

Content Analysis & Stemming

Note: Slides are taken from Prof. Ray Larson's web site (www.sims.berkeley.edu/~ray/

Yaşar Tonta

Hacettepe Üniversitesi tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/ .

DOK324/BBY220 Bilgi Erişim İlkeleri

Content Analysis

- Automated Transformation of raw text into a form that represent some aspect(s) of its meaning
- Including, but not limited to:
 - Automated Thesaurus Generation
 - Phrase Detection
 - Categorization
 - Clustering
 - Summarization

Techniques for Content Analysis

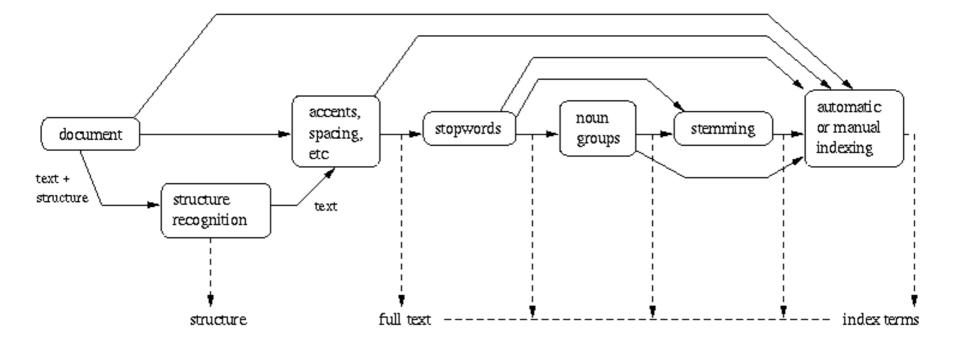
- Statistical
 - Single Document
 - Full Collection
- Linguistic
 - Syntactic
 - Semantic
 - Pragmatic
- Knowledge-Based (Artificial Intelligence)
- Hybrid (Combinations)

Text Processing

h

- Standard Steps:
 - Recognize document structure
 - titles, sections, paragraphs, etc.
 - Break into tokens
 - usually space and punctuation delineated
 - special issues with Asian languages
 - Stemming/morphological analysis
 - Store in inverted index (to be discussed later)

Document Processing Steps

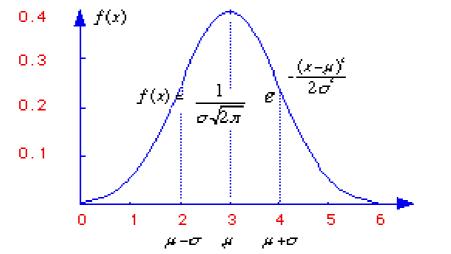


Stemming and

- Goal: "normalize" similar words
- Morphology ("form" of words)
 - Inflectional Morphology
 - E.g,. inflect verb endings and noun number
 - Never change grammatical class
 - dog, dogs
 - tengo, tienes, tiene, tenemos, tienen
 - Derivational Morphology
 - Derive one word from another,
 - Often change grammatical class
 - build, building; health, healthy

Statistical Properties of Text

- Token occurrences in text are not uniformly distributed
- They are also not normally distributed



• They do exhibit a Zipf distribution

Plotting Word Frequency by Rank

- Main idea: count
 - How many tokens occur 1 time
 - How many tokens occur 2 times
 - How many tokens occur 3 times ...
- Now rank these according to how of they occur. This is called the rank.

