SPSS 15.0 Veri Analiz Yöntemleri

U. Erman EYMEN

**Bu e-kitap <u>www.istatistikmerkezi.com</u> adresinden ücretsiz olarak indirilebilir.

PROFESYONEL YARDIM

- Anket Tasarımı,
- Veri Analizi,
- Tezlerinizin Araştırma Bölümlerinin Hazırlanması,
- Tez Önerisinin Hazırlanması

konularında U.Erman EYMEN*'den profesyonel yardım almak için;

<u>www.istatistikmerkezi.com</u> adresi "Bize Ulaşın" menüsünü kullanarak bizimle irtibat kurabilirsiniz.

SPSS Kullanma Kılavuzu U. Erman Eymen İstatistik Merkezi Yayın No: 1 Ekim 2007

Tüm hakları yazarına aittir. Kitap tüm sayfaları elektronik ortamda tescillenmiştir. Kitabın içeriği, resimleri/logoları, yazar ve yayın bilgilerinde üzerinde değişiklik yapılamaz.

Kitap sayfa sınırlaması olmaksızın çoğaltılabilir. Kişisel web sitelerine ziyaretçilerin indirebilmeleri amacıyla yüklenebilir. Ancak hiçbir şekilde ticari amaçlarla kullanılamaz.

Kitabı yukarıda açıklanan kapsamın dışında kullananlar hakkında 5846 sayılı Fikir ve Sanat Eserleri Kanununun hükümleri doğrultusunda işlem başlatılacaktır.

^{*} U. Erman EYMEN İstatistik Merkezi® direktörüdür.

İstatistik Merkezi Hakkında

İstatistik Merkezi; akademisyen ve öğrencilere yapacakları bilimsel çalışmalara destek olmak, bilimsel çalışmaları sırasında karşılaştıkları problemlere çözüm getirmek ve bilgi alışverişini kolaylaştırmak için oluşturulmuş bir iletişim portalıdır.

Bu kapsamda İstatistik Merkezi tarafından yapılan çalışmalar aşağıda özetlenmiştir;

- Bilimsel araştırmaların alt yapısının oluşturulması (Tez / araştırma önerilerinin hazırlanması),
- Bilgi toplama aracının (anket, görüşme formu) hazırlanması,
- Araştırma planının oluşturulması,
- Verilerin analizi ve yorumlanması,

 Araştırma raporunun hazırlanması (tezler/makalelerin araştırma bölümleri)

• Veri analizi ve anket tasarımı eğitimleri.

Misyonumuz

Bilgi ve birikimleri bir araya getirmek, beraber üretmenin ve paylaşmanın hazzını yaşamaktır.

Vizyonumuz

İstatistiğin bilimsel çalışmalarda doğru kullanımına uzmanlığımız ve etkinliğimiz ile liderlik etmektir.

İlkelerimiz

Bilgi ve deneyimin paylaşıldıkça çoğaldığına inanır, sağladığımız hizmetin kalitesinden ödün vermeyiz. Her bir talebi proje anlayışı ile alarak hizmette bütünsellik sağlarız.

İçindekiler

İstatistik Merkezi Hakkında3
İçindekiler 4
Genel Bakış5
Değişkenlerin Yeniden Kodlanması ve Hesaplanması 22
Diyagram ve Grafikler 49
Çapraz Tablolar62
Örnek Seçimi 67
Güvenilirlik Analizi
Faktör Analizi
Uygun Analiz Türünün Belirlenmesi
Regresyon ve Korelasyon Analizi
T – Testi 104
Varyans Analizi 117
Ki-Kare Testi 142

Tirtzz bize bzrakzn,

Siz kelebekle ilgilenin...

istatistik @merkezi

www.istatistikmerkezi.com

Genel Bakış

Bu kitap, bir istatistik ya da araştırma yöntemleri dersini desteklemek ya da yapılacak bir bilimsel araştırma verilerini analiz etmek için tek başına rehber olarak kullanılabilir. Kitapta kullanılan resim ve direktifler, SPSS'in 2007 yılında piyasaya sürülen 15.0 sürümünden alınmıştır.

Kitapta pek çok araştırmacı tarafından zor olarak nitelendirilen istatistiksel analiz konusu basit bir dille anlatılmaya çalışılmıştır. Bunun için her bir açıklama sonrasında ilgili SPSS uygulamalarına ait sayfa görünümleri verilmiştir.

SPSS yazılımı birkaç farklı bilgisayar dosyası ile birlikte çalışmaktadır: Veri dosyaları, çıktı dosyaları ve sözdizimi (sentaks) dosyaları. Veri dosyaları, kullanıcının istatistiksel olarak analiz etmeyi istediği bilgileri içeren bilgisayar dosyalarıdır. Çıktı dosyaları istatistiksel analizleri ve genellikle tabloları, grafikleri ve/veya çizelgeleri içerir. Sözdizimi dosyaları, SPSS yazılımına ne yapması gerektiğini söyleyen bilgisayar talimatlarıdır. Sözdizimi dosyaları, SPSS yazılımının öğrenci sürümünde kullanılmaz ve bu dosyalar kitabın 9. Bölümünde bir ileri uygulama olarak ele alınmıştır. SPSS'de veri dosyaları ".sav" çıktı dosyaları ".spo", sözdizimi doyaları ise ".sps" uzantısına sahiptir.

Mevcut Veri Dosyalarının Açılması

Hâlihazırda sahip olduğunuz ya da edindiğiniz bir SPSS dosyasını açmak için, "File" mönüsünü sonra sırasıyla "Open" ve "Data"yı seçin.

Open Data						×
Konum:	389-Meslei	ki-Kisisel		• 0	1 📁 🛄 🕇	
Son Yerler	Ad	Değiştirme	Tür	Boyut	Etiketler	3755
HP Bilgisəyər	anket		Süvenilirlik	0	grenci	Ogretmen
	Dosya Adı:	Güvenlirlik			2	- Aç
	Dosya turu:	SPSS ("sav	1			Paste Iptal

FILE » OPEN » DATA

Diğer dosya türleri için, SPSS dışı dosya formatlarından veri almaya ilişkin kısma bakınız. Bu noktada, açmak istediğiniz veri dosyasının yerini belirlemek için disk sürücülerini (ya da ağ sürücülerini veya başka türde depolama aygıtlarını) taramanız gerekecektir.

Dosyanın yerini belirledikten sonra ya dosyanın üzerine çift tıklayın ya da bir kez tıklayıp "Open File" iletişim kutusunun sağ alt tarafındaki "Open" bölümüne basın. SPSS, veri dosyasını açacaktır ve bilgiler, çalışma sayfası formatında size sunulacaktır.

Bu ekranda "Veri Görünümü (Data View)" ve "Değişken Görünümü (Variable View)" olmak üzere iki farklı sekme göreceksiniz. Şimdi "Data View" sekmesini tıklayınız.

	- u -	CP 800 12	PA 11		112 10 10		
: \$2			3				
	Cinsiyet	Kardes	Gelir	AnneEgt	BabaEgt	Dusunce	S1
1	1,00	5,00	2,00	2,00	2.00	1,00	4,00
2	1,00	3,00	4,00	2,00	3,00	1,00	2,00
3	2,00	2,00	1,00	4,00	3,00	1,00	3,00
4	2,00	2,00	2,00	2,00	2,00	1,00	1,00
5	2,00	5,00	3,00	2,00	3,00	3,00	3,00
6	2,00	3,00	2.00	2,00	2.00	3,00	4,00
7	1,00	5,00	2,00	2,00	2,00	1,00	3,00
8	1,00	4,00	4,00	3,00	3,00	1,00	5,00
9	1,00	2,00	2,00	2,00	2,00	1,00	4,00
10	2,00	2,00	3,00	2,00	2,00	1,00	3,00
11	2,00	2,00	4,00	3,00	4,00	1,00	4,00
12 > \\Da	1.00 ta View X Va	3.00	3.00	2.00	5,00	1.00	4,00

Şekilde de görüldüğü gibi sütunlarda Cinsiyet, Kardeş Sayısı, Gelir Düzeyi, Annenin Eğitim Durumu, Babanın Eğitim Durumu ve Anket Sorularından oluşan değişkenler, satırlarda ise bu değişkenlere her bir katılımcının verdiği cevaplar yer almaktadır. Daha açık bir ifade örneğin elinizde bir anket sonuçları varsa, her bir sütun bir soruyu, her bir satır ise bir katılımcıyı temsil edecektir. Bu kapsamda ilk cevaplayıcının verileri birinci satıra, ikinci cevaplayıcının verilerini ikinci satıra, daha sonraki cevaplayıcıların verilerini ise ilerleyen satırlara girmeniz gerekmektedir.

	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Mea
1	Cinsiyet	Numeric	8	2	Cinsiyet	{1.00, Ki	None	8	Right	Nom
2	Kardes	Numeric	8	2	Kardes S	{1.00, Ka	None	8	Right	Nom
3	Gelir	Numeric	8	2	Ailenin Or	{1,00, 38	None	8	Right	Ordin
4	AnneEgt	Numeric	8	2	Annenin	{1.00, Ok	None	8	Right	Ordin
5	BabaEgt	Numeric	8	2	Babanin	{1,00, Ok	None	8	Right	Ordin
6	Dusunce	Numeric	8	2	Üniversite	{1,00, Ev	None	8	Right	Ordin
7	S1	Numeric	8	2	Okudugu	{1,00, Ke	None	8	Right	Scal
8	S2	Numeric	8	2	Okudugu	{1,00, Ke	None	8	Right	Scal
9	S3	Numeric	8	2	Okulumu	{1,00, Ke	None	8	Right	Scal
10	S4	Numeric	8	2	Okul idar	{1,00, Ke	None	8	Right	Scal
11	S5	Numeric	8	2	Ögretmen	{1,00, Ke	None	8	Right	Scal
12	S6	Numeric	8	2	Ögretmen	{1,00, Ke	None	8	Right	Scal
13	S7	Numeric	8	2	Okul atöl	{1,00, Ke	None	8	Right	Scal
14	S8	Numeric	8	2	Isletmede	{1,00, Ke	None	8	Right	Scal
15	S9	Numeric	8	2	Sinifin ba	{1,00, Ke	None	8	Right	Scal
16	S10	Numeric	8	2	Sinif mev	{1,00, Ke	None	8	Right	Scal
17	S11	Numeric	8	2	Sinifin fizi	{1,00, Ke	None	8	Right	Scal
18	S12	Numeric	8	2	Meslek li	{1,00, Ke	None	8	Right	Scal
19	S13	Numeric	8	2	Meslek li	{1,00, Ke	None	8	Right	Scal
20	S14	Numeric	8	2	Mesleki d	{1,00, Ke	None	8	Right	Scal
21	S15	Numeric	8	2	Atölve de	{1.00. Ke	None	8	Right	Scal

Şimdi "Variable View" sekmesine tıklayın. Karşınıza yıkarıdaki görüntü gelecektir. Bilgilerin farklı görünmesine karşın hâlâ aynı veri dosyasına bakıyorsunuz.

Bu ekranda ise değişkenlerin türü, etiketi, değerleri, kayıp veri içerip içermeme durumu gibi bilgiler içermektedir. Bu bölümde yer alan bilgileri bu ekran üzerinden değiştirebilir ve silebilirsiniz. Burada yaptığınız düzenlemeler "Çıktı" (Output) dosyalarındaki tablo ve grafiklerin etiketlerini ve değerlere ait tanımları etkileyecektir.

Farklı Dosya Formatlarından Veri Almak

Zaman zaman SPSS yazılımı tarafından oluşturulmamış ya da formatlanmamış verileri analiz etme gereği duyabilirsiniz. Bu dosyalar başka istatistiksel yazılım paketleri (örn. SAS) ya da başka rakamsal program türleri (örn. Microsoft Excel) tarafından oluşturulmuş olabilir. Bu dosyaları açmak için, ilk önce bir SPSS veri dosyasını açarken yaptığınız işlemi tekrarlayın.

FILE » OPEN » DATA

Şimdi iletişim kutusunun altında yer alan "Files of type"da, seçenekleri genişletmek için sağ taraftaki oka tıklayın. Daha sonra "Excel (*.xls)" ibaresini seçin. Dosyanızı bulmak için sabit disk sürücünüzü, diğer sürücülerinizi ya da diğer yerleri taramanız gerekecek.

	퉬 184-Çoklu 2	Zeka	•	G 🗊 📁 🕻		
Son Yerler	Ad	Değiştirme tarihi	Tür	Boyut	Etiketler	
Masaüstü	Bilgiler	Orr	nek	Ayırdedicilik	Veriler	
Bilgisayar						
-						
~y						
ny	Dosya Adı:	Ayırdedicilik			•	Aç

Bu işlemleri tamamladıktan sonra kullanacağınız dosyayı seçin "Aç" butonunu tıklayın. Bu noktada yeni bir iletişim kutusu ile karşılaşacaksınız.

C:\Users\HP\Documents\Akademik I\04 Zeka\Ayırdedicilik xls	DK\184-Çoklu
Read variable names from the first row Worksheet: K1 [A1:Al239]	of data.
Range:	
Maximum width for string columns:	32767
OK Cancel	Help

Microsoft Excel dosyasındaki sütun başlıkları değişkenlerin adlarını taşıyorsa, o zaman "ilk veri sırasından değişken isimlerini okumayı" isteyip istemediğinizi soran kutunun seçildiğinden emin olun. Eğer sütun başlıkları SPSS'in değişken adlandırma uygulamalarına uygun olmayan bir biçimde formatlanmışsa, bu durumda bu başlıklar izin verilen değişken adlarına dönüştürülecek ve orijinal adlar değişken etiketleri olarak kaydedilecektir.

Excel dosyasının yalnızca bir bölümünü almak için, verileri almak istediğiniz hücre aralığını girin.

Ayrıca veri tabanlarından, metin dosyalarından ve başka kaynaklardan veri almak mümkündür. Seçtiğiniz dosya türü ile ilgili olan talimatlar dışında, Excel dosyaları için kullandığınız talimatların aynılarını takip edin. Seçtiğiniz dosya türüne bağlı olarak verileri almak için farklı iletişim kutuları ya da sihirbazlar karşınıza çıkacaktır.

Bazı durumlarda elinizde belirli bir dosyada etiketsiz veriler olabilir ya da değişken adları veya diğer bilgiler işinize yaramayabilir. Bu durumda, dosyanın boyutuna bağlı olarak, orijinal rakamsal programdan (örn. Microsoft Excel) verileri kopyalayabilir ve doğrudan SPSS'nin "Data View" penceresine yapıştırabilirsiniz. Bu yöntem özellikle başka bir kaynaktan rakamsal değerler eklemeyi istediğinizde yararlıdır.

Daha Önceden Oluşturulan Çıktı (Output) Dosyalarını Açmak

Daha önceden oluşturulan bir çıktı dosyasını açmak için, , "File" mönüsünü sonra sırasıyla "Open" ve "Output" u seçin.

FILE » OPEN » OUTPUT

Aşağıdaki iletişim kutusu karşınıza çıkacaktır.

open Output						_
Konum:	🍌 184-Çoklu 2	Zeka	-	000		
Son Yerler	Ad	Değiştirme tarihi	Tor	Boyut	Etiketler	
Masaüstü			N IN			
	Bilgiler	Orr	nek	CZBulgular.sp	0	
HP						
Bilgisayar						
Ağ						
	Dosya Adı:	1			•	Aç
	Dosya türü:	Viewer document	(oqe.*)		•	Paste
						[Intel

Yerini belirledikten sonra dosyayı seçin ve açın. SPSS, dosyayı bir "Çıktı Görüntüleyicisi" penceresinde açacaktır. Burada dosyayı inceleyebilirsiniz.

Dosyaları Kaydetmek

SPSS dosyalarının kaydedilmesi, diğer bilgisayar programlarının kayıt işlemleri ile hemen hemen aynı şekilde gerçekleştirilir. Bu çerçevede;

Dosyayı hâlihazırda verilmiş olan isimle kaydetmek için;

FILE » SAVE

Dosyayı farklı bir isim altında kaydetmek için;

FILE » SAVE AS

mönülerini kullanabilirsiniz.

FILE » SAVE AS seçeneğini seçerseniz, bir iletişim kutusu açılacak ve bu kutuda sizden dosyayı isimlendirmeniz ve bilgisayarınızda ya da ağda dosyanın yerleştirileceği yeri seçmeniz istenecektir. FILE » SAVE seçeneğini kullandığınızda, yeni ve isimsiz bir dosya ile çalışmıyorsanız, SPSS herhangi bir iletişim kutusu çıkarmaksızın dosyayı otomatik olarak kaydedecektir.

Yeni (henüz isim verilmemiş) bir dosya ile çalışmanız halinde ise bu seçenekte de sanki "Save As" seçeneğini kullanıyormuşsunuz gibi bir iletişim kutusu açılacaktır.

Yeni SPSS Veri Dosyaları Oluşturmak

Yeni bir SPSS veri dosyası oluşturmak için, "File" mönüsünü ve ardından "New" ve "Data" sekmelerini seçin.

FILE » NEW » DATA

Boş bir "SPSS Data Editor" penceresi karşınıza çıkacaktır (SPSS 15.0 ile birlikte birden fazla data editörü açılması ve bunlar üzerinde işlem yapılması mümkün olmuştur). Bu editörü kullanarak örneğin anket araştırması sonuçlarınızı SPSS programına girebilirsiniz. Bunun için öncelikle "Variable View" penceresini kullanarak değişkenlerinizi (Anket Soruları) ve bunların özelliklerini girmenizi, daha sonra "Data View" penceresine geçerek değişkenlerinizin aldıkları değerleri (her bir soruya verilen cevapları) girmenizi tavsiye ediyoruz.

	Name	Type	Width	Decimal	Label	Values	Missing	Column	Align	Measure
1	Yas	Numeric	8	2	Yöneticinin Yasi	{1,00, 30 ya	None	8	Right	Nominal
2	Cinsiyet	Numeric	8	2	Yöneticinin Cinsiyet	{1,00, Erkek	None	8	Right	Ordinal
3										
4										
5										
6	-					-				
7										
8										
9										
10										
11										

Yukarıdaki data editörüne "Variable View" sekmesi kullanılarak "Yaş" ve "Cinsiyet" değişkenleri girilmiştir. Değişkenlere ait açıklamalar için "Label" sütunu, değişkenlerin türü için "Type" sütunu, değer etiketleri için "Values" sütunu, değişkenin ölçek türü içinse "Measure" sütunu kullanılmıştır. Diğer sütunlarda yer alan verilerin uzunluğu, basamak sayısı, formatına ilişkin bölümler varsayılan haliyle bırakılmıştır. Her iki değişkene herhangi bir kayıf veri kategorisi bulunmadığından "Missing Value" sütunu boş bırakılmıştır.

Değişken etiketlerini girmek için "Values" sütununda yer alan kareleri tıkladığınıza karşınıza aşağıdaki editör çıkacaktır. Editörün "Value" bölümüne değişkene ait değerleri, "Label" bölümüne ise bu değişkenlere ait etiketleri giriniz. Örneğin bizim anketimizde "1" kodu "30 yaş ve altı", "2" kodu" "31-40 yaş" arası, "3" kodu, "41-50 yaş" arası, "4" kodu, "51 yaş ve üzerine karşılık geldiğinden, etiket girişi aşağıdaki şekilde yapılmıştır.

Value Lat	bels	OK
/alue:	4	Cancel
abel:	51 yas ve üzen	
Change Remove	2,00 = "31-40 yas" 3,00 = "41-50 yas"	
	the second second second second second second second second second second second second second second second se	

Bu işlemleri tamamladıktan sonra "Data View" sekmesini tıklayarak değişkenlerin aldıkları değerleri doğrudan "SPSS Data Editörüne" girebilirsiniz.

