms.)

Vector Space Similarity Measure

$D_{i}=w_{d_{i 1}}, w_{d_{i 2}}, \ldots, w_{d_{i t}}$
$Q=w_{q 1}, w_{q 2}, \cdots, w_{q t}$ $w=0$ if a term is absent
if term weights normalized: $\quad \operatorname{sim}\left(Q, D_{i}\right)=\sum_{j=1}^{t} w_{q j} * w_{d_{i j}}$
otherwise normalize in the similarity comparison :

$$
\operatorname{sim}\left(Q, D_{i}\right)=\frac{\sum_{j=1}^{t} w_{q j} * w_{d_{i j}}}{\sqrt{\sum_{j=1}^{t}\left(w_{q j}\right)^{2} * \sum_{j=1}^{t}\left(w_{d_{i j}}\right)^{2}}}
$$

Computing Cosine Similarity

 Scores

What's Cosine anyway?

One of the basic trigonometric functions encountered in trigonometry. Let theta be an angle measured counterclockwise from the x-axis along the arc of the unit circle. Then cos(theta) is the horizontal coordinate of the arc endpoint. As a result of this definition, the cosine function is periodic with period 2pi.

Cosine Detail (degrees)

Computing a similarity score

Say we have query vector $Q=(0.4,0.8)$
Also, document $D_{2}=(0.2,0.7)$
What does their similarity comparison yield?

$$
\begin{aligned}
\operatorname{sim}\left(Q, D_{2}\right) & =\frac{(0.4 * 0.2)+(0.8 * 0.7)}{\sqrt{\left[(0.4)^{2}+(0.8)^{2}\right] *\left[(0.2)^{2}+(0.7)^{2}\right]}} \\
& =\frac{0.64}{\sqrt{0.42}}=0.98
\end{aligned}
$$

Vector Space with Term

Weights and Cosine Matching

Term B

$$
\mathrm{D}_{\mathrm{i}}=\left(d_{i 1}, w_{d i} ; d_{i 2}, w_{d i 2} ; \ldots ; d_{i t}, w_{d i t}\right)
$$

$$
\mathrm{Q}=\left(q_{i 1}, w_{q i 1} ; q_{i 2}, w_{q i 2} ; \ldots ; q_{i t}, w_{q i t}\right)
$$

$$
\operatorname{sim}\left(Q, D_{i}\right)=\frac{\sum_{j=1}^{t} w_{q_{j}} w_{d_{i j}}}{\sqrt{\sum_{j=1}^{t}\left(w_{q_{j}}\right)^{2} \sum_{j=1}^{t}\left(w_{d_{i j}}\right)^{2}}}
$$

$$
\begin{aligned}
\operatorname{sim}(Q, D 2) & =\frac{(0.4 \cdot 0.2)+(0.8 \cdot 0.7)}{\sqrt{\left[(0.4)^{2}+(0.8)^{2}\right] \cdot\left[(0.2)^{2}+(0.7)^{2}\right]}} \\
& =\frac{0.64}{\sqrt{0.42}}=0.98
\end{aligned}
$$

$$
\operatorname{sim}\left(Q, D_{1}\right)=\frac{.56}{\sqrt{0.58}}=0.74
$$

Weighting schemes

σ We have seen something of

- Binary
- Raw term weights
- TF*IDF

ศ There are many other possibilities

- IDF alone
- Normalized term frequency