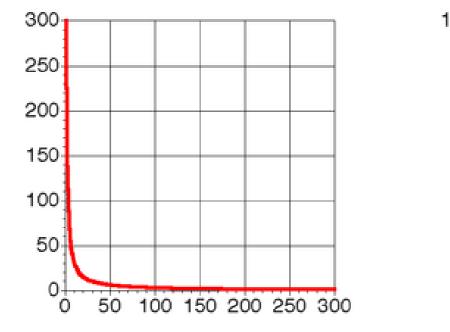
Plotting Word Frequency by Rank

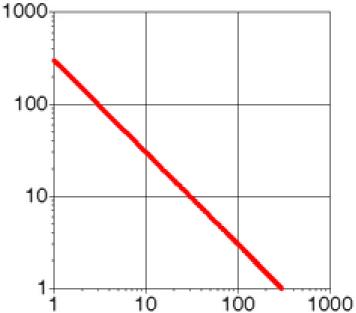
h

- Say for a text with 100 tokens
- Count
 - How many tokens occur 1 time (50)
 - How many tokens occur 2 times (20) ...
 - How many tokens occur 7 times (10) ...
 - How many tokens occur 12 times (1)
 - How many tokens occur 14 times (1)
- So things that occur the most often share the highest rank (rank 1).
- Things that occur the fewest times have the lowest rank (rank n).

- Words in a text collection
- Library book checkout patterns
- Bradford's and Lotka's laws.
- Incoming Web Page Requests (Nielsen)
- Outgoing Web Page Requests (Cunha & Crovella)
- Document Size on Web (Cunha & Crovella)

Zipf Distribution (linear and log scale)





Zipf Distribution

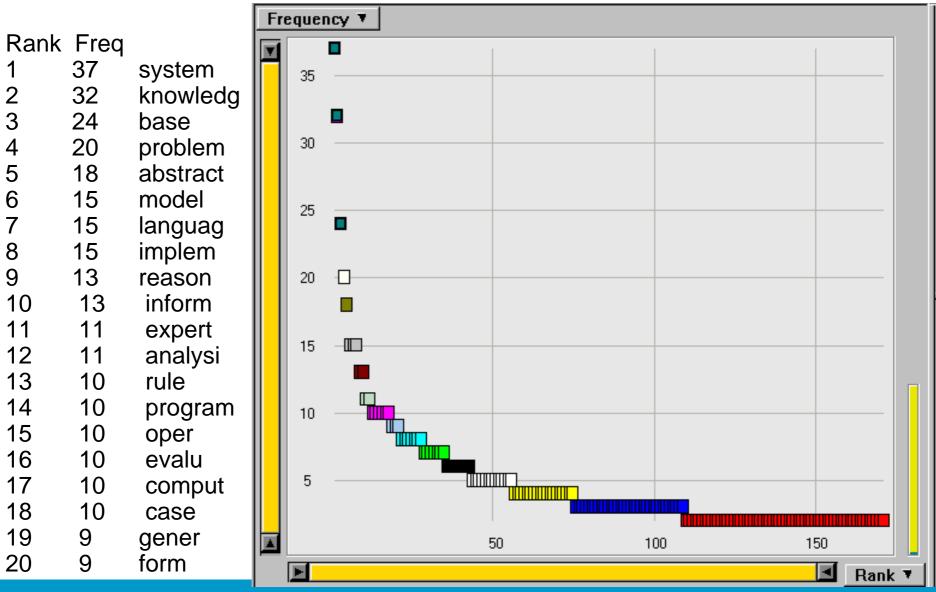
- The product of the frequency of words (f) and their rank (r) is approximately constant
 - Rank = order of words' frequency of occurrence

$$f = C * 1/r$$
$$C \cong N/10$$

- Another way to state this is with an approximately correct rule of thumb:
 - Say the most common term occurs C times
 - The second most common occurs C/2 times
 - The third most common occurs C/3 times

— ...