) 🖬 🕈	🔿 🐜 🕼	A .	1 🖽 🤹	🖪 👒 🥥				
: Cinsi	/et	2						Visible	: 2 of 2
	Yas	Cinsiyet	var	var	var	var	Var	var	Var
1	3,00	1,00				1		8	
2	2,00	1,00							
3	2,00	1,00							
4	1,00	2,00							
5	4,00	1,00							
6	2,00	2,00				-			
7	3,00	1,00							
8	4,00	2,00							
9	1,00	1,00							
10	4,00	1,00							
11	3,00	2,00							
12	4,00	1,00							
13	2,00	1,00							
14	1,00	2,00							
15	3.00	2.00							

SPSS Çıktı Dosyalarını Oluşturmak ve Düzenlemek

Çıktı dosyaları, SPSS üzerinde herhangi bir analiz işlemi yapıldıktan sonra otomatik olarak oluşturulur. Örneğin bir önceki örnekteki yaş ve cinsiyet değişkenlerinin frekanslarının hesaplanmasını isterseniz, bu durumda (eğer hâlihazırda açık olan bir çıktı dosyası yoksa) otomatik olarak bir çıktı dosyası oluşturulacaktır ve istemiş olduğunuz bilgi, "Output Viewer" penceresinde gösterilecektir. Çıktıyı düzenlemek için, üzerinde çalışmak istediğiniz bölümü seçip çift tıklamanız yeterlidir. Daha sonra SPSS'in "Format" araçlarını kullanarak, vurgulamak istediğiniz bulguları fontunu büyütebilir, renklendirebilir ve diğer gerekli düzenlemeleri yapabilirsiniz. "Bilginin Düzenlenmesi ve Sunumu" başlıklı 2. Bölümde bu konu ile ilgili daha fazla ayrıntı sunulacaktır.

Tercihler: Başlangıç

SPSS programı için ayarları, parametreleri ve tercihleri değiştirmek için, "Edit" mönüsünü tıklayın ve ardından "Options" sekmesini seçin. Aşağıda gösterildiği gibi bir iletişim kutusu çıkacaktır.

	Data		a	urrency		Sc	ripts
General	Viewer	Draft View	er Outpu	t Labels	Charts	Interactive	Pivot Tables
Variable © De © Alg Session © Rec © A C:\\Lc	Lists splay labels ohabetical Journal ord syntax in ppend ocal\SPSS15'	 Display File Journal Overwr T.0FO\spss.ji Browse 	names	Output in ta Viewer Measure	scientific not bles Type at Star Regular ement Syste	ation for small nu up: ⑦ Draft m: Points	umbers
Temporary C:\Use	directory:	ta\Local\Ten	np	Notificat	ion: se viewer wi	ndow	
Recently	used file list:	9	×	Sound:	I to new ou None	d Browse.	beep

Buradan örneğin değişkenleri alfabetik olarak sıralama işlemini "General" sekmesine ve "Display names" ve "Alphabetical" tuşlarına tıklanarak gerçekleştirilebilirsiniz. Bunun dışında bu iletişim kutusu kullanılarak sayısız özelliği kontrol edilebilirsiniz. SPSS hakkında daha deneyimli hale geldikçe, bu özellikleri kullanma sıklığınız da artacaktır.

Veri setinde yer alan değişkenlerin özelliklerini bir bütün olarak görmek için "Variables" tablosunu kullanabilirsiniz. Bunun için üst menüden "Utilities"i ve ardından "Variables" sekmelerini tıklayınız.

Variables - 22-Variable Information: V... Variable Label: Yöneticinin Cinsiyeti Yöneticinin Yasi... Type: F8.2 Yöneticinin Cinsi... Missing Values: none Measurement Level: Ordinal Value Labels: 1,00 Erkek 2,00 Kadin Go To Paste Close Help

UTILITIES » VARIABLES

Sol taraftaki değişkenlere ait ayrıntıları sağ taraftaki "Variable Information" penceresinden görebilirsiniz.

Kullanılacak Ölçek Türünün Belirlenmesi

SPSS ile yapılacak analiz öncesinde, kullanacak verilerin türünü belirlenmesi ve analiz yöntemlerini bu veri türüne uygun olarak seçilmesi büyük önem taşır.

SPSS programında, Scale (Ölçek), Nominal (Sınıflama) ve Ordinal (Sıralama) olmak üzere üç farklı ölçek türü bulunmaktadır. Literatürde yer alan Interval (Aralık) ve Ratio (Oran) ölçekleri SPSS programında Scale ölçeği altında toplanmıştır. Şimdi kısaca bu ölçek türlerini inceleyelim.

Oran (Ratio) Ölçeği: Aylık gelir, ağırlık, uzunluk, hız gibi değişkenleri ölçmek için kullanılır. Bu ölçekte başlangıç "0" noktasıdır.

Aralık (Interval) Ölçeği: Sıcaklık, başarı, performans gibi nicel değişkenleri ölçmek için kullanılır. Aralık ölçeğinin oran ölçeğinden temel farkı bir başlangıç noktasının bulunmamasıdır. Diğer bir ifade ile "0" değeri aralık ölçeğinde yokluk ifade etmez. Örneğin termometrede görülen "0 °C" belirli bir anlam taşır. Oysa oran ölçeğinde yer alan "0 Kg" bir yokluk ifadesidir.

SPSS programında yapılan analizlerde iki ölçek türü arasındaki söz konusu farklılık sonuca etki etmediğinden bu ölçekler, "Scale" olarak tanımlanmıştır. **Sınıflama Ölçeği (Nominal):** Sınıflama ölçeğinde değişkenlerin aldığı değerler sayısal bir büyüklük ifade etmezler. Bu değerler değişkenlere ait bazı özellikleri tanımlarlar. Örneğin Cinsiyet değişkeni için "1" değeri "Kadın"ları, "2" değeri "Erkek"leri temsil edebilir. Bu çerçevede Medeni Durum, Meslek, Doğum Yeri gibi değişkenlere ait ölçümler için sınıflama ölçeğinin kullanımı uygun olacaktır.

Sıralama Ölçeği (Ordinal): Sınıflama ölçeğinde değişkenlerin aldığı değerler önem derecesi ya da üstünlükleri baz alınarak sıralanır. Katılım Düzeyi (*Kesinlikle Katılıyorum, Katılıyorum, Karasızım, Katılmıyorum, Kesinlikle Katılmıyorum*), Sıklık Düzeyi (*Hiç, Nadiren, Genellikle, Her Zaman*) Öğrenim Durumu (*İlköğretim, Lise, Lisans, Yüksek Lisans*), Yönetim Kademesi (Alt, Orta, Üst) vb. değişkenler için Sıralama (Ordinal) Ölçeğinin kullanımı uygun olacaktır.

Ölçek türünü "Variable View" sekmesinin "Measure" sütunua girebilirsiniz.

"Untitle ile Edit	ed2 [Data5 t View	let1] - SPSS Data Tra	S Data Ed ansform	fitor Analyze	Graphs Utilities Window	Help			1	- 6 2
-	🖻 🖬	• •	i D	曲帽	<u>↑</u> 🗄 🕸 🖪 👒 🍳 🤇	•				
	Name	Туре	Width	Decimal	Label	Values	Missing	Column	Align	Measure
1	Yas	Numeric	8	2	Yöneticinin Yasi	{1,00, 30 ya	None	8	Right	Ordinal
2	Cinsiyet	Numeric	8	2	Yöneticinin Cinsiyeti	{1,00, Erkek	None	8	Right	Nominal
3	OD	Numeric	8	2	Yöneticinin Ögrenim Düzeyi	{1,00, Ilkogr	None	8	Right	Ordinal
4	IQ	Numeric	8	2	Bilissel Zeka	None	None	8	Right	Scale 📼
5	2	1	1			11			1	Scale
6	1									Ordinal
8		1								
• \D	ata View)	Variable	View /					10		
1000			2.5		SPSS Processor is re	ady				

www.istatistikmerkezi.com

De<mark>ğiş</mark>kenlerin Yeniden Kodlanması ve Hesaplanması

"Yeniden kodlama", SPSS'in araştırmacının değişkenleri yapacağı analizin ihtiyaçlarına uygun şekilde yeniden kategorize etmesine olanak sağlayan bir fonksiyonudur.

Araştırmanız sırasında, mevcut verilerinizi kullanarak yeni değişkenler üretmek isteyebilirsiniz. Örneğin belirli bir faktörü oluşturan verilerin ortalamasını alarak ilgili faktörü ayrı bir değişken olarak ele almak isteyebilirsiniz. SPSS'in "Hesaplama" fonksiyonu, değişkenler üzerinde matematiksel işlemler gerçekleştirmenize ve birden fazla değişken kaynağından alınan verileri birleştirmenizi sağlayarak bu ihtiyacınızı karşılar.

Değişkenlerin Yeniden Kodlanması

Yeniden kodlama örneğimiz için ilköğretim okullarında görev

yapan öğretmenler üzerinde yaptığımız bir araştırmanın vari setini kullanacağız. Bu çalışmayı yaparken öğretmenlerin yaşlarını doğrudan girmiştik. Ancak araştırmanın ilerleyen safhalarında yaş ile ilgili çapraz tablolar oluşturmaya ihtiyaç duyduk. Bu da verileri yeniden kodlandırmamızı gerekli kıldı (Aksi taktirde tablomuzun her bir yaş için ayrı bir kategori olarak alınacaktı).

Kategori sayısını azaltabilmek amacıyla öreğimizde, öğretmenleri 35 yaş üzerindekiler ve 35 yaşın altındakiler olmak üzere iki gruba ayıracağız. Bunun için için "Transform" mönüsünü, ardından "Recode" seçeneğini ve "Into Different Variables" seçeneğini seçiyoruz.

TRANSFORM » RECODE » INTO DIFFERENT VARIABLES

Daha sonra aşağıdaki gibi bir iletişim kutusu çıkacaktır:

Cinsiyet [D1]	Numeric Variable -> Output Variab	Output Variable Name:
🔗 Annenin Egitim Dü 🗉	•	D6A
Babanin Egitim Dü		Label:
Correnim Gorulen C		Bolünmüs Yas
A1		Channes
A2		Change
A3		
A4	Old and New Values	
AS AS		
A7	(optional case selection of	condition)
A8		

Burada sol tarafta bulunan Yaş [D6] değişkenini seçerek aradaki iki pencere arasındaki oku tıklıyoruz. Yaş [D6] değişkeni "Numeric Variable – Output Variable" pencersine sadece D6 olarak geçiyor. Şimdi değişken için yeni bir isim oluşturyoruz; bu örnekte "D6A" ismi kullanılmıştır. Aynı zamanda bu sırada bir etiket de seçebilir ya da değişken görüntüleme ekranına daha sonra dönerek bunu yapabilirsiniz. Bu örnekte "Bölünmüş Yaş" etiketi seçilmiştir. Ekran görüntüsünde bu henüz yapılmamışken bir sonraki adım, "Change" tuşuna tıklamaktır. Böylelikle "D6A" ismi "Numeric Variable – Output Variable" penceresine girilecektir. Şekilde tüm bu işlemlerin tamamlanmış hali görülmektedir.

Şimdi sıra SPSS'e değişkeni nasıl kodlayacağına yönelik talimatları vermek gerekir. Bu örnekte 35'de dahil olmak üzere 35'e kadarki tüm yaşları bir değiştirerek bir kategoriye sokmayı ve bu kategoriye "0" ismini vermeyi, 36 ve üzerindeki yaşları başka bir kategori altında toplayıp bu kategoriye "1" ismini vermeyi istiyoruz. İletişim kutusundaki "Old and New Values" tuşuna basın; tepede, aşağıdakine benzer bir iletişim kutusu açılacaktır.

Değişiklikleri uygulamak için öncelikle "Old Value" altında "Range, LOWEST through value" yazılı tuşu seçin. Buraya "35" rakamını girin. Daha sonra "New Value" sekmesi altında "Value" yu seçin ve "0" girin. Şimdi "Add" tuşuna tıklayın. Bu, SPSS'ye 35 da dahil olmak üzere 35'e kadarki tüm yaşları 0 kategorisi altında toplama talimatı verecektir. Daha sonra "Old Value" sekmesi altında "Range, value through Highest" ile ilişkilendirilmiş tuşu seçin. Başlık altındaki kutuya 36 yazın. Daha sonra "New Value" altında "Value"yu seçin ve "1" girin. Yine "Add" tuşuna tıklayın. Şimdi bu, SPSS'ye 36 ve üzeri tüm yaşları 1 kategorisine dönüştürme talimatını verecektir.

Son olarak "Old Value" sekmesi altında "System- or usermissing"i seçin. "New Value" altında "System-missing"i seçin. Bu, eksik değerlerin, rakamsal değerler olarak kaydedilmiş olsalar dahi, eksik değerler olarak ele alınmaya devam etmesini sağlayacaktır. Bir kez daha "Add" tuşuna tıklayın.

Xid Value	New Value	
O Value:	O Value:	nissing
System-missing	Copy old	(value(s)
 System- or user-missing 		Old -> New:
Range:	Add	MISSING -> SYSMIS Lowest thru 35 -> 0
ale contraction of the second s	Change	36 thru Highest -> 1
through	Remove	
Range, LOWEST through value:		
Range, value through HIGHEST:	Outp	ut variables are strings Width: 8
All other values	() Corre	Contract Contract Contract

Talimat girişini tamamladınız, şimdi "Continue" tuşuna tıklayabilirsiniz; bu, bu kutuyu kapatacak ve ilk "Recode into Different Variables" iletişim kutusuna dönülmesini sağlayacaktır. Buraya ulaştıktan sonra SPSS'nin yeniden kodlama ve daha sonra yeni değişkeni oluşturma isteğinizi işleme koyması için "OK" tuşuna tıklamalısınız.

Eğer "OK" tuşu bulanıksa ve SPSS ona tıklamanıza izin vermiyorsa, bu durumda yukarıdaki aşamalardan biri tamamlanmamış demektir. Genellikle en fazla gözden kaçırılan aşama, "Change" tuşunun tıklanmasıdır.

Yeni değişken, "Data Editor" penceresinin "Variable View" sekmesinde bulunan değişken listesinin alt tarafına eklenecektir. Eğer dilerseniz bu değişkeni seçip başka iki değişkenin arasına sürükleyerek listede başka bir yere taşıyabilirsiniz.

	🖬 🖷	n 🔿 🐜	6. 1	4 重査	🔚 🤹 🖪 🦻	0	
	Name	Туре	Widt	Decimals	Label	Values	Missing
46	C14	Numeric	8	2		None	None
47	C15	Numeric	8	2		None	None
48	C16	Numeric	8	2		None	None
49	F1	Numeric	8	2		None	None
50	F2	Numeric	8	2		None	None
51	F3	Numeric	8	2		None	None
52	D6A	Numeric	8	2	Bolünmüs Yas	None	None
53							
54							
55							-
56							
57							
58							
-59							

SPSS oluşturduğunuz bu değişkenin değer etiketlerini otomatik olarak vermez. Bu işlemin ayrıca elle yapılması gereklidir. Eğer değişken etiketlerini bu aşamada girmezseniz, değişkenin sahip olduğu kodların anlamları çıktı tablolarında göremezsiniz. Ayrıca yapılan bölümlendirme zaman içinde unutulabileceğinden, kodların hemen tanımlanmasında yarar vardır.

Bunun için daha önce değer etiketleri kısmında açıklandığı gibi hem değeri hem de etiketi girin. Daha sonra yazılan bilgilerin her bir çiftinin ardından "Add" tuşuna tıklayın. Bunun ardından "OK" tuşuna tıklayın.

Value Lat	pels	OK
/alue:	1	Cancel
abel:	35 ve üzen	
Change	1,00 = "35 ve üzeri"	

Değişkenlerin Hesaplanması

Değişkenlerin hesaplanması çok sık başvuracağınız bir fonksiyondur. Bu fonksiyonu kullanarak farklı değişkenler üzerinde işlem yaparak yeni değişkenler oluşturabilirsiniz. Örneğin anket çalışması sonrası kapsamında, belirli bir faktörde yer alan sorulara verilen cevapların ortalamasını bu fonksiyonu kullanarak hesaplayabilir ve bu ortalamaları içeren yeni bir değişken oluşturabilirsiniz.

Bu örnekte, katılımcıların ebeveynlerinin ortalama eğitim düzeyini hesaplamayı istiyoruz. Dolayısıyla annenin eğitim düzeyini babanın eğitim düzeyine ekleyecek ve daha sonra bunu ikiye böleceğiz.

Hesaplamayı gerçekleştirmek için, şu mönüleri seçin:

TRANSFORM » COMPUTE VARIABLE

Karşınıza, "Compute Variable" iletişim kutusu çıkacaktır. "Target Variable" kutusundaki yeni değişkene atamak istediğiniz ismi yazın. Biz bu değişkene "OrtEgt" ismini verdik. Daha sonra "Numeric Expression" kutusunda hesaplama denklemini hazırlayın. Bu durumda ilk önce parantezleri, (), seçmek gerekmektedir. Bunun ardından parantezlere D3 Annenin Eğitim Düzeyi ve toplama işaretini, sonrasında "paeduc" değişkenini girin. Şimdi bölme çizgisini koyun ve "2" ye tıklayın. Böylelikle her iki ebeveynin de toplam eğitim yılları toplanacak ve ikiye bölünerek ortalama rakam ortaya çıkacaktır.

arget Variable:		Numeric Expression:	
DitEgt	-	(D3 + D4) / 2	-
Type & Label			
Cinsiyet [D1]		Function group:	
Gelir [D2] Annenin Egitim Dū: Babanin Egitim Dū: Ogrenim Görülen C Yas [D6] Sinif Mevcudu [D7 A1		• < > ? 8 9 All • < > ? 8 9 All • < > 4 5 6 CDF & Noncentral C • < > ? 8 1 Our ? 8 1 Our Date Arthmetic * * Our * * Our Ø 2 3 Our Our Ø 2 4 Our Our Ø 2 5 Our Our Ø 2 6 Our Our Ø 2 7 Our Our Ø 2 7 Our Our	DF
A2 A3 A4 A5 A5 A6 A7		Functions and Speci	al Variables
✓ A8 ✓ A9		*	
# (optional case sele	ction	condition)	

Ayrıca "Function group" menüsü içerisinde daha kapsamalı hesaplamalar yapmak için kullanılabilecek istatistiksel, trigonometrik fonksiyonlar, tarih, zaman, dizi vs. fonksiyonları vardır. Ayrıca koşullu bir hesaplama kurmak istediğinizde – örneğin hesaplamanın yalnızca bir koşul için yapılacağı ya da önceden belirlenmiş bir koşula bağlı olarak farklı koşullarda farklı hesaplamaların yapılacağı durumlarda – "If" tuşunu seçerek ve koşulu (koşulları) girebilirsiniz.