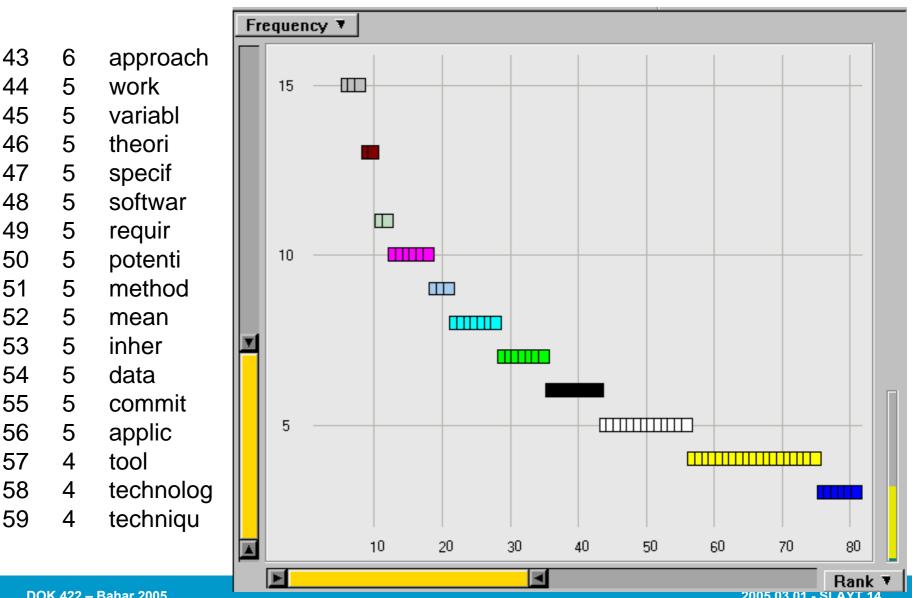
The Corresponding Zipf Curve



DOK 422 – Bahar 2005

2005.03.01 - SLAYT 13

Zoom in on the Knee of the Curve



DOK 422 – Bahar 2005

2005.03.01 - SLAYT 14

- The Important Points:
 - a few elements occur very frequently
 - a medium number of elements have medium frequency
 - many elements occur very infrequently

Rank

Most and Least Frequent Terms

Freq	Term			
37	system	150	2	enhanc
32	knowledg	151	2	energi
24	base	152	2	emphasi
20	problem	153	2	detect
18	abstract	154	2	desir
15	model	155	2	date
15	languag	155	$\frac{2}{2}$	critic
15	implem			
13	reason	157	2	content
13	inform	158	2	consider
11	expert	159	2	concern
11	analysi	160	2	compon
10	rule	161	2	compar
10	program	162	2	commerci
10	oper	163	2	clause
10	evalu			
10	comput	164	2	aspect
10	case	165	2	area
9	gener	166	2	aim
9	form	167	2	affect

Government documents, 157734 tokens, 32259 unique

8164 the	969 on	1 ABC
4771 of	915 FT	1 ABFT
4005 to	883 Mr	1 ABOUT
2834 a	860 was	1 ACFT
2827 and	855 be	1 ACI
2802 in	849 Pounds	1 ACQUI
1592 The	798 TEXT	1 ACQUISITIONS
1370 for	798 PUB	1 ACSIS
1326 is	798 PROFILE	1 ADFT
1324 s	798 PAGE	1 ADVISERS
1194 that	798 HEADLINE	1 AE
973 by	798 DOCNO	

Housing Listing Frequency Data

6208 tokens, Bin Frequency 1 295 6.72 216 12.44 28 18.16 7 23.88 29 29.6 7 35.32 10 41.04 7 46.76 14 52.48 2 58.2 26 63.92 9 69.64 1 75.36 1

0

2

0

0

0

0

0

1

1

1

0

1

81.08

86.8

92.52

98.24

103.96

109.68

115.4

121.12

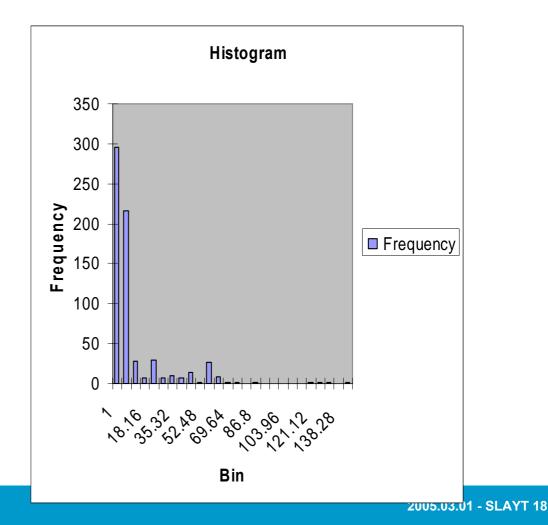
126.84

132.56

138.28

More

1318 unique (very small collection)