Sayma Fonksiyonunun Kullanılması

SPSS, kullanıcıların değişkenler arasında belirli değerleri toplamalarına olanak tanır. Örneğin bir araştırmacının bir katılımcının belirli sorulara "evet" yanıtı verdiği durumların sayısını hesaplamak istediğini varsayalım. Bu örnek için öğrencilerin temizlik ile ilgili düşüncelere soruları ele alalım. Bu örnek için aşağıdaki mönüleri kullanın:

TRANSFORM » COUNT VALUES WITH CASES

Çıkan iletişim kutusunda, sol taraftaki değişken listesinden uygun değişkenleri "Numeric Variables" kutusuna taşıyın. Ayrıca "Target Variable" bölümünde oluşturulan yeni değişken için bir isim girin. Örneğimizde bu bölüme "Tem" ismini girdik. Target Label bölümüne ise hedef değişkeni tanımlayan etiketi girebilirsiniz. Örneğimizde bu bölüme "Temizlik Alışkanlıkları" etiketi girildi. Daha sonra "Define Values" tuşuna tıklayın. Karşınıza aşağıdaki iletişim kutusu çıkacaktır:

	Va	alues to Count:	
value:	Add		
) System-missing	Change		
System- or user-missing	Remove		
) Range:			
through:			
Range, LOWEST through value:			
	-		
Rance, value through HIGHEST:		Continue	Help
		Carlos Contrast	

Burada sayılacak olan değerleri seçeceksiniz. Bu örnekte seçilen temizlik alışkanlıkları için 1 kodu olumlu bir yanıtı, 2 kodu ise olumsuz bir yanıtı göstermektedir. Dolayısıyla soruların sayısını 1 kodu ile saymak istiyoruz. Bunun için iletişim kutusunun sol üst tarafında "Value"nun yanındaki yazı bölümüne tıklayın ve ardından ilişkili bölüme "1" kodunu girin. Şimdi iletişim kutusunun sağ tarafındaki "Add" tuşuna tıklayın. "1" kodu, "Values to Count" alanında görünmelidir. Şimdi bu kutudaki "Continue" tuşuna tıklayın ve daha sonra önceki iletişim kutusunda "OK" tuşuna tıklayın.

Oluşturulacak yeni değişken incelemekte olduğunuz özelliklerin toplamlarını içerecektir. Aşağıda verilen "Tem" değişkenini her bir öğrencinin olumlu temizlik alışkanlıklarının toplamını göstermektedir.

	• 🖬 •	🔿 🐂 🕼	A Th		00			
) : A1		2			Second and		Visib	le: 54 of
	F2	F3	D6A	OrtEgt	Tem	var	var	var
1	3,93	3,26	,00	2,50	2,00			
2	3,50	3,42	.00	4,50	1,00			
3	3,64	3,74	.00	3,00	4,00			
4	4,00	3,05	,00	5,50	2,00			
5	5,00	5,00	.00	3,50	4,00			
6	4,00	2.84	.00	3,00	4,00			
7	4,14	3,63	1,00	3,00	3,00			
8	2,00	2,32	1,00	4,50	1,00			
9	3,36	3,63	1,00	2,00	1,00			
10	3,14	3,26	1,00	4,00	3,00			
11	2,14	2,74	1,00	4,00	3,00			
12	3,07	2,89	1,00	2,00	2,00			
13	2,69	3,53	1,00	2,00	3,00			
14	2,86	3,67	1,00	5,00	1,00			
15	3,14	3,26	.00	2,00	2,00			-
16	2,31	2,58	.00	5,00	3,00			
17	2,86	2,68	.00	2,00	3,00			
18	2,14	2,53	1,00	1,50	.00			
19	4,00	3,89	.00	2,00	4,00			
20	3,79	3.42	.00	4.50	3.00			

Bir Endeksin Ortalama Kullanarak Hesaplanması

SPSS'de "Compute" komutunu kullanarak bir endeks oluşturmak mümkündür. Bunu yapmanın en dolaysız yolu, "Ortalama" fonksiyonunu kullanmaktadır. Bu yöntemi kullanmak için şu mönülere tıklayın:

TRANSFORM » COMPUTE VARIABLE

"Compute Variable" iletişim kutusu ile birlikte çıktığında, sağ alt köşedeki "Functions and Special Variables" kutusundan "Mean" sekmesini seçin. "Function group"un "All"a ayarlı olduğundan emin olun. "Mean"i seçtikten sonra "yukarı ok" tuşuna tıklayarak "Mean"i "Numeric Expression" alanına taşıyın. Ekran aşağıdaki gibi görünecektir.

Parantezlerin içindeki ilgili tüm değişkenleri, her birini virgül ile birbirinden ayırarak girmelisiniz. Bu örnekte bunun nasıl yapıldığını görmek için aşağıdaki iletişim kutusuna bakın:

arget Variable:		Numeric Expression:	
OrtBas		= MEAN(B1.B2,B3.B4,B5,B6,B8,B9,B10)	-
Type & Labe	l		
A4	-	Function group:	
A5 A6 A7 A7 A8 A9 A9 A10 B1	111		tral CDF
 ✔ B2 ✔ B3 ✔ B4 ✔ B5 ✔ B6 ✔ B6 ✔ B8 ✔ B9 ✔ B10 		MEAN(numexpr,numexpr[,]). Numeric. Returns the arithmetic mean of its arguments that have valid values. This function requires two or more arguments, which must be numeric. You can specify a minimum number of valid arguments for this function to be evaluated.	ipecial Variables
f (optional of	case selec	tion condition)	

Sol taraftaki bankadan değişkenleri seçtikten sonra hedef değişkenin (oluşturulacak olan yeni değişkenin) ismini girin. Daha sonra "Type & Label" tuşuna tıklayın. Aşağıdaki kısa iletişim kutusu çıkacaktır.

Label: Ortalama Başan	Continue
O Use expression as label	Cancel
Туре	Help
Numeric	

"Label" ın yanındaki yazı bölümüne tıklayın ve daha sonra bitişikteki bölüme uygun değişken etiketini girin. Şimdi "Continue" ya ve daha sonra "OK" e tıklayın. Yeni bir değişken, "OrtBas" değişkeni oluşturulacak ve SPSS "Data Editor" penceresinde aşağıda gösterildiği gibi görüntülenecektir.

	107 et	E	A E m	日本国家	0			
9 : A1		2					Visible:	55 a
1	F2	F3	D6A	OrtEgt	Tem	OrtBas	var	
1	3,93	3,26	.00	2,50	2,00	3,78		1
2	3,50	3,42	,00	4,50	1,00	3,33		
3	3,64	3,74	.00	3,00	4,00	3,67		
4	4,00	3,05	.00	5,50	2,00	4,00		
5	5,00	5,00	.00	3,50	4,00	5,00		
6	4,00	2,84	.00	3,00	4,00	4,00		
7	4,14	3,63	1,00	3,00	3,00	4,11		
8	2,00	2,32	1,00	4,50	1,00	1,89		
9	3,36	3,63	1,00	2,00	1,00	3,56		
10	3,14	3,26	1,00	4,00	3,00	3,33		
11	2,14	2,74	1,00	4,00	3,00	2,11		
12	3,07	2,89	1,00	2,00	2,00	3,11		
13	2,69	3,53	1,00	2,00	3,00	2,75		
14	2,86	3,67	1,00	5,00	1,00	2,78		
15	3,14	3,26	,00	2,00	2,00	3,00		
16	2,31	2,58	,00,	5,00	3,00	2,38		
17	2,86	2,68	.00	2,00	3,00	3,11		
18	2,14	2,53	1,00	1,50	,00,	2,11		
19	4,00	3,89	.00	2,00	4,00	4,11		
20	3,79	3,42	,00,	4,50	3,00	4,00		

Eğer belirli bir değişkene, belli bir değişken ekleyip çıkartmak suretiyle yeni bir değişken elde etme ihtiyacı duyarsanız bunun için aşağıdaki adımları uygulayabilirsiniz.

TRANSFORM » COMPUTE VARIABLE

www.istatistikmerkezi.com

Target Variable:	Numeric Expression:	
OrtBas2	= OrtBas - 1	-
Type & Label		
A C10 -	Function group:	
C11 C12 C13 C14 C14 C15 C15 C16 F1	• <	
 ✓ F2 ✓ F3 Ø Bolünmüs Yas [D6. Ø OrtEgt Ø Temizlik Alışkanlıkl. Ø Ortalama Başan [0 	MEAN(numexpr.numexpr[]). Numeric. Returns the arithmetic mean of its arguments that have valid values. This function requires two or more arguments, which must be numeric. You can specify a minimum number of valid arguments for this function to be evaluated. WEAN(numexpr.numexpr[]). Numeric. SCasenum SDate SDate SDate11 SJdate SSymis STime Abs Any Arsin	ibles
f (optional case sele	ction condition) Attan Cdf.Bernoulli Cdf.Beta	

Öncelikle "Numeric Expression" penceresine ilgili değişkeni girin. Örneğimizde "OrtBas" değişkeni kullanılmıştır. Daha sonra hesap makinesi biçimindeki tuş takımı üzerinde "-" işaretine ve daha sonra "1"e tıklayın. Son olarak hedef değişkeni tanımlayın (Örnekte: OrtBas2).

Böylelikle değişkene ait her bir değerden 1 çıkartılacak ve yeni değişken elde ed, aşağıdaki görüntüde görüldüğü gibi, istenilen aralıkta veri ortalamasına taşınacaktır.
*Kitap.sa	ev (DataSet2) - SP View Data T	SS Data Editor	uze Granhs L	Hilities Window	Help			
	1 II 45 00	ዀ 🖟 🐴	-¶ 👘 🗏 d		•			
9 : A1	2						Visible:	56 of 9
	OrtEgt	Tem	OrtBas	OrtBas2	var	var	var	
1	2,50	2,00	3,78	2,78				
2	4,50	1,00	3,33	2,33				
3	3,00	4,00	3,67	2,67				
4	5,50	2,00	4,00	3,00				
5	3,50	4,00	5,00	4,00				
6	3,00	4,00	4,00	3,00				
7	3,00	3,00	4,11	3,11				
8	4,50	1.00	1,89	.89				
9	2,00	1.00	3,56	2,56				
10	4,00	3,00	3,33	2,33				
11	4,00	3,00	2,11	1,11				
12	2,00	2.00	3,11	2,11				
13	2,00	3,00	2,75	1,75				
14	5,00	1,00	2,78	1,78				
15	2,00	2.00	3,00	2,00				
16	5,00	3,00	2,38	1,38			-	
17	2,00	3,00	3,11	2,11				
18	1,50	.00	2,11	1,11				
19	2,00	4,00	4,11	3,11				
20	4,50	3,00	4,00	3.00				
> (Data	a View (Variabl	e View / ^^			L.			
				SPSS Processor is	ready			

Verilerin Organizasyonu ve Sunumu

Bu bölümde verilerin merkezi eğilim ve dağılım ölçütleri kullanılarak özetlenmesi ve tablo, çizelge ve grafikler yardımı ile sunumu üzerinde durulacaktır.

Merkezi Eğilim ve Dağılım Ölçütleri

Bir değişken ya da değişken seti için temel betimleyici istatistikleri kullanarak bir tablo oluşturmak için, aşağıdaki mönüleri seçin:

ANALYZE » DESCRIPTIVES » DESCRIPTIVES

"Descriptives" iletişim kutusunun sağ alt köşesinde bulunan "Options" tuşuna tıkladığınızda başka bir iletişim kutusu karşınıza çıkacaktır. Bu iletişim kutusunu kullanacağınız temel betimleyici istatistikleri seçmenize imkan sağlayacaktır.

İstediğiniz istatistiklerin yanına bir tik işareti atarak kutuları seçin. Ayrıca "Display Order" altındaki seçenekleri kullanarak gösterim sırasını da belirleyebilirsiniz.

escriptives: Optic	ns	2
Mean	Sum	Continue
Vispersion Std. deviation	Minimum	Cancel
Variance	Maximum	Help
Range	S.E. mean	
Distribution		
Kurtosis	Skewness	
Display Order		
Variable list		
Alphabetic		
Ascending mea	ins	
O Descending me	ans	

Bu iletişim kutusunda "Continue" ya ve ilk iletişim kutusunda "OK" e tıkladıktan sonra, aşağıdaki SPSS çıktısını alacaksınız.

www.istatistikmerkezi.com

Descriptive Statistics

	Ν	Minimum	Maximum	Mean	Std. Deviation
Gelir	263	1,00	6,00	3,1939	1,64515
Yas	304	23,00	52,00	36,5428	9,45398
Sinif Mevcudu	303	1,00	4,00	1,5809	,52034
Valid N (listwise)	263				

Temel betimleyici istatistiklerin kullanımı çok hızlı ve kolay olmasına karşın, bir veri setindeki değişkenler hakkında daha ayrıntılı betimleyici bilgi almak mümkündür.

Bununla birlikte tanımlayıcı istatistikler ilk bölümde açıklanan oran (ratio) ve aralık (interval) ölçeklerinden elde edilen veriler için uygundur. Sınıflama (nominal) ölçek verileri içinse verilerin sıklık dağılımlarını kullanmanız gerekir (Örnek: Cinsiyet değişkeninin ortalamasını alamazsınız).

Bir değişkenin sıklık dağılımını aşağıdaki mönüleri kullanarak bulabilirsiniz.

ANALYZE » DESCRIPTIVES » FREQUENCIES

Ayrıca elde edeceğiniz sıklık dağılımını grafik yardımıyla göstermek için aşağıdaki menüdeki "Charts" düğmesini tıklayın.

Gelir [D2]	<u>^</u>	Variable(s):	ОК
Annenin Egitim Dü		Cirisiyet [D 1]	Paste
Øgrenim Görülen O		-	Reset
🔗 Yas [D6] 🔗 Sinif Mevcudu (D7			Cance
A1			Help
A2 A 12	*	10	
] Display frequency ta	bles		

Buradaki grafik türlerinden ihtiyacınıza en uygun olanı seçebilirsiniz. Ancak pasta grafiğin bir bütünün parçalarını temsil etmek için kullanılan bir grafik türü olduğunu unutmayın. Daha açık bir ifade ile örneğin cinsiyet değişkeni için pasta grafik uygundur. Bunun yanında "Hobileriniz" sorusuna verilen cevaplar katılımcılar birden fazla seçenek işaretleyebileceklerinden pasta grafik ile gösterilmez.

Sırasıyla "Continue" ve "OK" tuşlarını tıkladığınızda aşağıdaki çıktıları elde edeceksiniz.

			Cinsiyet		
					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	Kiz	130	42,8	42,8	42,8
	Erkek	174	57,2	57,2	100,0
	Total	304	100,0	100,0	
			Cinsiyet		7:2 Refeet

Yukarıda açıklanan mönüler tablo ve grafik elde etme yollarından sadece biridir. Tablo ve grafik elde etmek için kullanılabilecek daha fonksiyonel mönüler "Tablo ve Grafikler" başlıklı ayrı bir bölümde açıklanacaktır.

Şimdi çok daha fazla ihtiyaç duyacağınız bir uygulamayı inceleyelim. Bir önceki örnekte "Descriptives" menüsünü kullanıp yaş değişkenin ortalamasını almıştık. Şimdi yaş değişkeninin sıklık dağılımını almak isterseniz karşınıza aşağıdakinin benzeri bir tablo ve grafik çıkacaktır.

		-			
					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	23,00	17	5,6	5,6	5,6
	24,00	17	5,6	5,6	11,2
	26,00	34	11,2	11,2	22,4
	28,00	17	5,6	5,6	28,0
	29,00	17	5,6	5,6	33,6
	31,00	17	5,6	5,6	39,1
	32,00	16	5,3	5,3	44,4
	35,00	17	5,6	5,6	50,0
	37,00	17	5,6	5,6	55,6
	39,00	17	5,6	5,6	61,2
	41,00	17	5,6	5,6	66,8
	43,00	17	5,6	5,6	72,4
	45,00	16	5,3	5,3	77,6
	47,00	17	5,6	5,6	83,2
	49,00	17	5,6	5,6	88,8
	51,00	17	5,6	5,6	94,4
	52,00	17	5,6	5,6	100,0
	Total	304	100.0	100.0	

Yas

Yas

Bu tablo ve grafikte verileri tanımlamanın ve üzerinde yorum yapmanın son derece güç olduğu açıktır. Yararlı bir sıklık dağılımı sunabilmek içinse, aralık-oran değişkenini, yani yaş değişkenini, anlamlı ya da uygun kategorilere ayırmak gerekir. Konuyu aynı örnek üzerinde inceleyelim. Şimdi D6 yaş değişkenini "Değişkenlerin Yeniden Kodlanması ve Hesaplanması" bölümünde açıklandığı şekliyle aşağıdaki menüleri kullanarak yeniden adlandırın (D6dan farklı yeni bir değişken oluşturun).

Kısa bir hatırlatma yapacak olursak Recode into Different Variables penceresini aşağıdaki mönüleri kullanarak açın.

TRANSFORM » RECODE INTO DIFFERENT VARIABLES

Daha sonra işlem yapacağınız değişkeni (Örnekte D6) "Numeric Variable – Output Variable" penceresine aradaki oku kullanarak taşıyın. Output Variable Bölümündeki, Name başlığının altına yeni değişkene vereceğiniz ismi (Örnekte, D6grup), Label başlığının altına yeni değişkene vereceğiniz etiketi yazın (Örnekte, Yas Grubu). Change tuşunu tıkladığınızda yeni değişkeniniz oluşacaktır. Şimdi sıra geldi yeni değişken için grupları tanımlamaya... Bunun için Old and New Values tuşunu taklayın.

Karşınıza aşağıdaki pencere gelecektir. Burada ilk olarak Range düğmesini işaretleyerek aralıkları tanımlayın. Örneğin 20 – 30 aralığı için ilk kutucuğa 20 altındaki kutucuğa 30 yazın. Daha sonra New Value başlığının altındaki Value düğmesini işaretletin ve buraya oluşturduğunuz grubu temsil eden sayıyı girin (Örnekte, 1). Daha sonra Add tuşunu tıklayın. Aynı işlemi tekrarlayarak diğer değişkenlerin de girişini yapın.

Old Value	New Value				
O Value:	O Value:				
System-missing	System r Copy old	nissing value(s)			
System- or user-missing		Old -> New:			
C Range:	Add	MISSING -> SYSMIS 20 thru 30 -> 1			
Historicals	Change	31 thru 40> 2 41 thru 50> 3			
lisougn	Remove	51 thru Highest -> 4			
Range, LOWEST through value:					
Range, value through HIGHEST:		t variables are strings Width 8			
All other values		Continue Cancel Help			

Ayrıca belli bir değerin altındaki değerleri girmek için (örnek 20'nin altı) Range LOWEST through value, belli bir değerin üstündeki değerleri girmek için (örnek 50'nin üstü) Range value through HIGHEST, tanımladığınız değişkenlerin dışındaki tüm değişkenleri tanımlamak içinse All other values butonlarını kullanabilirsiniz. Şimdi sırasıyla Continue ve diğer ekrandaki OK tuşlarını tıklayın. Karşınıza aşağıdaki "Data Editör" penceresi gelecektir.

le Edit	View Data	Transform Ana	ilyze Graphs L	Itilities Window	Help		
-		ዀ 🖟 🛤	¶ 査 册 ₫	0 🖪 👒 🔕	•		
9 :						Visi	ble
	Tem	OrtBas	OrtBas2	D6grup	var	var	Γ
1	2,00	3,78	2,78	2,00			Γ
2	1,00	3,33	2,33	1,00			
3	4,00	3,67	2,67	1,00			
4	2,00	4,00	3,00	1,00			
5	4,00	5,00	4,00	1,00			Γ
6	4,00	4,00	3,00	2,00			Γ
7	3,00	4,11	3,11	2,00			Γ
8	1,00	1,89	,89	3,00			Г
9	1,00	3,56	2,56	3,00			Г
10	3,00	3,33	2,33	3,00			Г
11	3,00	2,11	1,11	2,00			Г
12	2,00	3,11	2,11	4,00			Γ
13	3,00	2,75	1,75	3,00			
14	1,00	2,78	1,78	4,00			
15	2,00	3,00	2,00	1,00			
16	3,00	2,38	1,38	1,00			
17	3,00	3,11	2,11	2,00			Г
18	.00	2,11	1,11	3,00			Γ
19	4,00	4,11	3,11	2,00			
▶ \Data	View & Variab	le View /	'		14		

Her ne kadar grupları tanımlamış olsanız da SPSS bu değerleri tanımlamaz bunun için aşağıdaki Variable View sekmesindeki Values sütununda yer alan "..." noktayı tıklayarak değerleri tekrar girmeniz gerekecektir.

Her bir değeri Value satırına bu değerlere karşılık gelen aralık ve ifadeleri ise Label satırına girdikten sonra OK tuşuna tıklayınız.

	Name	Туре	Width	Decimals	Label	Values	N
53	OrtEgt	Numeric	8	2	1	None	None
54	Tem	Numeric	8	2	Temizlik Alýþ	{1,00, 20-30}	None
55	OrtBas	Numeric	8	2	Ortalama Baþ	None	None
56	OrtBas2	Numeric	8	2		None	None
57	D6grup	Numeric	8	2	Yas Grubu	{1,00, 20-3	None
	Add 1 Change 3 Remove 4	.00 = "20-30" .00 = "31-40" .00 = "41-50" .00 = "51 ve üzen"				Hels	

Daha sonra yeni oluşturulmuş değişken için bir sıklık dağılımını görmek için aşağıdaki mönüleri tıklayın.

ANALYZE » DESCRIPTIVE STATISTICS » FREQUENCIES

Daha önce açıklanan işlemleri tekrarlayın. Karşınıza aşağıdaki gibi çok daha sade bir tablo ve grafik gelecektir.

Yas Grubu

			Dereent	Volid Dereent	Cumulative
		Frequency	Percent	valid Percent	Percent
Valid	20-30	102	33,6	33,6	33,6
	31-40	84	27,6	27,6	61,2
	41-50	84	27,6	27,6	88,8
	51 ve üzeri	34	11,2	11,2	100,0
	Total	304	100,0	100,0	

www.istatistikmerkezi.com

Diyagram ve Grafikler

Bu bölümde SPSS temel grafik üretme mönüleri açıklanacaktır. Ancak bunun yanında SPSS bir grafik programı olmadığını hatırlatmak istiyorum. Ben dahi şirketler için hazırladığım raporlarda SPSS grafiklerini kullanmıyorum. MS Office Excel programı özellikle 2007 versiyonu çok daha güçlü ve görsel grafik oluşturmanıza imkan veriyor. Bununla birlikte eğer verileri başka bir programa taşımaya vaktim yok ya da görsellik benim için çok da önemli değil diyorsanız bu bölümde açıklanan bilgiler siz oldukça yarar sağlayacaktır.

Kutu Diyagram

Kutu Diyagram, bir değişkenin sıklık dağılımını göstermek için kullanabilirsiniz. Kutu grafik dağılımın şekli, merkezi eğilimi ve değişkenlik düzeyini göstermesi açısından yararlıdır. Bir kutu diyagram oluşturmak için:

GRAPHICS » LEGACY DIALOGS » BOXPLOT

Bu örnekte tek bir değişken için, yaş için basit bir kutu-grafik çizeceğiz. "Simple" tuşuna tıklayın ve "Summaries of separate variables" tuşunu seçin.

Daha sonra "Define" tuşuna tıklayın. Karşınıza aşağıdaki iletişim kutusu çıkacaktır.

Consiyet [D1]	Boxes Represent:	OK Paste
 Paherini Egitim Düz Babanin Egitim Düz Øgrenim Görülen OI ≡ Ø Sinif Mevcudu [D7] 		Reset Cancel
A1 A2 A3 A4	Label Cases by:	Help
A5 A6 A7	Panel by	Options
A8 A9 A10		
B1 B2 B3	Columns:	
Ø 84 Ø 85 Ø 85	Nest variables (no empty columns)	

Bu iletişim kutusunda ilgili değişken(ler)i "Boxes Represent" bölümüne taşıyın. "OK" e tıklayın; aşağıdaki gibi bir diyagram elde edeceksiniz.

Kutunun üst ve alt sınırları sırasıyla Q3 (%75'lik değer) ve Q1'i (%25'lik değer) temsil etmektedir. Değerler, şeklin sol ekseni üzerindeki ölçeğe karşılık gelmektedir. Dolayısıyla kutunun kendisi, IQR'ı (çeyrekler arası aralık) göstermektedir. Kutunun içindeki çizgi, %50'lik değerde çizilmiştir. Kutunun yukarısına ve aşağısına uzanan çizgiler "sınır" olarak anılır. Üst sınırın sonunda azami puan işaretlenmiştir. Asgari değer, alt sınırın sonunda bulunabilir.

Dağılım Diyagramı

Dağılım Diyagramı, iki değişken arasındaki ilişkiyi sergileyen yararlı bir grafiktir. Bir dağılım diyagramı oluşturmak için aşağıdaki mönüyü kullanabilirsiniz.

GRAPHICS » LEGACY DIALOGS » SCATTER / DOT

Karşınıza çıkan pencerede "Simple Scetter" butonunu işaretleyin ve "Define" tuşuna tıklayın.

Karşınıza "Simple Scatterplot" penceresi çıkacaktır. Bu pencereyi kullanarak X ve Y eksenleri için değişkenleri seçin. Bu örnekte Y ekseni için IQ (Bilişsel Zeka), X ekseni içinse "Başarı Puanı" seçilmiştir.

"Simple Scatterplot" penceresinin altında ise ik değişken arasındaki ilişkiyi gösteren Dağılım Diyagramı sunulmuştur. Bu diyagramdan IQ ile başarı arasında doğrusal bir ilişki olduğu anlaşılmaktadır.

Histogram

Tek bir değişkenin dağılımını göstermek için histogram oldukça faydalıdır. Histogramda çubukların genişliği aralıkların genişliğini ve çubukların yüksekliği ise her bir aralığın sıklığını temsil eder. Bir histogram oluşturmak için şu mönüleri takip edin.

GRAPHICS » LEGACY DIALOGS » HISTOGRAM

Histogram C16 F1 F2 F3 Bolünmüs Yas [D6. OrtEgt	Variable: Basari Display normal curve Panel by Rows:	OK Paste Reset Cancel
 Temizlik Alışkanlıkli Ortalama Başan [O OrtBas2 Yas Grubu [D6grup] Yas Grubu [D7grup] IQ 	Nest variables (no empty rows) Columns:	Help
Template Use chart specifications File	Nest variables (no empty columns)	Titles

"Histogram" iletişim kutusunda ilgili değişkeni seçin. Histograma bir normal dağılım eğrisinin eşlik etmesini istiyorsanız, "Display normal curve" kutucuğunu işaretleyin. Bu örnekte Başarı Puanı seçilmiştir. SPSS çıktısı aşağıdaki gibi gösterilir:

Çubuk Grafik

Çubuk grafik istatistik analizlerde yaygın olarak kullanılan bir diğer grafik türüdür. Histogramdan farklı olarak çubukların kalınlıkları herhangi bir anlam taşımaz. Sadece yükseklikleri önemlidir. Basit bir gösterim sağlar.

Bir çubuk grafik oluşturmak için şu mönüleri takip edin.

GRAPHICS » LEGACY DIALOGS » BAR

Ana "Bar Chart" iletişim kutularından önce küçük bir iletişim kutusu karşınıza çıkacaktır. Bu örnekte "Simple" ave daha sonra "Define" tuşuna tıklayın. Şimdi karşınıza "Define Simple Bar" iletişim kutusu gelecektir ve burada grafiği oluşturmak için gerekli bilgileri girebilirsiniz.

Cinsiyet [D1] Gelir [D2]	Bars Represent	⑦ % of cases	OK
Annenin Egitim Düz	Cum. N	()) Cum. %	Faste
Babanin Egitim Duz	Other statistic (e.g.	, mean)	Reset
Var ID61	Variable:		Cancel
Sof Meycudu (D7)			Link
A1	Char	nge Statistic	nep
A2			
A3	Category Axi	s:	
A4	> B1		
A5	0-11		
A6	Panel by		
A7	nows.		
AB	· ·		
A9			
A10	Nest vari	ables (no empty rows)	
82	Columns:		
83			
Ø 05			
A BC	Nest vari	ables (no emoty columns)	
* . D0			
Template			Titles
Use chart specification	ns from:		(
File			Options

"Define Simple Bar" iletişim kutusunda "N of cases"i seçin; sıklık sayımı görüntülenecektir. Daha sonra sol taraftaki listeden grafik oluşturmak için ilgili değişkeni seçin ve yukarı ok tuşuna tıklayarak "Category Axis" kutusuna taşıyın. Bu örnekte "Öğretmenlerin maaşlarının yeterliliğine ilişkin görüşlerinin" sorulduğu "B1" değişkeninin dağılımı incelenmiştir.

Bunun ardından "OK" e tıklayın. Aşağıda SPSS'nin oluşturacağı grafiğin bir görüntüsü verilmiştir:

Grafikte öğretmelerin maaşlarının yeterli olduğu görüşüne katılma düzeylerinin dağılımları gözükmektedir.

Eğer bu görüşlerin ikinci bir değişkene göre dağılımını görmek istiyorsanız, "Bar Chart" iletişim kutusunda "Simple" yerine "Clustered"ı işaretleyin ve daha sonra "Define" tuşuna tıklayın. Örneğimizde "Öğretmenlerin maaşlarının yeterliliğine ilişkin görüşlerinin" "Cinsiyetlerine" göre dağılımlarını inceledik.

🕫 Gelir [D2]	Bars Represent		ОК
🔗 Annenin Egitim Düz	N of cases	Ø % of cases	Parte
🔗 Babanin Egitim Düz	Cum. N	Cum. %	Faste
Ogrenim Görülen Ol	Other statistic (e.g	., mean)	Reset
Sinf Mevcudu [D7]	Valiable		Cance
A1	Cha	nge Statistic	Help
A3	Category Av	is:	
P A4	上 🛷 B1		
A5	Define Clust	ters by:	
A5	🕨 🛷 Cinsiye	et [D1]]
P AR	Panel by		
A9	Rows:		
A10			
9 B2			
B3	Nest var	ables (no empty rows)	
84	Columns:		
9 pc			
P B8			
9 B9 -	Nest var	ables (no empty columns)	
Tamalata			
			Titles
Use chart specification	s from:		Ontions

Daha sonra "Define Clustered Bar" iletişim kutusu karşınıza çıkacaktır. Burada (Bars Represent" altında "% of cases" seçeneğini seçin. Bağımlı değişkeninizi (Örnekte, B1) "Category Axis" kutusuna taşıyın. Bunun ardından bağımsız değişkeninizi (Örnekte, Cinsiyet) "Define Clusters by" kutusuna taşıyın. Bu aşamada ayrıca "Title" tuşuna tıklayarak grafiğinize başlık, alt başlık ve dipnot ekleyebilirsiniz. Şimdi "OK" etiklayın. SPSS, aşağıdaki çıktıyı oluşturacaktır.

Grafikte kadın ve erkek öğretmenlerin maaşlarının yeterliliğine ilişkin görüşleri karşılaştırmalı olarak görülmektedir.

Pasta Çizelge

Pasta çizelgeler, her bir kategori içinde toplamın oranını temsil eden dilimlerin bulunduğu dairesel grafiklerdir. Diğer bir ifade ile pasta grafik bir bütünün parçalarını karşılaştırmalı olarak göstermek için kullanılabilecek bir grafik türüdür. Örneğin oy oranları en etkili pasta grafik ile sunulur. Bir pasta çizelge oluşturmak için aşağıdaki mönüleri seçin:

ssign Variables Pies	Titles	Options	
[A1] [A1] [A1] [A1] [A1] [A1] [A1] [A1] [A1] [A1] [A1] [A1] [A1] [A1] [A2] [A3] [A4] [A5] [A6] [A7] [A8] [A9] [B1] [B10] [B11] [B12] [B13] [A1]	P	ie Variables	2-D Coordinate -
Slices Represent		Count [\$count]	Display Key

GRAPHS » INTERACTIVE » PIE » SIMPLE

İnceleyeceğiniz değişkeni (Örneğimizde, Anenin Eğitim Düzeyi) fare yardımıyla "Silece By" kutusuna taşıyın. Tamam tuşuna tıklayın. SPSS, aşağıdaki çıktıyı oluşturacaktır.

Grafikte farklı eğitim düzeylerine ilişkin oranlar verilmiştir. Pasta grafik farklı kategoriler içinde karşılaştırma yapabilmeni,n yanı sıra, kategorinin bütün içindeki ağırlığını göstermesi açısından yararlıdır. Örneğin çubuk grafikte de farklı kategorileri başarılı bir şekilde karşılaştırabilirsiniz. Ancak her bir kategorinin toplam içindeki payını göremezsiniz. Dolayısıyla anketlerde tek bir seçeneğin işaretlendiği soruların gösteriminde pasta grafiğin en uygun gösterim şekli olduğu söylenebilir.

Çapraz Tablolar

Çapraz tablolar temel olarak, iki değişken arasındaki ilişkiyi analiz etmek için kullanılır. Bu, araştırmacıya değişkenler arasındaki ilişkiyi ilgili her bir değişkenin kategorilerinin kesişimlerini inceleyerek keşfetme olanağı sağlar. İkili tablolamanın en basit türü, iki değişkenli analizdir. Ancak analiz, bunun ötesine uzanabilir.

İki Değişkenli Analiz

Örneğe göre, iki değişken için çapraz tablolama yapmak için şu mönüleri takip edin:

ANALYZE » DESCRIPTIVES » CROSSTABS

Gelir ID21	Row((s):	OK
Annenin Egitim Dü		Türkiye AB'ye üye olar	Paste
Babanin Egitim Du:	Colum	nn/s):	Reset
Yas [D6]		Cinsivet [D1]	Cance
A1			Help
🔗 A2	Layer 1 of 1		
A3	Previous	Next	
A4			
A6			
A7			
Display clustered bar ch	arts		
Commentables			
Suppress tables			

Bu mönüleri seçtikten sonra karşınıza yukarıdaki gibi bir iletişim kutusu çıkacaktır. Burada iki değişkenli tablo için sıra (Row) ve sütun (Column) değişkenlerini seçme fırsatı bulacaksınız. Bağımlı değişkeni (Örnekte, "Türkiye AB'ye üye olmalıdır" ifadesi) Row(s) penceresine, bağımsız değişkeni (Örnekte, Cinsiyet) Column(s) penceresine taşıyınız.

Daha sonra, çıktı tablosunda yer alacak bilgileri belirlemek için "Cells" tuşuna tıklayın. Karşınıza çıkan pencerede Percenteges bölümündeki Column satırını işaretleyin ve sırasıyla Continue ve OK tuşlarını tıklayın.

Counts				Continu
Observed				Cancel
Expected				Help
Percentages	Re	siduals		
Row		Unstandard	zed	
Column		Standardize	d	
Total	0	Adjusted sta	ndardize	d
Noninteger Weights				
Round cell could be a could be could be could be a could be a could be a could be a c	nts	C Rour	nd case	weights
Truncate cell c	ounts	O Trun	cate cas	e weights
No adjustments				

Yukarıda belirtilen aşamaların ardından üretilen çıktıda, aşağıdaki tablo yer alacaktır.

			Cins	siyet	
			Kadin	Erkek	Total
Türkiye	Kesinlikle Katiliyorum	Count	15	28	43
AB'ye üye		% within Cinsiyet	11,5%	16,1%	14,1%
olamalı	Katiliyorum	Count	36	45	81
		% within Cinsiyet	27,7%	25,9%	26,6%
	Kararsizim	Count	38	40	78
		% within Cinsiyet	29,2%	23,0%	25,7%
	Katilmiyorum	Count	24	19	43
		% within Cinsiyet	18,5%	10,9%	14,1%
	Kesinlikle Katilmiyorum	Count	17	42	59
		% within Cinsiyet	13,1%	24,1%	19,4%
Total		Count	130	174	304
		% within Cinsiyet	100,0%	100,0%	100,0%

Türkiye AB'ye üye olamali * Cinsiyet Crosstabulation

Tablodaki verilere baktığımızda en belirgin farkın Kesinlikle katılmıyorum kategorisinde olduğu gözlenmektedir. Bu kategorideki verilerden Türkiye'nin AB'ye üye olması görüşüne erkeklerin % 24,1'i kesinlikle katılmazken, bu oran % 17'dir.

Analize Başka Bir Değişken Eklemek

Şimdi, bir önceki bölümde kabaca incelediğimiz iki değişkenli ilişkiyi daha derinlemesine nasıl inceleyebileceğimiz görelim. Bunun için öncelikle aşağıdaki mönüyü seçiniz.

DATA » SPLIT FILE

Karşınıza aşağıdaki pencere gelecektir. Buradan "Compare Groups" radyo düğmesini seçtikten sonra, ilişkiye dahil etmek istediğiniz değişkeni seçerek (Örnekte, Eğitim Düzeyi) "Group Based on" kutucuğuna taşıyınız ve OK tuşunu tıklayınız.

Şimdi Data View penceresinin sol altında, Split File On uyarsı belirecektir. Bu uyarı bundan sonra oluşturulacak tabloların belirlenen bir değişkene göre (Örneğimizde, Eğitim) bölüneceği anlamına gelmektedir.

				Cins	siyet	
Egitim Düzeyi				Kadin	Erkek	Total
Lise	Türkiye AB'ye	Kesinlikle Katiliyorum	Count	14	25	39
	üye olamali		% within Cinsiyet	13,3%	18,0%	16,0%
		Katiliyorum	Count	27	37	64
			% within Cinsiyet	25,7%	26,6%	26,2%
	-	Kararsizim	Count	33	32	65
			% within Cinsiyet	31,4%	23,0%	26,6%
	-	Katilmiyorum	Count	19	14	33
			% within Cinsiyet	18,1%	10,1%	13,5%
	-	Kesinlikle Katilmiyorum	Count	12	31	43
			% within Cinsiyet	11,4%	22,3%	17,6%
	Total		Count	105	139	244
			% within Cinsiyet	100,0%	100,0%	100,0%
Universite	Türkiye AB'ye	Kesinlikle Katiliyorum	Count	1	2	3
	üye olamali		% within Cinsiyet	5,0%	6,7%	6,0%
	-	Katiliyorum	Count	7	8	15
			% within Cinsiyet	35,0%	26,7%	30,0%
	-	Kararsizim	Count	4	6	10
			% within Cinsiyet	20,0%	20,0%	20,0%
	-	Katilmiyorum	Count	3	5	8
			% within Cinsiyet	15,0%	16,7%	16,0%
	-	Kesinlikle Katilmiyorum	Count	5	9	14
			% within Cinsiyet	25,0%	30,0%	28,0%
	Total		Count	20	30	50
			% within Cinsiyet	100,0%	100,0%	100,0%
Lisans Üstü	Türkiye AB'ye	Katiliyorum	Count	2	0	2
	üye olamali		% within Cinsiyet	40,0%	,0%	25,0%
	-	Kararsizim	Count	1	2	3
			% within Cinsiyet	20,0%	66,7%	37,5%
	-	Katilmiyorum	Count	2	0	2
			% within Cinsiyet	40,0%	,0%	25,0%
	-	Kesinlikle Katilmiyorum	Count	0	1	1
			% within Cinsiyet	,0%	33,3%	12,5%
	Total		Count	5	3	8
			% within Cinsiyet	100,0%	100,0%	100,0%

Türki	ve AB'	ve üve	olamali	* Cinsiv	vet Cros	sstabulation
i ui Ki	ye nd ,	ye uye	olaman	Oniai	yet 010.	socabulation

Şimdi "Crosstabs" mönüsüne dönün ve iki değişkenli analiz için yaptığınız işlemleri tekrarlayın. Karşınıza aşağıdakinin benzeri bir tablo çıkacaktır. Bu tabloyu kullanarak cevaplayıcıların AB üyeliği hakkındaki görüşlerinin, cinsiyet ve eğitim değişkenlerine göre değişimini inceleyebilirsiniz.

SPSS yazılımı, bir kullanıcının bir veri setinden örnek almasına olanak sağlar. Bu, hedefli ya da rastgele bir örnek olabilir.