DOK

Very frequent word stems

WORD	FREQ	
u	63245	
ha	65470	
california	67251	
m	67903	
1998	68662	
system	69345	
t	70014	
about	70923	
servic	71822	
work	71958	
home	72131	
other	72726	
research	74264	
1997	75323	
can	76762	
next	77973	
your	78489	
all	79993	
public	81427	
us	82551	
С	83250	
WWW	87029	
wa	92384	
program	95260	

100204
100696
101034
103698
104635
105183
106463
109700
115937
119428
128702
141542
147440
162499
167298
185162
189334
189347
190635
223851
227311
234467
245406
272123
280966
305834

DOK 422 - Bahar 2005

2005.03.01 - SLAYT 19

Words that occur few times

WORD	FREQ
agenda augu	1
an electronic	1
center janu	
packard equi	
system july	
systems cs1	
today mcb	1
workshops fi	1
workshops th	
lollini	1
0+	1
0	1
00summary	1
35816	1
35823	1
01d	1
35830	1
35837	1
02-156-10	1
35844	1
35851	1
02aframst	1
311	1
313	1
03agenvchm	1
401	1

408

408	1
422	1
424	1
429	1
04agrcecon	1
04cklist	1
05-128-10	1
501	1
506	1
05amstud	1
06anhist	1
07-149	1
07-800-80	1
07anthro	1
08apst	1

DOK 422 – Bahar 2005

2005.03.01 - SLAYT 20

The most frequent words are not the most descriptive.

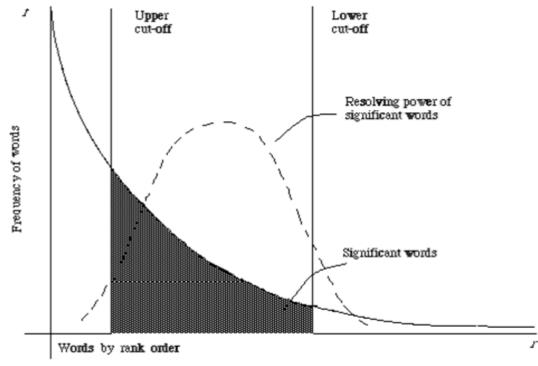


Figure 2.1. A plot of the hyperbolic curve relating f, the frequency of occurrence and r, the rank order (Adaped from Schultz⁴⁴page 120)

Stemming and

- Goal: "normalize" similar words
- Morphology ("form" of words)
 - Inflectional Morphology
 - E.g,. inflect verb endings and noun number
 - Never change grammatical class
 - dog, dogs
 - tengo, tienes, tiene, tenemos, tienen
 - Derivational Morphology
 - Derive one word from another,
 - Often change grammatical class
 - build, building; health, healthy

 IF a word ends in "ies", but not "eies" or "aies"

-THEN "ies" → "y"

- IF a word ends in "es", but not "aes", "ees", or "oes"
 - -THEN "es"→ "e"
- IF a word ends in "s", but not "us" or "ss"
 THEN "s" → NULL

Errors Generated by Porter Stemmer (Krovetz 93)

Too Aggressive	Too Timid
organization/organ	european/europe
policy/police	cylinder/cylindrical
execute/executive	create/creation
arm/army	search/searcher

Automated Methods

• Stemmers:

- Very dumb rules work well (for English)
- Porter Stemmer: Iteratively remove suffixes
- Improvement: pass results through a lexicon
- Powerful multilingual tools exist for morphological analysis
 - PCKimmo, Xerox Lexical technology
 - Require a grammar and dictionary
 - Use "two-level" automata
 - Wordnet "morpher"