Hedeflenmiş Seçim

Zaman zaman belirli veri setindeki yer alan tüm verileri araştırmanızda kullanmak istemeyebilirsiniz. Özellikle verileri siz toplamadıysanız, ihtiyaç duymadığınız verilerden kurtulmanız gerekecektir. Örneğin bayan öğretmenler üzerine bir araştırma yapıyorsanız, erkek öğretmenlere ait verilerin, veri setinden çıkartılması gerekecektir. Eğer Türkiye İstatistik Kurumu ya da başka bir kurum tarafından toplanan verileri kullanmayı planlıyorsanız SPSS'in bu özelliği işinizi oldukça kolaylaştıracaktır.

Mevcut veri setinden çalışacağınız örneği seçmek için aşağıdaki mönüleri takip edin:

DATA » SELECT CASES

Karşınıza aşağıdaki "Select Cases" iletişim kutusu çıkacaktır. Burada analiz etmeyi istediğiniz katılımcı türlerini seçebilir ve dolayısıyla araştırma kriterlerinize uymayanları çalışma dışarıda bırakabilirsiniz.

	Celert
Crisivet [D1]	Jacu
Gelir [D2]	C All cases
Annenin Egitim Dü.	If condition is satisfied
Babanin Egitim Dü.	E State Stat
🔗 Ögrenim Görülen C 🗏	
Sinif Meycudu ID6	Handom sample of cases
A1	Sample
A A2	Based on time or case range
A 43	Deser
A AA	hange
A 45	Use filter variable:
A 46	
A7	
A 48	Output
A 49	Filter out unselected cases
A 10	
A DI	Copy selected cases to a new dataset
A P2	Dataset name:
A D2	
A DA	O Delete unselected cases
67 D4	
urrent Status: Do not filter	Cases
	OK Pasta Peset Cancel Help

Bunun için, "Select ... If condition is satisfied" altındaki "If" tuşuna tıklayın. Karşınıza aşağıdaki gibi bir "If" iletişim kutusu karşınıza çıkacaktır.

Bu iletişim kutusundaki fonksiyonlar, nitelik ve işleyiş bakımından, ilk bölümde açıklanan "Compute" iletişim kutusundaki fonksiyonlara benzemektedir. Şimdi sınırlandırmak istediğiniz değişkeni sağdaki kutucuğa taşıyın. Örnekte cinsiyeti temsil eden D1 değişkeni kullanılmıştır. Yapılan ilk kodlamada (Variable View – Values seçeneği) Erkelere "1", Kadınlara "2" kodunu vermiştik. Burada sadece kadınları dikkate alacağımız için değişkeni "D1 > 1" olarak tanımladık. Eğer yaş değişkenini ele alsaydık ve 20 ile 30 yaş aralığı ile ilgilenseydik, tanımı "20 < Yaş < 30" şeklinde yapacaktık.

Şimdi sırasıyla Continue ve OK tuşlarına tıklayınız. Data View penceresinin sağ alt köşesinde "Filter On" uyarısı ve bu filtreleme sonucu devre dışı kalan değişkenler üzerinde çapraz bir çizgi oluşacaktır. Artık oluşturduğunuz filtreyi devre dışı bırakana kadar, yapılacak tüm hesaplamalarda sadece kadın cevaplayıcılara ait veriler kullanılacaktır. Filtreyi kaldırabilmek için "Select Cases" iletişim kutusundaki "Reset" fonksiyonunu kullanınız.

Gelir [D2]	\mathbf{F}	D1>1	-
🖗 Annenin Egitim Dú:			
Babanin Egitim Dù: Ogrenim Görülen C		* <> 789 Functions:	
Sinif Mevcudu [D6		- (=)= 456 ABS(numexpr)	
A1		ANYtest, value, value,)	Ū.
A3		ARTAN(numexpr)	
A4		CDFNORM(zvalue) CDF.BERNOULLI(g,p)	
🔗 A5		La start	

Rasgele Seçim

Şimdi veri setinden rasgele bir örnek grubunu seçmeyi istediğinizi varsayalım. Bunun için yine "Select Cases" iletişim kutusu kullanabilirsiniz.

Select Cases	
Cinsiyet [D1] Gelir [D2] Annenin Egitim Dü: Ogrenim Görülen C Sinif Mevcudu [D6 A1 A2 A3 A4 A5 A6	Select All cases If condition is satisfied If Random sample of cases Sample Based on time or case range Range Use filter variable:
A7 A8 A9 A9 A10 A10 B1 B2 B3 B3 B4 B4	Output Filter out unselected cases Copy selected cases to a new dataset Dataset name:
Current Status: Filter cases by	ovalues of filter_\$

Bu sefer, ilgili "Select ... Random sample of cases" radyo düğmesini seçtikten sonra "Sample" tuşuna tıklayın. Karşınıza aşağıdaki gösterilen "Random Sample" iletişim kutusu çıkacaktır:

Sample Size		
Approximately	20 % of all cases	
Exactly	cases from the first	cases

Bu örnek için, örneklerin %20'si seçilecektir. Dikkat ederseniz SPSS'de, (approximately) yaklaşık kelimesini kullanılmaktadır. Çünkü veri setlerinin hepsi seçtiğiniz yüzdeye bölünemeyebilir ve dolayısıyla tam sayı elde edilemeyebilir. Alternatif olarak Exactly radyo düğmesini işaretleyerek, N sayıda veriden, belirleyeceğiniz sayıda örnek seçebilirsiniz.

e Edit	View Dat	a Transform	Analyze G	iraphs Utiliti	es Window	Help			of Constitution of Const
	• 🖽 •	🐟 🖿 🕅	A 📲 🖞	- 🖽 🗗 🗏	s 😵 🌰	•			
D1		2						Visibl	e: 52 of
	D1	D2	D3	D4	D5	D6	A1	A2	A3
1	2,00	2,00	2,00	3,00	1,00	2,00	5,00	4,00	5,0
2	1,00	2,00	4,00	5,00	1,00	2,00	4,00	4,00	4.0
3	1,00	2,00	3,00	3,00	1,00	1,00	5,00	5,00	5,0
-4	1,00	6,00	5,00	6,00	1.00	2,00	5,00	4,00	4.0
5	2,00	1,00	4,00	3,00	1.00	1,00	5,00	5,00	5.0
6	1,00	3,00	2.00	4,00	1.00	1,00	3,00	3,00	3,0
1	2,00	2,00	2.00	4,00	1.00	1,00	5,00	4,00	5,
-8	1,00	3,00	5.00	4,00	1.00	1,00	2,00	2,00	2,
9	1.00	1,00	2,00	2.00	1.00	1,00	5.00	4,00	4.
10	2,00	2,00	4.00	4,00	1,00	1,00	5,00	3,00	3.
11	1,00	2,00	4,00	4.00	1,00	1,00	4,00	3,00	3.
12	2,00	1,00	2,00	2,00	1,00	1,00	5,00	4,00	4.
-13	2,00	2,00	2,00	2,00	1,00	2,00	3,00	3,00	3,
14	1,00	6,00	5,00	5,00	1,00	1,00	4,00	4,00	3,
15	1,00	2,00	2,00	2,00	1,00	1,00	4,00	4,00	3.
16	1,00	5,00	5,00	5,00	1,00	1,00	4,00	3,00	3,
17	1,00	1,00	2,00	2,00	1,00	1,00	3,00	4,00	3,
-18	1,00	1,00	1,00	2,00	1,00	1,00	2,00	4,00	4,
19	1,00		2,00	2,00	2,00	1,00	5,00	5,00	5,0
20	1,00	2,00	4,00	5,00	1,00	1,00	3,00	3,00	4,0
21	1,00	2,00	4,00	4,00	1,00	2,00	2,00	1,00	2,0
Data	View X Va	riable View /	0.00	5.00	4.00	and a	m. 4.00	0.00	1

"Continue" ve ardından "Select Cases" iletişim kutusuna döndüğünüzde "OK" etiklayın. Bu işlem sonrası "Data Editor" penceresinin görünümü aşağıda verilmiştir.

Dikkat ederseniz veri setinin yaklaşık % 80'nin üzerinde bir önceki uygulamada olduğu gibi diyagonal bir çizgi oluşmuştur. Bu çizgi, filtre devre dışı bırakılana kadar söz konusu değişkenlerin hesaplamalara dâhil edilmeyeceğini göstermektedir.

Yeni Bir Veri Seti İçin Örnek Seçmek

Bazı verilerin filtrelenerek üzerlerinin çizilmesi kafanızı karıştırıyor mu? Seçtiğiniz verileri ayrı bir dosyaya kopyalayarak bundan sonra o dosya üzerinde işlem yapmaya ne dersiniz?

Bunun için bundan önce anlattıklarımızı tekrarlayın.

DATA » SELECT CASES

Karşınıza çıkan iletişim kutusundaki"Copy selected cases to a new dataset" yazısının yanındaki radyo düğmesini tıklayın. Daha sonra yeni dosyanız için bir isim girin (Örnekte, YeniVeriler). Şimdi OK tuşuna tıklayın. SPSS verdiğiniz isimde bir veri ayrı bir veri dosyası oluşturacaktır.
	Calent
Cineivet (D1)	Select
Calle (D2)	Al cases
Cell [U2]	F condition is satisfied
Annenin Egitim Du:	
Babanin Egitim Du	
Ogrenim Gorulen C	Random sample of cases
Sinf Mevcudu [D6	Sample Approximately 5 % of cases
AI U	
AZ AL	O based on time or case range
A3	Range
A4	O Use filter variable:
A5	
A6	
A7	0 mil
AS	ouput
A9	O Hiter out unselected cases
A10	Copy selected cases to a new dataset
B1	Distant open: VenMeder
P B2	Dataset name. Terrivenien
P B3	Delete unselected cases
P 84	
ment Status: Do not filter c	ases

Bu seçeneği seçmenin avantajı, orijinal veri dosyasını değiştirme riski olmaksızın altküme veri dosyası ile çalışabilmenize olanak sağlamasıdır.

U

Güvenilirlik Analizi

Güvenilirlik değeri bir ölçme aracının tekrarlanan ölçümlerde aynı sonucu verme derecesinin göstergesidir. Biraz karışık mı? Aslında değil. Şimdi evinizde bir tartı aleti olduğunu düşünün. Üzerine ilk çıktığınızda sizi 75 Kg göstersin. Şimdi 30 saniye aralıklarla aynı işlemi tekrarlayın. Tartının her defasında sizi 75 Kg göstermesini beklersiniz. Eğer tartı her defasında farklı bir ağırlık gösterirse (2 nci Ölçüm: 85kg, 3 ncü Ölçüm: 60 kg, 4 ncü Ölçüm: 70 kg) ne yaparsınız? Evet tartıyı çöpe atmak ya da kalibre etmek zorundasınız. Aksi takdirde tartı bu haliyle işlevsizdir.

Aynı durum sosyal olguları ölçmek için kullanılan anketler için de söz konusudur. Anketin aynı düşüncede olan kişilerin görüşlerini tartı gibi eşit göstermesi beklenir. Bunun için soruların ifade ediliş şekli çok önemlidir. Farklı kişiler tarafından farklı şekillerde yorumlanabilecek ifadeler ölçüm sonuçlarının güvenilirli-

ğini düşürür. Bu yüzden öncelikle soruları herkes tarafından aynı anlam yüklenecek şekilde tasarlamalısınız. Bu da soruların kısa ve öz ifadeler içermesini gerekli kılar. Sorular insanların kafasını karıştırmamalıdır. Örneğin;

Madde: Mustafa Özer akıllı ve çalışkan bir öğretmendir.

- () Kesinlikle Katılıyorum
- () Katılıyorum
- () Karasızım
- () Katılmıyorum
- () Kesinlikle Katılmıyorum

İfadesine cevap verecek insanları düşünün. Burada Mustafa Özer'in akıllı fakat çalışkan olmadığını düşünenler hangi seçeneği işaretleyecekler. Ya da az çalışkan, orta derecede akıllı olduğunu düşünenler? Tartışmalı değil mi. Burada soruya verilen cevaplar Mustafa Özer'e ait düşüncenin ötesinde sorunun ifade ediliş şeklinden kaynaklanan yorumlara göre farklılaşacaktır. Bu problemi bu soruyu ikiye bölerek çözebiliriz.

Ancak durum her zaman bu denli açık değildir. Örneğin;

Soru: Düzenli olarak spor yapar mısınız?

() Evet () Hayır

Çok basit ve güvenilir gözüküyor değil mi? Aslında değil. Çünkü ayda 1 gün (30 gün arayla) spor yapan bir kişi bu soruya evet cevabı verirken, genelde her gün spor yapan fakat zaman zaman programını aksatan bir kişi aynı soruya hayır cevabı verebilir. Diğer bir ifade ile kişilerin bu soruya verdikleri cevapları spor yayıp yapmamalarının yanında "düzenli" kavramına ilişkin yorumları etkileyecektir.

Anket sorularını her ne kadar dikkatli hazırlarsanız hazırlayın bu gibi durumları gözden kaçırmanız mümkündür. Ayrıca yabancı bir dilden çevrilmiş bir anket kullanıyorsanız yine aynı durum söz konusu olacaktır. Belli bir kültürde herkes için aynı anlam ifade eden olgular, diğer bir kültürde farklı şekilde yorumlanabilir.

İşte bu yüzden anket araştırması tamamlandıktan sonra elde ettiğimiz verileri güvenilirlik analizine tabi tutuyoruz. Güvenilirlik analizi sonuçları bize bu tür yorum hatasına neden olan soruları gösteriyor. Bundan sonra yapılması gereken farklı alternatifler söz konusu... Eğer güvenirlilik analizini bir ön testten elde ettiğiniz verilere dayalı olarak yaptıysanız soruları tekrar ve daha güvenilir şekilde ifade ederek uygulamayı revize edilmiş sorularla yapabilirsiniz. Ancak araştırmanız tamamlandıysa güvenirliliği düşük soruları anketten çıkartarak, değerlendirmeyi kalan sorularla yapmaktan başka çareniz yok.

Şimdi gelelim bu işin SPSS'de nasıl yapılacağına... Güvenilirlik analizi için öncelikle aşağıdaki menüleri kullanın.

ANALYZE » SCALE » RELIABILITY ANALYSIS

Karşınıza çıkan Reliability Analysis iletişim kutusunda güvenilirlik analizine tabi tutacağınız maddeleri aradaki oku kullanarak Items kutucuğuna gönderin (eğer güvenilirlik analizini faktör bazında yapıyorsanız ilgili faktörde yer alan maddeler, ölçek bazında yapıyorsanız tüm maddeler).

Daha sonra Statistics tuşunu tıklayın karşınıza Reliability Analysis: Statistics iletişim kutusu çıkacaktır. Bu iletişim kutusundaki Scale If Item Delated seçeneğini işaretleyin ve sırasıyla Continue, OK tuşlarını tıklayın. Karşınıza aşağıdakilere benzer tablolar gelecektir.

Descriptives for	Inter-Item	Continue
Scale		Cancel
Scale if item deleted		Help
Summaries	ANOVA Table	
Means	None	
Variances		
Covariances	Friedman chi-square	
Correlations	Cochran chi-square	
] Hotelling's T-square	Tukey's test of additivity	
Intraclass correlation coef	ficient	
Model: Two-Way Mixed	 Type: Consistence 	y
Conciliant internal DE	V Testusius 0	1

Reliability Statistics tablosundan faktörün güvenilirliğinin $\alpha = 0,857$ yüksek bir değer olduğu görülmektedir. Bununla birlikte alfa katsayısı yalnız başına yeterli değildir. Sağlıklı bir değerlendirme yapabilmek için faktördeki her bir sorunun bu katsayıya katkısının incelenmesi gerekir.

Reliability Statistics			
Cronbach's Alpha	N of Items		
,857	10		

Bunun için Item – Total Statistics tablosunun Cronbach's Alpha if Item Delated (Madde Silindiğinde Cronbach Alfa) sütununda-

ki değerlere bakacağız. Dikkat edilirse A 10 numaralı maddenin silinmesi halinde ölçeğin güvenilirlik katsayısının α = 0,857'den α = 0,880 yükseleceği görülecektir. Bu değer bize A10 sorusunda bir problem olduğunu sorunun anketten çıkartılması gerektiğini göstermektedir.

		Scale	Corrected	Cronbach's
	Scale Mean if	Variance if	Item-Total	Alpha if Item
	Item Deleted	Item Deleted	Correlation	Deleted
A1	29,8500	53,339	,545	,846
A2	30,7714	50,378	,680	,834
A3	30,2464	51,921	,606	,840
A4	30,0321	51,938	,534	,846
A5	30,1714	50,358	,672	,834
A6	30,2679	50,168	,701	,832
A7	30,6536	53,252	,535	,846
A8	30,6250	49,862	,682	,833
A9	30,8500	50,637	,597	,841
A10	31,2464	56,875	,193	,880

ŞimdiA10'u anketten çıkartalım ve analizi tekrarlayalım. Aşağıdaki Reliability Statistics tablosundan faktörün güvenilirliğinin $\alpha = 0,880'$ e yükseldiği görülmektedir.

Reliability Statistics

Cronbach's	
Alpha	N of Items
,880	9

Bunun için Item – Total Statistics tablosunun Cronbach's Alpha if Item Delated sütunundaki değerler ise herhangi bir maddenin ölçekten çıkartılmasının faktörün güvenilirliğini arttırmayacağını aksine düşüreceğini göstermektedir. Bu çerçevede kalan 9 maddenin ölçülmek istenen olguyu başarıyla ölçtüğü sonucuna varılabilir.

		Scale	Corrected	Cronbach's
	Scale Mean if	Variance if	Item-Total	Alpha if Item
	Item Deleted	Item Deleted	Correlation	Deleted
A1	27,2792	46,925	,574	,870
A2	28,1908	44,403	,681	,860
A3	27,6926	45,831	,620	,866
A4	27,4629	45,867	,543	,873
A5	27,6184	44,705	,661	,862
A6	27,7138	44,354	,703	,858
A7	28,0742	47,069	,540	,872
A8	28,0671	44,056	,685	,860
A9	28,2756	44,768	,595	,868

Item-Total Statistics

Factor Analizi

Şimdi lisede girdiğiniz sınavları düşünün. Öğretmeniniz fen bilgisi ya da matematik dersinde bilgi düzeyinizi tek bir soru ile mi ölçerdi. Nadir durumlar (kötü öğretmenler) dışında tabii ki hayır.

Benzer durum anketler için de geçerlidir. İnsanların belli bir olguya ilişkin düşüncelerini tek bir soruyla ölçemezsiniz. Olguyu farklı birbirini destekleyen yönleriyle ölçebildiğiniz taktirde başarılı bir sonuç alabilirsiniz.

Şimdi matematik dersinin final sınavında soruların ünite bazında gruplandırılmadan karışık olarak size yöneltildiğini düşünün. İlk başta sorun olmadığını düşünebilirsiniz. Genel puanınız nasıl olsa bellidir. Ancak ünite bazında başarı düzeyinizi öğrenmek isterseniz... İşte o zaman soruların gruplanması gerekir. Tabii matematik gibi somut bir disiplinde geometri soruları ile trigonometri sorularını ayırmak son derece kolaydır. Ancak iş sosyal olguları ölçen anketlere geldiğinde bu işlem için bazı tekniklerin kullanımı zorunlu olur.

Örneğin okul müdürlerinin faklı liderlik davranışlarının öğretmenlerin iş tatminine etkilerinin ölçüldüğü bir araştırma yaptığınızı düşünün. Bu araştırmada müdürlerin farklı liderlik davranışlarını (Örnek, Otokritik, Katılımcı, Destekleyici vb.) ayrı ayrı değerlendirmeniz gerekecektir. Belki anket öncesi bu tür bir gruplandırma yapmış da olabilirsiniz. Bu durumda dahi yaptığınız gruplandırmanın ne derecede doğru olduğunu Faktör Analizi ile sayısal olarak doğrulamanız yararlı olacaktır. Çünkü sizin katılımcı liderlik davranışı olarak tanımladığınız bir davranış öğretmenler tarafından destekleyici liderlik davranışı olarak yorumlanmış olabilir. Bu durumda bu soru ya anketten çıkartılmalı ya da destekleyici liderlik kategorisinde değerlendirmeye alınmalıdır. Anket öncesi hiçbir kategorizasyon yapılmadığı durumlarda ise Faktör Analizi eşsiz bir araçtır. Soruları sizin için gruplandırır. Bundan sonra size kalan sadece her bir gruba isim vermektir.

Şimdi gelelim bu muhteşem tekniğin SPSS'de nasıl uygulanacağına... Faktör analizi için öncelikle aşağıdaki menüleri kullanın.

ANALYZE » DATA REDUCTION » FACTOR

Karşınıza çıkan Factor Analysis iletişim kutusunda analize tabi tutacağınız maddeleri aradaki oku kullanarak Variables kutucuğuna gönderin.

	Variables:	ОК
	A1	Paste
	A3	Reset
	A4	Cance
	69 B1	Help
	67 B2	-
	Selection Variable:	
		Value
Descriptives Extr	action Rotation	Corres Ontions

Şimdi Rotation tuşuna tıklayın karşııza çıkan Factor Analysis: Rotation iletişim kutusundan Varimax seçeneğini işaretleyin. Sırasıyla Continue ve OK tuşlarını tıklayın. Aşağıdakilerin benzeri tablolar elde edeceksiniz.

Method		Continue
None	Quartimax	Cancel
Varimax		
Direct Oblimin Delta:	C Promax Kappa 4	Help
Display Rotated solution	Loading plot(s)	

Total Variance Explained tablosunda ölçeğin kaç faktörden oluştuğu ve bu faktörlerin ölçülmek istenen olguyu ne derecede ölçtükleri görülmektedir.

Tablo, örneğimiz üzerinden incelendiğinde, 1nci Faktörün ölçtüğümüz olguyu (çalışanların memnuniyet düzeyi olsun) % 41,9; 2 nci Faktörün % 9,7; 3 ncü Faktörün % 9,1 oranında ölçtüğü görülmektedir. Ayrıca 3 Faktör ve 15 sorudan oluşan bu anket çalışanların memnuniyet düzeyini % 60 oranında ölçmektedir. Eğer % 60 oranında bir bilgi sizin için yeterli değilse ankete yeni sorular ve faktörler ekleyerek çalışmayı tekrarlamayı düşünebilirsiniz.

	Initial Eigenvalues		Rotatio	n Sums of Square	ed Loadings	
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	6,288	41,919	41,919	3,221	21,473	21,473
2	1,457	9,710	51,629	3,105	20,701	42,174
3	1,379	9,197	60,825	2,798	18,651	60,825
4	,891	5,940	66,766			
5	,794	5,293	72,058			
6	,703	4,688	76,747			
7	,615	4,103	80,849			
8	,531	3,539	84,388			
9	,461	3,075	87,464			
10	,401	2,675	90,139			
11	,381	2,539	92,679			
12	,346	2,308	94,987			
13	,316	2,104	97,091			
14	,232	1,547	98,637			
15	,204	1,363	100,000			

Total Variance Explained	ł
--------------------------	---

Extraction Method: Principal Component Analysis.

Component Matrix ise ölçeğin faktör sayısını göstermekle birlikte hangi maddenin hangi faktöre ait olduğu hakkında bilgi içermez. Bu nedenle faktör yapısının oluşturulmasında Rotated Component Matrix tablosu kullanılır.

	Component		
	1	2	3
A1	,559	,053	,345
A2	,647	-,183	,378
A3	,606	,121	,397
A4	,573	-,148	,510
A5	,685	,067	,417
B1	,721	,220	-,044
B2	,436	,571	-,286
B3	,769	,398	-,109
B4	,738	,251	-,029
B5	,573	,446	-,286
C1	,759	-,298	-,255
C2	,759	-,332	-,289
C3	,661	-,265	-,347
C4	,505	-,335	-,030
C5	,611	-,452	-,281

Component Matrix^a

Extraction Method: Principal Component Analysis. a. 3 components extracted.

Rotated Component Matrix tablosu incelenirken her bir maddenin hangi faktör altında en yüksek değere sahip olduğuna bakılır. Daha sonra bu maddeler gruplandırılarak faktör yapısı oluşturulur.

		Component	
	1	2	3
A1	,145	,608	,208
A2	,336	,292	,663
A3	,106	,676	,266
A4	,207	,753	,001
A5	,180	,740	,260
B1	,317	,388	,665
B2	,029	,017	,772
B3	,260	,360	,751
B4	,300	,409	,693
B5	,193	,100	,749
C1	,771	,251	,269
C2	,809	,224	,255
C3	,733	,118	,276
C4	,737	,282	,023
C5	,193	,145	,782

Rotated Component Matrix

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 5 iterations.

www.istatistikmerkezi.com

Tablodaki her bir maddenin bileşenler altındaki değerleri incelendiğinde; C1, C2, C3, C4 maddelerinin 1 nci Faktör, A1, A3, A4, A5 maddelerinin 2 ncü Faktör, A2, B1, B2, B3, B4, B5, C5 maddelerinin ise 3 ncü faktör altında en yüksek yükleme değerine sahip oldukları görülmektedir.

Madde numaralarından da anlaşılacağı üzere bu beklenmedik bir durumdur. A2 ve C5 maddeleri beklenmedik bir şekilde 3 ncü faktör altında toplanmıştır. Ancak soru içerikleri incelenirse hatanın analizden değil, soruyu hazırlayandan kaynaklandığı her durumda (anketin sağlıklı uygulanmadığı durumlar hariç) ortaya çıkacaktır.

Dolayısıyla gerek güvenilirlik analizi, gerekse faktör analizi anket tasarımı sırasında yapılan hataları bulmamızı ve bunları gidermemizi sağlayan güçlü araçlar olarak görülebilir.

Uygun Analiz Türünün Belirlenmesi

Uygun analiz türünün belirlenmesinde ilk kriter verilerin türüdür. Analiz yöntemleri verilerin özelliklerine göre iki temel gruba ayrılır. Bu gruplarda yer alan temel analiz yöntemleri aşağıdaki gibidir.

- (1) Parametrik veriler için kullanılan analiz yöntemleri; Varyans Analizi, T-Testi, Pearson Korelasyonu.
- (2) Parametrik olmayan veriler için kullanılan analiz yöntemleri; Ki-Kare Testleri, Spearman Korelasyonu.

Dolayısıyla uygun analiz türünü seçebilmek için öncelikle verilerin özelliklerinin belirlenmesi gerekecektir. Şimdi bunu nasıl yapacağımız görelim.

İstatistiksel analiz yapmanın ilk şartı verilerin tesadüfi (yansız) olarak seçilmiş olmasıdır. Veriler ister parametrik ister parametrik olmayan özellikte olsun mutlaka tesadüfi olarak seçilmelidir. Verilerin seçiminde (örneklemin oluşturulması) yapılacak bir hata hangi analiz yöntemi kullanılırsa kullanılsın sonuçların yanlı ve değersiz olmasına yol açacaktır.

Bu şart sağlandıktan sonra ilk bakacağımız kriter örneklem büyüklüğü olacaktır. Eğer örneklem büyüklüğünüz 30'dan az ise parametrik olmayan yöntemleri kullanmanız gerek. Bu durumda veri setinizin diğer kriterleri karşılayıp karşılamadığını incelemenize gerek kalmaz. Eğer veri seti 30'dan büyük ise her bir faktörün normal dağılıma sahip olup olmadığını ve verilerin homojen dağılıp dağılmadığını incelemelisiniz.

Parametrik testlerde bu kadar ısrar etmemizin nedeni; hesaplamalarda veri setinin tümünü kullanmaları ve bu nedenle parametrik olmayan testlere göre daha üstün olmalarıdır. Ancak parametrik testlerin kullanabilmesi için verilerin normal dağılması ve homojen olması gerekmektedir.

Şimdi bu iki şartın sağlanıp sağlanmadığını SPSS'de nasıl ölçeceğimizi bir örnek üzerinde inceleyelim.

Örnek: Beşiktaş ilçesindeki ilköğretim okullarında görev yapan öğretmenlerin "eleştirel öğrenme", "çoklu öğrenme", "yapılandırmacı öğrenme" ve "duygusal zeka" hakkındaki görüşleri cinsiyetlerine göre farklılık göstermekte midir?

Verilerin normal dağılıma uygunluğunu Tek Örneklem Kolmogorov Smirnov Testi kullanarak belirliyoruz. Bu teste başlamak için aşağıdaki mönüleri kullanınız.

ANALYZE » NONPARAMETRIC TESTS » SAMPLE K-S

Karşınıza aşağıdaki iletişim kutusu çıkacaktır. Burada dağılımlarını test edeceğiniz faktörleri aradaki oku kullanarak Test Variable List kutucuğuna gönderin. Daha sonra OK tuşunu tıklayın. Karşınıza aşağıdakilerin benzeri bir tablo gelecektir.

C11 C12 C13	Test Variable List:	OK Paste
C14 C15 C15 C16		Reset Cancel Help
Test Distribution		
Vormal	🔄 Uniform	Event
Poisson	Exponential	Diaci

One-Sample Kolmogorov-Smirnov Test

		F1	F2	F3	F4
Ν		200	200	200	200
Normal Parameters a,b	Mean	3,4719	3,4938	3,2335	3,1312
	Std. Deviation	,81268	,81291	,85890	,69493
Most Extreme	Absolute	,078	,072	,076	,066
Differences	Positive	,078	,072	,065	,066
	Negative	-,075	-,072	-,076	-,047
Kolmogorov-Smirnov Z		1,109	1,013	1,076	,938
Asymp. Sig. (2-tailed)		,170	,257	,197	,343

a. Test distribution is Normal.

b. Calculated from data.

Tablonun Assymp.Sig. (Anlamlılık) satırındaki değerlerin istatistiksel anlamlılık hesaplamalarında sınır değeri kabul edilen 0,05'den büyük olması incelenen faktörlerin dağılımlarının normal olduğunu göstermektedir. Eğer bu değerler 0,05'den küçük olsa idi parametrik olmayan test yöntemlerini kullanmak durumunda kalacaktık.

Şimdi aynı verilerin homojenliğini inceleyelim. Bunun için öncelikle aşağıdaki mönüleri kullanınız.

ANALYZE » COMPARE MEANS » ONEWAY ANOVA

Karşınıza aşağıdaki iletişim kutusu çıkacaktır. Burada dağılımlarını test edeceğiniz faktörleri aradaki oku kullanarak Dependent List kutucuğuna gönderin. Daha sonra bu değişkenleri gruplamada kullanacağınız değişkeni yine aradaki oku kullanarak Factor satırına yerleştirin.

C8	*	Dependent List:	ОК
✓ C9 ✓ C10			Paste
C11		F3	Reset
C12		K 14	Cance
C14		Factor:	Help
C15		Cinsiyet [D1]	
C16			

Daha sonra Options tuşuna basın . Kaşınıza çıkacak aşağıdaki iletişim kutusundan Homogeneity of variance test seçeneğini işaretleyin. Sırasıyla Continue ve OK tuşlarını tıklayın.

Statistics	Continue
	Cancel
Fixed and random effects	Help
Promogeneity of variance test	Пер
Welch	
Means plot	
Missing Values	
Exclude cases analysis by analysis	is
and the second second second second second	

Karşınıza aşağıdaki Test of Homogenity of Variances tablosu gelecektir. Bu tablonun da Sig. (Anlamlılık) sütunundaki değerlerin 0,05'den büyük olması incelenen faktörlerin dağılımlarının homojen olduğunu göstermektedir. Dolayısıyla bu soru için parametrik test yöntemlerini kullanabiliriz.

Test of Homogeneity of Variand	ces
--------------------------------	-----

	Levene Statistic	df1	df2	Sig.
F1	,479	1	302	,489
F2	2,159	1	302	,143
F3	1,161	1	301	,282,
F4	,905	1	302	,342

Bundan sonraki bölümlerde parametrik ve parametrik olmayan test yöntemlerini ayrıntılı olarak inceleyeceğiz.

Regresyon ve Korelasyon Analizi

Regresyon analizi, değişkenler arasındaki neden-sonuç ilişkisini bulmamıza imkan veren bir analiz yöntemidir. Örneğin "yemek yeme" ile "kilo alma" arasındaki ilişki regresyon analizi ile ölçülebilir. Korelasyon analizinde ise iki değişkene arasındaki ilişkinin yönü ve şiddeti hesaplanır. Fakat bu ilişki bir neden-sonuç ilişkisi olmak zorunda değildir. Örneğin, horozların sabah ötmeleriyle, güneşin doğması arasında kusursuz doğrusal pozitif korelasyon ilişki vardır. Ancak bu ilişki güneşi horozların doğmasını sağladığını göstermez.

Günlük hayatta da iki değişken arasındaki güçlü ilişkileri sürekli olarak neden-sonuç ilişkisi olarak yorumlamak eğilimi hakimdir. Analistler patronların önüne sayfalar dolusu veriyi yığarlar. Ancak bu basit ayrımın yapılmaması hatalı kararların alınması ve kaynakların boşa harcanmasına yol açar. Bu bölümde lineer regresyon konusunu ele alacağız. Lineer regresyon, aralık-oran değişkenleri üzerinde gerçekleştirilen bir analiz türüdür. İlk olarak iki değişkenli regresyonu inceleyeceğiz. Daha sonra analize daha fazla ayrıntı ekleyeceğiz.

İkili Regresyon

İkili regresyonda araştırmacı, bağımsız değişken X hakkında sahip olduğu bilgilerden hareketle bağımlı değişken Y'yi tahmin etmeye çalışır. Biz aşağıdaki örneği kullanacağız; bu örnekte, eğitim yılı sayısına dayalı olarak katılımcının mesleki prestiji puanlanmaktadır. İki değişkenli regresyon analizine başlamak için aşağıdaki mönüleri seçin:

		ependent:	ОК
A C2		P Basari [F1]	Paste
S C3	Block 1 of 1		Fase
A C4	Previous	Next	Reset
A C6	k	dependent(s):	Cancel
S C7		Metod [F2]	Help
SP C8	4		Contraction
C9			-
C11	N	ethod: Enter	1
C12	S	election Variable:	
C13		Rut	le
C14			
C15		ase Labels:	
Metod [F2]			
5 F3	V V	LS Weight:	
	Qualitation	Plots Save	Ontione

ANALYZE » REGRESSION » LINEAR

www.istatistikmerkezi.com

Karşınıza yukarıdaki iletişim kutusu çıkacaktır. Örneğimizde öğretmenlerin ders işleme yöntemlerinin öğrenci başarısına etkilerini inceleyeceğiz.

Bu iletişim kutusunda bağımlı değişkeninizi (Örnekte, Başarı) "Dependent" satırına, Bağımsız değişkeninizi (Örnekte, Metod) ise "Independent(s)" penceresine taşıyınız. OK tuşunu tıkladığınızda karşınıza aşağıdaki tablolar gelecektir. Şimdi bu tablolardaki temel göstergeleri örneğimiz üzerinden açıklayalım.

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,735 ^a	,540	,538	,56330

Model Summary

a. Predictors: (Constant), Metod

Model özeti tablosundaki R Square sütunundaki değerlerden bağımsız değişken durumundaki "Ders İşleme Metodunun" bağımlı değişken durumundaki "Öğrenci Başarısı" değişkenine ait varyansı % 54 oranında açıkladığı, diğer bir ifade ile öğrenci başarısının % 54'ünün ders işleme yöntemine bağlı olduğu anlaşılmaktadır.

)
A101A	

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	112,314	1	112,314	353,954	,000 ^a
	Residual	95,828	302	,317		
	Total	208,142	303			

a. Predictors: (Constant), Metod

b. Dependent Variable: Basari

ANOVA tablosunun anlamlılık sütunundaki değer ise söz konusu değişkenler arasındaki ilişkinin p < 0,01 düzeyinde istatistiksel olarak anlamlı olduğunu göstermektedir. Eğer bu sütundaki değer 0,05'in üzerinde olsaydı ilişkinin anlamsız (rastlantısal) olduğu yorumunu yapacaktık. Tablodaki ilişki formüle edilecek olursa;

F (1,302) = 353,954; *p* < 0,01 denklemi oluşturulabilir.

		Unstand Coeffi	lardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1,131	,129		8,739	,000
	Metod	,737	,039	,735	18,814	,000

Coefficients^a

a. Dependent Variable: Basari

.

Katsayı (Coefficients) tablosu ise, regresyon denklemi için kullanılan regresyon katsayılarını ve bunların anlamlılık düzeylerini vermektedir. Örneğimizde eğitim metodu değişkeninin katsayısı 0,737, denklemin sabit değeri ise 1,131'dir.

Bu değerleri Y = bX + a denklemine yerleştirdiğimizde karşımıza;

$$Y = 0,737X + 1,131$$

eşitliğini elde ederiz. Bu eşitlik bize eğitim yönteminin alacağı değerlerin öğrenci başarısını nasıl etkilediğini göstermektedir.

Çoklu Regresyon

Çoklu regresyonda ikili regresyondan farklı olarak bağımlı değişken üzerinde birden fazla bağımsız değişkenin toplu etkisi araştırılır. Burada da ikili regresyonda kullanılan mönülerden yararlanılır. Ancak Independent(s) penceresine birden fazla değişken girişi yapılır. Biz burada Öğrenme, Ortak Vizyon, Açık Fikirlilik ve Koordinasyon değişkenlerinin Yenilikçi İş Davranışına etkilerini belirlemeye çalışacağız.

Bunun için öncelikle ikili regresyonda izlediğiniz adımları tekrarlayın. Daha sonra Independent(s) kutucuğuna tüm bağımsız değişkenlerinizi girin ve OK tuşuna yıklayın.

AF4	Dependent:	OK
A RP2		Paste
BP3	Block 1 of 1 Previous	Reset
BP4 BP5	Independent(s):	Cancel
Faaliyet Alani [FA]	Øgrenme [OFort]	^ Help
Faaliyet Alani Sinirk	Ortak Vizyon [OVort] Acik Fikirlilik [AFort]	-
Calisan Sayisi [CS]	Method: Enter	•
Cinsiyet [CINS] Yas [YAS] Egitim Durumu [ED Yenilikci Firma [YFc Ogrenme [OFort] Ottak Vizyon [OVor Ack Fikirliik [AFort	Selection Variable:	Rule

Karşınıza aşağıdakilerin benzeri tablolar gelecektir. Model özeti tablosundaki R Square sütunundaki değerlerden yine bağımsız değişken durumundaki "Öğrenme", "Ortak Vizyon", "Açık Fikirlilik" ve "Koordinasyonun" bağımlı değişken durumundaki "Yenilikçi İş Davranışı" değişkenine ait varyansı % 70 oranında açıkladığı, diğer bir ifade ile yenilikçi iş davranışının % 70 oranında bu faktörlere bağlı olarak şekillendiği anlaşılmaktadır.

Model Summary							
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate			
1	,839 ^a	,704	,697	,42774			
a. Pro Aç	a. Predictors: (Constant), Koordinasyon, Ortak Vizyon, Açik Fikirlilik, Ögrenme						

ANOVA tablosunun anlamlılık sütunundaki değer ise söz konusu değişkenler arasındaki ilişkinin p < 0,01 düzeyinde istatistiksel olarak anlamlı olduğunu göstermektedir. Tablodaki ilişki formüle edilecek olursa;

F (4, 166) = 98,891; *p* < 0,01 denklemi oluşturulabilir.