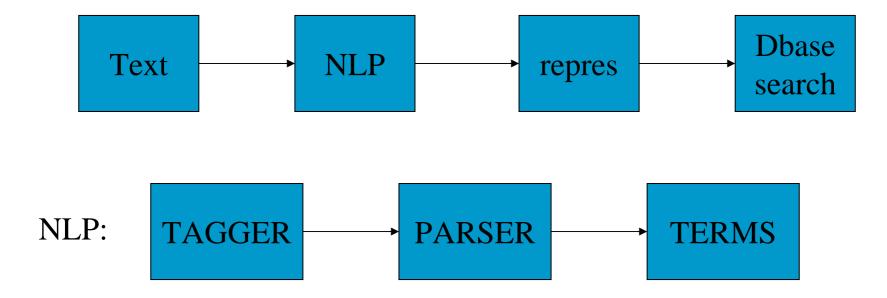
Wordnet

- Type "wn word" on irony.
- Large exception dictionary:
- Demo

aardwolves aardwolf abaci abacus abacuses abacus abbacies abbacy abhenries abhenry abilities ability abkhaz abkhaz abnormalities abnormality aboideaus aboideau aboideaux aboideau aboiteaus aboiteau aboiteaux aboiteau abos abo abscissae abscissa abscissas abscissa absurdities absurdity

Using NLP

• Strzalkowski (in Reader)



INPUT SENTENCE

The former Soviet President has been a local hero ever since a Russian tank invaded Wisconsin.

TAGGED SENTENCE

The/dt former/jj Soviet/jj President/nn has/vbz been/vbn a/dt local/jj hero/nn ever/rb since/in a/dt Russian/jj tank/nn invaded/vbd Wisconsin/np ./per

TAGGED & STEMMED SENTENCE

the/dt former/jj soviet/jj president/nn have/vbz be/vbn a/dt local/jj hero/nn ever/rb since/in a/dt russian/jj tank/nn invade/vbd wisconsin/np ./per PARSED SENTENCE

assert [[perf [have]][[verb[BE]] [subject [np[n PRESIDENT][t_pos THE] [adj[FORMER]][adj[SOVIET]]]] [adv EVER] [sub_ord[SINCE [[verb[INVADE]]] [subject [np [n TANK][t_pos A] [adj [RUSSIAN]]]] [object [np [name [WISCONSIN]]]]]]

EXTRACTED TERMS & WEIGHTS

President	2.623519	soviet	5.416102
President+soviet	11.556747	president+former	14.594883
Hero	7.896426	hero+local	14.314775
Invade	8.435012	tank	6.848128
Tank+invade	17.402237	tank+russian	16.030809
Russian	7.383342	wisconsin	7.785689

Other Considerations

- h
- Church (SIGIR 1995) looked at correlations between forms of words in texts

	hostages	null
hostage	619(a)	479(b)
null	648(c)	78223(d)

Assumptions in IR

- Statistical independence of terms
- Dependence approximations

Two events x and y are statistically independent if the product of their probability of their happening individually equals their probability of happening together.

P(x)P(y) = P(x, y)

Statistical Independence and Dependence

• What are examples of things that are statistically independent?

• What are examples of things that are statistically dependent?

Statistical Independence vs. Statistical Dependence

 How likely is a red car to drive by given we've seen a black one?



- How likely is the word "ambulence" to appear, given that we've seen "car accident"?
- Color of cars driving by are independent (although more frequent colors are more likely)
- Words in text are not independent (although again more frequent words are more likely)

Lexical Associations

- Subjects write first word that comes to mind
 doctor/nurse; black/white (Palermo & Jenkins 64)
- Text Corpora yield similar associations
- One measure: Mutual Information (Church and Hanks 89)

$$I(x, y) = \log_2 \frac{P(x, y)}{P(x), P(y)}$$

 If word occurrences were independent, the numerator and denominator would be equal (if measured across a large collection)

<i>l(x,y)</i> 11.3	f(x,y) 12	f(x) 111	<i>X</i> Honorary	f(y) 621	<i>y</i> Doctor
11.3	8	1105	Doctors	44	Dentists
10.7	30	1105	Doctors	241	Nurses
9.4	8	1105	Doctors	154	Treating
9.0	6	275	Examined	621	Doctor
8.9	11	1105	Doctors	317	Treat
8.7	25	621	Doctor	1407	Bills

<i>l(x,y)</i> 0.96	f(x,y) 6	<i>f(x)</i> 621	X doctor	f(y) 73785	y with
0.95	41	284690	а	1105	doctors
0.93	12	84716	is	1105	doctors

These associations were likely to happen because the non-doctor words shown here are very common and therefore likely to co-occur with any noun.