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	72,373	4	18,093	98,891	,000 ^a
	Residual	30,372	166	,183		
	Total	102,744	170			

ANOVA)
-------	---

a. Predictors: (Constant), Koordinasyon, Ortak Vizyon, Açik Fikirlilik, Ögrenme

b. Dependent Variable: Yenilikci Is Davranisi

www.istatistikmerkezi.com

Katsayı (Coefficients) tablosu ise, regresyon denklemi için kullanılan regresyon katsayılarını ve bunların anlamlılık düzeylerini vermektedir. Örneğimizde Yenilikçi İş Davranışı ile Öğrenme, Ortak Vizyon ve Açık Fikirlilik arasındaki ilişki p < 0,01 düzeyinde anlamlı iken, Yenilikçi İş Davranışı ile Koordinasyon arasındaki ilişkinin istatistiksel olarak anlamlı olmadığı görülmektedir. Bu bulgudan hareketle koordinasyon uygulamalarının yenilikçi iş davranışına anlamlı bir katkı yapmadığı söylenebilir.

Tabloda yer alan verilerden yenlikçi iş davranışının alabileceği değer aşağıdaki şekilde formüle edilebilir.

Yenilikçi İş Davranışı = 0,766 + 0,230 Öğrenme + 0306 Ortak Vizyon + 0,504 Açık Fikirlilik + 0,102 Koordinasyon

Ayrıca tablodaki katsayılardan Yenilikçi İş Davranışı üzerinde en fazla etkiye sahip faktörün Açık Fikirlilik olduğu, bunu sırasıyla ortak vizyon ve öğrenmenin izlediği anlaşılmaktadır.

		Unstand Coeffi	lardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	,774	,246		3,139	,002
	Ögrenme	,230	,053	,261	4,334	,000
	Ortak Vizyon	,306	,071	,258	4,322	,000
	Açik Fikirlilik	,504	,080,	,377	6,258	,000
	Koordinasyon	,102	,059	,096	1,728	,086

Coefficients^a

a. Dependent Variable: Yenilikci Is Davranisi

Korelasyon

Korelasyon analizi ile iki farklı değişken arasındaki ilişkinin yönü ve şiddeti hakkında bilgi edinebiliriz. Ancak daha önce de belirttiğimiz gibi korelasyon, neden-sonuç ilişkisinin göstergesi değildir.

Örneğimizde günlük uyku süresi ile TV izleme süresi arasındaki ilişki incelenmiştir. Şimdi aşağıdaki mönüleri kullanın, karşınıza Bivariate Correlations iletişim kutusu çıkacaktır.

C13 C14 C15 Basari [F1] Metod [F2]		ariables: Uyku [C16] TV İzleme [C17]	OK Paste Reset Cancel
Correlation Coeffic	ents Kendall's tau-b] Speaman	
Two-tailed	© Onetaile	ed	

ANALYZE » CORRELATE » BIVARIATE

Bu iletişim kutusunda aralarındaki ilişkiyi öğrenmek istediğiniz değişkenleri (ikinin üzerinde olabilir), Variables penceresine taşıyınız (Örneğimizde, Uyku ve TV izleme). Pearson kutucuğunu işaretli olduğundan emin olduktan sonra OK tuşunu tıklayınız. Kaşınıza aşağıdakinin benzeri bir tablo çıkacaktır.

	Correlations					
		TV Izleme	Uyku			
TV Izleme	Pearson Correlation	1	,769**			
	Sig. (2-tailed)		,000			
	Ν	304	303			
Uyku	Pearson Correlation	,769**	1			
	Sig. (2-tailed)	,000				
	Ν	303	303			

**. Correlation is significant at the 0.01 level (2-tailed).

Pearson Coorrelation ifadesinin karşısındaki 0,769 değeri "r" ile ifade edilir ve – 1 ile + 1 arasında bir değer alır. Burada ilişkinin yönünü "r"nin işareti, derecesini ise katsayının büyüklüğü belirler. Eksi değerler bir değişken artarken diğerinin azaldığının, artı değerler ise her iki değişkenin aldığı değerlerin birlikte artış ve azalış gösterdiğinin göstergesidir.

Tablodaki 0,769 değeri ise TV İzleme ile Uyku arasında çok güçlü pozitif doğrusal bir ilişki olduğunu göstermektedir. Bu iki değişken arasında bir neden sonuç ilişkisi olmamakla birlikte, çok fazla TV izleyenlerin pek fazla işi olmayan kişiler olduğu ve bunların aynı zamanda uykuya da fazla zaman ayırdıkları yorumu yapılabilir. Ancak daha sağlıklı bir yorum yapabilmek için farklı değişkenlerin TV izleme ve uykuya etkisi araştırılmalıdır. Eğer verileriniz parametrik olma şartlarını taşımıyorsa Correlation Coefficients başğlığı altındaki Pearson seçeneği yerine Spearman seçeneğini işaretlemeniz gerekecekti. Aşağıda Searman aynı sorulara 25 kişinin verdiği cevaplar sonrasında elde edilen Spearman Testi sonuçları verilmiştir.

Correlations						
			TV Izleme	Uyku		
Spearman's rho	TV Izleme	Correlation Coefficient	1,000	,545**		
		Sig. (2-tailed)		,005		
		Ν	25	25		
	Uyku	Correlation Coefficient	,545**	1,000		
		Sig. (2-tailed)	,005			
		Ν	25	25		

**. Correlation is significant at the 0.01 level (2-tailed).

Tablodaki 0,545 değeri, TV İzleme ile Uyku arasında pozitif doğrusal bir ilişki olduğunu göstermektedir.

Kısmi Korelasyon

Kısmi korelasyonda incelenen değişkenlerle ilişkili olduğu düşünülen bir ve ya daha fazla değişkenin bu değişkenler üzerindeki etkisi kontrol altında tutulur.

Şimdi örneğimizdeki TV İzleme ve Uyku arasındaki ilişkiyi kişilerin hastalık durumlarını kontrol altında tutarak tekrar inceleyelim. Bunun için aşağıdaki mönüleri kullanın. Karşınıza Partial Correlations iletişim kutusu çıkacaktır.

ANALYZE » CORRELATE » BIVARIATE

C11		Variables:	OK
C12	L.	Vizleme [C17]	Paste
C14			Reset
Basari [F1]		Controlling for:	Cancel
Metod [F2]		Hastalik	Help
Test of Significant		ne-tailed	

Burada da aralarındaki ilişkiyi araştırdığınız değişkenleri Variables kutusuna, kontrol değişkenini ise Controlling for kutusuna yerleştiriniz. OK tuşuna tıkladığınızda karşınıza aşağıdakine benzer bir tablo gelecektir.

Control Variables			TV Izleme	Uyku
Hastalik	TV Izleme	Correlation	1,000	,713
		Significance (2-tailed)		,000
		df	0	300
	Uyku	Correlation	,713	1,000
		Significance (2-tailed)	,000	
		df	300	0

Correlations

Dikkat edilirse hastalık değişkeni dikkate alındıktan sonra "r" değeri 0,769'dan, 0,713'e düşmüştür. Bu durum hastalığın değiş-

keninin TV izleme ve uyku değişkenleri üzerinde etkisinin olduğunu göstermektedir.

t – testi iki ortalamanın karşılaştırılmasında kullanılan bir analiz yöntemidir. Eğer karşılaştıracağınız ortalama sayısı ikinin üzerinde ise bundan sonraki bölümde açıklayacağımız Varyans Analizi yöntemini kullanmanız gerekecektir.

Bu bölümde Tek Örneklem İçin t – Testi, Bağımsız Örneklemler İçin t – Testi, İlişkili Ölçümler İçin t – Testi analizleri incelenecektir. Ayrıca Tek Örneklem İçin t – Testi bölümünde istatistiğin bazı temel kavramlarını açıkladık. Pek çok istatistik kitabında sayfalarca anlatılan bu kavramları mümkün olduğunca basite indirmeye çalıştık. Bundan sonraki analizler için de ihtiyaç duyacağınız "örnekleme hatası", "güven aralığı" gibi kavramları mutlaka incelemenizi tavsiye ediyoruz.

Tek Örneklem t – Testi

Tek Örneklem t – Testinde, aynı örneklemin ölçülen ortalaması ile tahmin edilen ya da bilinen ortalaması karşılaştırılır. Biraz karışık mı? Aslında değil.

Şimdi Ziraat Bankası gibi 24.000 kişinin çalıştığı büyük bir kuruluşta anket çalışması yapmak istediğinizi düşünün. Herkese anket uygulamanız maliyetli olacaktır. Bunun için kaçınılmaz olarak örnekleme yaptınız ve rastgele 400 kişi seçtiniz. Ancak içinize bir kurt düştü ve bu seçtiğiniz örneklemin ana kütlenin özelliklerini yansıtıp yansıtmadığını test etmek istiyorsunuz. İşte Tek Örneklem t – Testi burada yardımınıza yetişiyor.

Bunun yanında bir konuya ilişkin tahminlerinizin doğru olup olmadığını da Tek Örneklem t – Testini kullanarak test edebilirsiniz. Örneğin bir şehirdeki insanların yaş ortalamasının 40 olarak tahmin ediyorsunuz. Daha sonra rastgele 100 kişi seçtiniz ve bunların yaş ortalamasını hesapladınız. Fakat örnekleminizin ortalaması 42 çıktı. Tahmininiz hatalı mıydı? Tek Örneklem t – Testini kullanmadan böyle bir sonuca gidemezsiniz. Çünkü hata örneklemden de kaynaklanabilir. Diğer bir ifade ile başka bir 100'lük grup seçseniz bu grubun yaş ortalaması 38 çıkabilir. En sağlamı herkesi hesaplamaya dahi ederek bu tartışmayı bitirmek gibi gözüküyor. Ancak buna ne zaman ne kaynak yetmez. Ayrıca pratikte herkese de ulaşamazsınız. İşte bu yüzden istatistik hesaplamaları yapıyoruz. Tek Örneklem t – Testi size yaptığınız tahminin belirli bir anlamlılık düzeyinde doğru olup olmadığı gösterir. "Anlamlılık düzeyi" diyoruz çünkü ana kitledeki tüm bireyler hesaba katılmadığından ulaşılan sonuçta yanılma ihtimali her zaman olacaktır. Bu yanılma olasılığı; "0,05" anlamlılık düzeyi için % 5, "0,01" anlamlılık düzeyi içinse % 1 düzeyindedir. Ama ben sıfır hata isterim diyorsanız oturup herkesi hesaba katmanız gerekir.

Burada dikkat çekmek istediğimiz nokta hangi istatistik yöntemi ve hangi programı kullanırsanız kullanın eğer işin içinde "istatistik" geçiyorsa her zaman bir yanılma payı olacağının unutulmaması gerektiğidir.

Şimdi Tek Örneklem t – Testinin nasıl uygulandığını bir örnek üzerinde inceleyelim.

Örnek: Rock'n Coke konserine 2007 yılında katılan kişilerin yaş ortalamalarının 34,2 olduğu bilinmektedir. Katılımcılar arasında bulunan 104 kişilik Çılgınlar Grubunun yaş ortalaması açısından ana kitlenin (tüm katılımcılar) özelliklerini gösterip göstermediğini bulunuz.

[†] Hipotezin kelime anlamı "sav, iddiadır". Dikkat ederseniz burada grubun yaş ortalamasının 34 olduğu iddiasında bulunuyoruz. Ancak bu iddiayı test edebilmemiz için bunu H₀ ve H₁ olmak üzere iki farklı şekilde ifade etmemiz gerek. H₀ hipotezleri her zaman gruplar arası farksızlığı öngörür. H₁ hipotezi ise gruplar arası fark olduğu iddiasına dayanır. İncelenen konu ya da analiz yöntemi ne olursa olsun bu durum değişmez.

Yapılan tüm analizlerde H_0 hipotezi test edilir. Eğer H_0 hipotezi reddedilirse H_1 hipotezinin doğruluğu kabul edilir.

Tek Örneklem t – Testi için öncelikle aşağıdaki mönüleri kullanın:

Cinsiyet	Test Variable(s):	ОК
Egitim Hobiler		Paste
Orijin		Reset
		Cance
		Help

ANALYZE » COMPARE MEANS » ONE SAMPLE T TEST

Karşınıza yukarıdaki One-Sample T Test iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz değişkeni (Örnekte, Yaş) Test Variable(s) kutucuğunun içine aradaki oku kullanarak gönderin. Aşağıdaki Test Value satırına ise örneklemi test edeceğiniz değeri girin (Örnekte, 34). Daha sonra anlamlılık düzeyini belirlemek üzere Options tuşuna tıklayın. Karşınıza aşağıdaki iletişim kutusu çıkacaktır.

SPSS varsayılan olarak p < 0,05 anlamlılık düzeyinde çalışmaktadır. Anlamlılık düzeyini p < 0,01'e yükselterek daha güvenilir sonuçlar elde etmek için bu bölüme % 99 değeri girebilirsiniz. Ancak bu durumda p < 0,05 anlamlılık düzeyinde anlamlı çıkan bazı ilişkiler, p < 0,01 anlamlılık düzeyinde anlamlı çıkmayacaktır. Bu yüzden pek çok durum için p < 0,05 anlamlılık düzeyi yeterli olarak kabul edilir.

Şimdi sırasıyla Continue ve OK yuşlarını tıklayın. Karşınıza aşağıdaki tablolar gelecektir.

	-			
				Std. Error
	N	Mean	Std. Deviation	Mean
Yas	104	33,1900	4,86524	,48652

One-Sample Statistics

	Test Value = 34					
					95% Confidence Interval of the Difference	
				Mean		
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
Yas	-1,665	99	,099	-,81000	-1,7754	,1554
One Sample Statistics tablosunda 104 kişilik grubumuzun yaş ortalamasının 33,19 olduğu görülmektedir. Bu ortalama kuşkusuz tahminimiz olan 34',2 den farklıdır. Ancak aradaki farkın istatistiksel olarak anlamlı olup olmadığını belirlemek için One Sample Test tablosundaki Sig. (2-tailed) değerini incelmemiz gerekecektir. Bu değerin 0,05'den küçük olduğu durumlarda Ho hipotezi reddedilirken, 0,05'den büyük olduğu durumlarda Ho hipotezi reddedilemez. Örneğimizde p = 0,099 değeri 0,05'den büyük olduğu için analiz sonrasında bulunan 33,19 değeri ile 34,2 değeri arasındaki farkın istatistiksel olarak anlamlı olmadığı, Rock'n Coke konserine katılan 100 kişilik Çılgınlar Grubu'nun yaş ortalaması açısından ana kitleden farklılık göstermediği sonucuna varılmıştır.

Bağımsız Örneklem t – Testi

Bağımsız örneklem t-testinde ise tek örneklem t-testinden farklı olarak iki ayrı grubun ortalamaları karşılaştırılır. Öreğin feminizm konusunda hakkında erkek ve kadınların görüşleri arasında fark olup olmadığını test etmek isterseniz bağımsız örneklem t-testini kullanabilirsiniz. Benzer şekilde evli ve bekar kadınların kozmetik harcamaları arasında fark olup olmadığını bulmak için kullanılabilecek yöntem yine bağımsız örneklem t-testidir.

Şimdi Bağımsız Örneklem t – Testinin nasıl uygulandığını bir örnek üzerinde inceleyelim.

Örnek: Bir sınıfta kız ve erkek öğrencilerin matematik dersinden aldıkları notlar arasında anlamlı bir fark var mıdır?

Bağımsız Örneklem t – Testi için öncelikle aşağıdaki mönüleri kullanın:

ANALYZE » COMPARE MEANS » INDEPENDENT SAMPLE T TEST

Karşınıza aşağıdaki Independent-Sample T Test iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz değişkeni (Örnekte, Matematik Notu) Test Variable(s) kutucuğunun içine, gruplandırmada kullanacağınız değişkeni (Örnekte, Cinsiyet) Grouping Variable satırına, aradaki okları kullanarak gönderin.

Yas	Test Variable(s):	ОК
Bitim Hobiler	Mat Not	Paste
Orijin		Reset
		Cance
		Help
	Grouping Variable:	_
	Define Groups.	

Şimdi kullanacağınız grupları tanımlamanız gerek. Bunun için Define Groups düğmesini tıklayın. Karşınıza aşağıdaki iletişim kutusu gelecektir. Burada Kızlar "1", Erkeler "2" ile temsil edildiğinden bu rakamları Group 1 ve Group 2 satırlarına girdik. Bunun dışında örneğin gruplamayı Eğitim Düzeyi değişkenine göre yapmayı düşündünüz ve üniversite mezunları ile lisansüstü eğitim görenler karşılaştırmak istiyorsunuz. Kodlarınızda "1" İlköğretim, "2" Lise", "3" Üniversite" "4"Lisanüstü" şeklinde olsun bu durumda Group 1 ve Group 2 satırlarına sırasıyla "3" ve "4" rakamlarını girmeniz gerekecek. Eğer lise ve daha az eğitim görmüşler ile üniversite ve daha yüksek eğitime sahip olanları karşılaştırmak istiyorsanız Cut point ifadesinin önündeki radyo düğmesini işaretlemeniz ve bu satıra "2" değerini girmeniz yeterli olacaktır. SPSS Cut point satırına girilen değeri "< =" (küçük eşit) olarak kabul eder.

Use specifie	ed values	Continue
Group 1:	1	Cancel
Group 2:	2	Help

Şimdi örneğimize dönelim. Sırasıyla Continue ve OK tuşlarını tıklayınız. Karşınıza aşağıdakiler benzer tablolar gelecektir.

Group Statistics tablosunda her bir grupta kaç kişi bulunduğu, bunların ortalama değerleri (Örnekte, Matematik dersinden aldıkları ortalama puanlar) ile bunlara ait standart sapma ve standart hata değerleri yer almaktadır.

Tabloda kızların ortalamasının erkeklerden daha yüksek olduğu görülmektedir. Ancak bu farkın rastlantısal mı yoksa gerçek bir başarının göstergesi mi olduğunu belirleyebilmek için Independent Samples Test tablosunu incelememiz gerekir.

					Std. Error
	Cinsiyet	Ν	Mean	Std. Deviation	Mean
MatNot	1,00	41	72,3415	6,04818	,94457
	2,00	59	63,7458	24,34422	3,16935

Group Statistics

Independent Samples Test tablosunun Sig. (Anlamlılık) sütunundaki değerin 0,29 olduğu görülmektedir. Söz konusu değer 0,05'den küçük olduğu için, cinsiyet ile matematik dersi başarısı arasındaki ilişkinin p < 0,05 düzeyinde istatistiksel olarak anlamlı olduğunu söyleyebiliriz.

Örneğimizde t-testi sonuçları ve gruplara ait ortamlalar birlikte değerlendirildiğinde, kız öğrencilerin matematik dersinde erkelerden daha başarılı olduğu sonucuna ulaşılmıştır.

			t-tes	t for Equality of N	leans	
		t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference
MatNot	Equal variances assumed	2,211	98	,029	8,59570	3,88804
	Equal variances not assumed	2,599	67,983	,011	8,59570	3,30711

Independent Samples Test

Eşleştirilmiş Örneklem t – Testi

Özellikle deneme modelli araştırmalarda deney öncesi ve sonrası değerlerin karşılaştırılmasına ihtiyaç duyulabilir. Bunun dışında belli bir grubun ilişkili fakat farklı iki konu ya da uygulamaya ilişkin görüşlerini karşılaştırmak isteyebilirsiniz. Biraz karmaşık mı oldu? Aslında değil. Örneğin bir işletmenin ISO 9001:2000 öncesi ve sonrası performansını karşılaştırmak istiyorsunuz. Ya da öğretmenlerin "eleştirel öğrenme" ile "çoklu öğrenme" yöntemlerinin etkinliklerine ilişkin görüşlerini karşılaştırmanız gerek. Son olarak demokratik liderlik modelinin uygulandığı proje takımı ile geleneksel liderlik yaklaşımlarının uygulandığı bir başka proje takımının performanslarını karşılaştıracaksınız. Eşleştirilmiş Örneklem t – Testi tüm bu durumlar için uygun bir yöntemdir.

Şimdi Eşleştirilmiş Örneklem t – Testinin nasıl uygulandığını bir örnek üzerinde inceleyelim.

Örnek: Fen bilgisi öğretmenlerinin, "Adım Adım Fen Bilgisi" yardımcı kitabı ile "Aşama Aşama Fen Bilgisi" yardımcı kitabının etkiliğine ilişkin görüşleri arasında fark var mıdır?

Eşleştirilmiş Örneklem t – Testi için öncelikle aşağıdaki mönüleri kullanın:

ANALYZE » COMPARE MEANS » PAIRED SAMPLE T TEST

Karşınıza aşağıdaki Paired-Sample T Test iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz değişkenleri birbiri ardına tıklayınız. Tıkladığınız değişkenler Current Selections kutusunda görüntülenecektir. Daha sonra aradaki oku kullanarak bu değişkenleri Paried Variables kutusuna gönderin.

OK tuşuna tıklayınız. Karşınıza aşağıdakiler benzer tablolar gelecektir.

Paired Samples Statistics tablosunda öğretmenlerin her iki kitabın etkinliğine ilişki görüşlerinin ortalaması ile standart sapma ve standart hata değerleri yer almaktadır. N değerinin her iki değerlendirme için de 303 olması bu verilere kayıp değer olmadığı, diğer bir ifade ile tüm öğretmenlerin her iki kitabı da değerlendirdiğini göstermektedir.

Tabloda Asama Asama Fen yardımcı kitabına verilen puanların ortalamasının Adım Adım Fen yardımcı kitabına verilenlerden daha yüksek olduğu görülmektedir. Ancak bu farkın rastlantısal mı yoksa gerçek bir başarının göstergesi mi olduğunu belirleyebilmek için Paried Samples Test tablosunu incelememiz gerekir.

Paired Samples Statistics

					Std. Error
		Mean	N	Std. Deviation	Mean
Pair	Adim Adim Fen	2,9769	303	1,32580	,07617
1	Asama Asama Fen	3,3630	303	1,25554	,07213

Paired Samples Test tablosunun Sig. (Anlamlılık) sütunundaki değerin 0,00 olduğu görülmektedir. Söz konusu değer 0,01'den küçük olduğu için, Asama Asama Fen yardımcı kitabı ile Adım Adım Fen yardımcı kitabının etkinliği arasındaki farkın p < 0,01 düzeyinde istatistiksel olarak anlamlı olduğunu söyleyebiliriz.

Paired Samples Test

		Paired	Differences		
		N4			
		Mean	Std. Deviation	t	Sig. (2-tailed)
Pair 1	Adim Adim Fen - Asama Asama Fen	-,38614	1,47588	-4,554	,000

Örneğimizde t-testi sonuçları ve gruplara ait ortamlalar birlikte değerlendirildiğinde, fen bilgisi öğretmenlerinin "Aşama Aşama Fen Bilgisi" kitabının etkinliğinin "Adım Adım Fen Bilgisi" kitabının etkinliğinden daha yüksek olduğu görüşünü taşıdıkları sonucuna varılmıştır.

Varyans Analizi

İki farklı grup arasında karşılaştırma yapmamız gerektiğinde ttestini kullandık. Eğer grup sayısı ikiden fazla ise... Bu durumda varyans analizini kullanacağız. Varyans analizi de t-testinde olduğu gibi farklı yöntemler içeriyor. Bu bölümde Bağımsız Örneklem Tek Yönlü Varyans Analizi, Bağımsız Örneklem İki Yönlü Varyans Analizi, İlişkili Örneklem Tek Yönlü Varyans Analizi, İlişki Örneklem İki Yönlü Varyans Analizi ve Çok Faktörlü Varyans Analizi yöntemlerini inceleyeceğiz.

Bağımsız Örneklem Tek Yönlü Varyans Analizi

Bağımsız örneklem tek yönlü varyans analizinde ikiden fazla grubun ortalamaları karşılaştırılır. Öreğin evlilik hakkındaki görüşlerin medeni duruma (evli, bekar, dul) göre farklılık gösterip göstermediğini test etmek isterseniz tek yönlü varyans analizini kullanabilirsiniz. Benzer şekilde farklı eğitim düzeylerindeki kadınların kozmetik harcamaları arasında fark olup olmadığını bulmak için kullanılabilecek yöntem yine bağımsız örneklem tek yönlü varyans analizidir.

Şimdi tek yönlü varyans analizinin nasıl uygulandığını bir örnek üzerinde inceleyelim.

Örnek: Öğrencilerin Fen Bilgisi dersinden aldıkları ortamla puanlar babalarının eğitim durumlarına göre farklılık gösterir mi?

Bağımsız örneklem tek Yönlü Varyans Analizi için aşağıdaki mönüleri kullanın:

ANALYZE » COMPARE MEANS » ONE WAY ANOVA

Karşınıza aşağıdaki One Way ANOVA iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz değişkeni (Örnekte, Fen Bilgisi Notu) Dependent List kutucuğunun içine, gruplandırmada kullanacağınız değişkeni (Örnekte, Baba Eğitim Düzeyi) Factor satırına, aradaki okları kullanarak gönderin.

🔗 Anne Egitim Düzeyi (Aı	Dependent List:	OK Paste
		Reset
	Factor:	Help

Şimdi her bir gruba ait tanımlayıcı istatistikleri (ortalama, standart sapma vb.) görebilmek için Options tuşunu tıklayın ve aşağıda da verilen iletişim kutusundaki Descriptive seçeneğini işaretleyin.

Description	Continue
Exect and random effects	Cancel
Homogeneity of variance test	Help
Brown-Forsythe	
Welch	
Means plot	
Missing Values	
Exclude cases analysis by analysis	sis

Şimdi sırasıyla Continue ve Post Hoc tuşlarını tıklayın karşınıza aşağıdaki iletişim kutusu gelecektir. Buradan Turkey seçeneğini işaretleyin.

Equal Variances /	Assumed	
LSD	S-N-K	Waller-Duncan
Bonferroni	V Tukey	Type I/Type II Error Ratio: 100
C Sidak	Tukey's-b	Dunnett
Scheffe	Duncan	Control Category: Last -
R-E-G-W F	Hochberg's GT2	Test
R-E-G-WQ	C Gabriel	② 2-sided 〇 < Control 〇 > Control
	Not Areumad	
Equal Variances	NOL Pasuned	
Equal Variances 1	Dunnett's T3	Games-Howell Dunnett's C
Equal Variances I	2 Dunnett's T3	Games-Howell Dunnett's C

Varyans analizi farklı grupların birbirinden farklı olup olmadığını gösterir. Ancak farklılıkların hangi gruplar arasında olduğuna ilişkin bilgi içermez. Bunun için varyans analizlerine ilave olarak Turkey testinin yapılmasında yarar vardır.

Sırasıyla Continue ve OK tuşlarını tıkladığınızda karşınıza aşağıdakilerin benzeri tablolar gelecektir.

Descriptives tablosunda her bir grupta kaç kişi bulunduğu, bunların ortalama değerleri (Örnekte, Fen Bilgisi dersinden aldıkları ortalama puanlar) ile bunlara ait standart sapma ve standart hata değerleri yer almaktadır.

Descriptives

Fen Bilgisi Notu						
	N	Mean	Std. Deviation	Std. Error		
Lisansüstü	119	82,6555	7,12888	,65350		
Lisans	217	81,3364	6,19380	,42046		
Lise	254	67,8622	1,09288	,06857		
Ilkogretim	269	64,4387	9,16154	,55859		
Total	859	72,2433	10,19530	,34786		

Tabloda babanın eğitim düzeyi yükseldikçe öğrencilerin de notlarının buna paralel olarak arttığı görülmektedir. Ancak bu farklılıkların rastlantısal mı yoksa gerçek bir başarının göstergesi mi olduğunu belirleyebilmek için ANOVA tablosunu incelememiz gerekir.

ANOVA

Fen Bilgisi Notu					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	52104,418	3	17368,139	400,482	,000
Within Groups	37079,731	855	43,368		
Total	89184,149	858			

ANOVA tablosunun Sig. (Anlamlılık) sütunundaki değerin 0,00 olduğu görülmektedir. Söz konusu değer 0,01'den küçük olduğu için, babanın eğitim düzeyi ile fen bilgisi dersi başarısı arasındaki ilişkinin p < 0,05 düzeyinde istatistiksel olarak anlamlı olduğunu söyleyebiliriz. Örneğimizde varyans analizi sonuçları ve gruplara ait ortamlalar birlikte değerlendirildiğinde, babaları farklı eğitim düzeylerinde olan öğrencilerin fen bilgisi dersinden aldıkları ortalama puanlar arasındaki farklın anlamlı olduğu sonucuna ulaşılmıştır.

Bununla birlikte daha önce de ifade edildiği gibi ANOVA tablosu gruplar arasındaki farklılıkları bir bütün olarak değerlendirir. Diğer bir ifade ile hangi ikili gruplar arasındaki farkın anlamlı olduğuna ilişkin bilgi vermez. Bunun için aşağıdaki Turkey testi tablosu incelenmelidir.

Multiple Comparisons

Dependent Variable: Fen Bilgisi Notu

Tukey HSD				
(I) Baba Egitim Düzeyi	(J) Baba Egitim Düzeyi	Mean Difference (I-J)	Std. Error	Sig.
Lisansüstü	Lisans	1,31906	,75119	,296
	Lise	14,79326*	,73156	,000
	Ilkogretim	18,21680*	,72502	,000
Lisans	Lisansüstü	-1,31906	,75119	,296
	Lise	13,47420*	,60876	,000
	Ilkogretim	16,89774*	,60089	,000
Lise	Lisansüstü	-14,79326*	,73156	,000
	Lisans	-13,47420*	,60876	,000
	Ilkogretim	3,42354*	,57616	,000
Ilkogretim	Lisansüstü	-18,21680*	,72502	,000
	Lisans	-16,89774*	,60089	,000
	Lise	-3,42354*	,57616	,000

*. The mean difference is significant at the .05 level.

Tablonun anlamlılık sütunundaki değerlerden babası lisansüstü eğitime sahip olan çocuklarla babası lisans eğitimine sahip olan çocukların fen bilgisi not ortalamaları arasındaki farkın istatistiksel olarak anlamlı olmadığı anlaşılmaktadır. Diğer tüm gruplar arasındaki ilişki ise p < 0,05 (anlamlılık değeri ONE WAY ANOVA: Post Hoc Multiple Comparasion iletişim kutusunda belirlenmişti) düzeyinde anlamlıdır.

Bu bulgular ışığında babası ilköğretim okulu mezunu öğrencilerin fen bilgisi dersinden en düşük ortalamaya sahip oldukları, bu öğrencileri babası lise mezunu olan öğrencilerin takip ettiği, babası lisans ve lisans üstü eğitim gören öğrencilerin ise en başarılı grubu oluşturduğu söylenebilir.

Bağımsız Örneklem İki Yönlü Varyans Analizi

Bağımsız örneklem iki yönlü varyans analizi, belli bir bağımlı değişken üzerinde (Örneğimizde, Öğretmenlerin performansı), birden fazla bağımsız değişkenin (Örneğimizde, Öğretmenlerin cinsiyeti ve kıdemi) ortak etkisini ölçmek için kullanılır.

Şimdi Bağımsız Örneklem İki Yönlü Varyans Analizinin nasıl uygulandığını bir örnek üzerinde inceleyelim.

Örnek: Erkek ve kadın öğretmenlerin performansları yaşlarına bağlı olarak farklılık gösterir mi?

Bağımsız Örneklem İki Yönlü Varyans Analizi için aşağıdaki mönüleri kullanın:

ANALYZE » GENERAL LINEAR MODEL » UNIVARITE

Karşınıza aşağıdaki Univarite iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz değişkeni (Örnekte, Performans) Dependent Variable satırına, gruplandırmada kullanacağınız değişkeni (Örnekte, Cinsiyet, Bölüm) Fixed Factor (s) kutucuğuna aradaki okları kullanarak gönderin.

🖉 Dersi dinlememek 🔺 🕝	Dependent Variable:	Model
Kopya çekmek [Ks	Performans [KS1]	
🔗 Derse geç gelmek 🗏	Fixed Factor(s):	Contrasts.
Yanındakilerle konı	Cinsiyet [Cinsiyet]	Plots
Derste uyumak [KS		Post Hoc.
🥙 Söz almadan konu 🖉 Öğretmene karşı gı	Random Factor(s):	Save
Arkadaşlarının dikk		Options
Sinfi kirletmek [KS	Covariate(s):	
Kapıyı çalmadan sı	<u>}</u>	
Arkadaşlarıyla tartış Arkadaşlarıyla tartış	WLS Weight:	
, incodeding to Kovi		

Şimdi Options tuşunu tıklayın ve karşınıza gelen aşağıdaki iletişim kutusundan Descriptive statistics seçeneğini işaretleyin.

Factor(s) and Factor Interactions: (OVERALL) Cinsiyet Yas Cinsiyet*Yas	Display Means for:
	Compare main effects
	LSD (none)
lisplay	
Descriptive statistics	Homogeneity tests
	Spread vs. level plot
Observed power Parameter estimates	Lack of fit
Contrast coefficient matrix	Ceneral estimable function
aficance level: 05 Confid	lence intervals are 95%

Sırasıyla Continue ve OK tuşlarını tıklayın. Karşınıza aşağıdakilere benzer tablolar gelecektir.

		Value Label	Ν
Cinsiyet	1,00	Bay	252
	2,00	Bayan	160
Yas	1,00	30 yas alti	182
	2,00	31-40	130
	3,00	41-50	64
	4,00	50 üzeri	36

Between-Subjects Factors

Between Subjects Factors tablosunda her bir grubu oluşturan alt grupların sıklıkları verilmiştir.

Dependent Variable: Performans				
Cinsiyet	Yas	Mean	Std. Deviation	N
Bay	30 yas alti	3,3386	,78902	127
	31-40	3,1125	,79546	80
	41-50	2,9394	,89928	33
	50 üzeri	2,6667	1,07309	12
	Total	3,1825	,83643	252
Bayan	30 yas alti	3,2364	,92223	55
	31-40	3,3200	,95704	50
	41-50	2,7742	1,17501	31
	50 üzeri	3,0833	,88055	24
	Total	3,1500	,99179	160
Total	30 yas alti	3,3077	,83026	182
	31-40	3,1923	,86353	130
	41-50	2,8594	1,03689	64
	50 üzeri	2,9444	,95452	36
	Total	3,1699	,89891	412

Descriptive Statistics

Descriptive Statistics tablosunda ise performansın yaşa bağlı olarak değişimi cinsiyet değişkeni baz alınarak sunulmuştur. Bu tablodan Bay ve Bayanların performanslarının yaşlarına bağlı olarak değişimi görülmektedir. Ayrıca bu tabloyu kullanarak belirli bir yal grubundaki bayanların performansı ile erkeklerin performansını karşılaştırmak mümkündür.

Ancak bu karşılaştırmalar sonucu gözlenen farklılıkların anlamlı olup olmadığını belirlemek içinse Tests of Between-Subjects Effects tablosunu incelememiz gerekir.

Dependent variabl	e. Penormans				
	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Corrected Model	15,073 ^a	7	2,153	2,744	,009
Intercept	2433,118	1	2433,118	3100,551	,000
Cinsiyet	,517	1	,517	,659	,417
Yas	11,350	3	3,783	4,821	,003
Cinsiyet * Yas	3,444	3	1,148	1,463	,224
Error	317,034	404	,785		
Total	4472,000	412			
Corrected Total	332,107	411			

Tests of Between-Subjects Effects

a. R Squared = ,045 (Adjusted R Squared = ,029)

Tablonun Cinsiye * Yaş satırındaki değerlerden cinsiyet ve yaşın performans üzerindeki ortak etkisinin (p = 0,224, p > 0,05) istatistiksel olarak anlamlı olmadığı görülmektedir. Bu bulgular ışığında erkek ve kadın öğretmenlerin performansları yaşlarına bağlı olarak farklılık göstermez. Diğer bir ifade ile farklı yaş gruplarındaki erkek ve bayan öğretmenlerin performansları arasındaki fark istatistiksel olarak anlamlı değildir.

Ek bilgi olarak; tablonun Cinsiyet satırındaki anlamlılık değeri (p = 0,417, p > 0,05) performans ile cinsiyet arasındaki ilişkin istatistiksel olarak anlamlı olmadığını göstermektedir. Tablonun Yaş satırındaki anlamlılık değeri ise (p = 0,003, p < 0,01) performans ile yaş arasındaki ilişkinin p < 0,01 düzeyinde istatistiksel olarak anlamlı olduğunu ortaya koymaktadır. Diğer bir ifade ile performans cinsiyete bağlı olarak anlamlı bir farklılık göstermezken yaşa bağlı olarak farklılık göstermektedir. Bu bulgu Descriptive Statistics tablosunun Total hanesindeki verilerle birlikte değerlendirildiğinde öğretmenlerin performanslarının yaşlarına bağlı olarak düştüğü anlaşılmaktadır.

İlişkili Örneklem Tek Yönlü Varyans Analizi

Eşleştirilmiş örneklem t-testini kullanarak; belirli bir değişkene ait deney öncesi ve sonrası değerlerini karşılaştırılmıştık. Ayrıca yine bu yöntemi, bir grubun ilişkili fakat farklı iki konuya ilişkin görüşlerini karşılaştırmak için kullanmıştık. Ölçüm sayısının ikiden fazla olduğu durumlar ile ikiden fazla konuya ilişkin görüşlerin karşılaştırılmasında ise bu bölümde açıklayacağımız İlişkili Örneklem Tek Yönlü Varyans Analizi yöntemini kullanabiliriz.

Örneğin bir ilacın etkilerini ölçmek için ikişer hafta arayla yapılan dört farklı testin sonuçlarının ya da öğretmenlerin A, B, C eğitim yöntemlerine ilişkin görüşlerini İlişkili Örneklem Tek Yönlü Varyans Analizi yöntemini kullanarak karşılaştırabiliriz.

Şimdi İlişkili Örneklem Tek Yönlü Varyans Analizinin nasıl uygulandığını bir örnek üzerinde inceleyelim.

Örnek: İstanbul Levent Bölgesindeki İlköğretim Okullarında görev yapan öğretmenlerin yapılandırmacı öğrenme, eleştirel öğrenme ve geleneksel öğrenme yöntemlerine ilişkin görüşleri arasında fark var mıdır. İlişkili Örneklem Tek Yönlü Varyans Analizi için aşağıdaki mönüleri kullanın:

Within-Subject Fac	ctor Name:	Define
	factor1	Reset
lumber of Levels:	3	Cancel
Add		Help
Change		-
Remove		
Add		
Add Change		1

ANALYZE » GENERAL LINEAR MODEL » REPEATED MEASURES

Karşınıza yukarıdaki Repeated Measures Define Factor(s) iletişim penceresi gelecektir. Bu iletişim kutusuna karşılaştıracağınız değişken miktarını (Örneğimizde, 3) giriniz daha sonra sırasıyla Add ve Define tuşlarını tıklayınız. Karşınıza aşağıdaki Repeated Measures iletişim kutusu gelecektir. Karşılaştıracağınız değişkenleri aradaki oku kullanarak Within-Subjects Variables kutucuğuna gönderin.

Arkadaslannin dikk Dersi kaynatmaya Sinfi kirletmek (KS	Within-Subjects Variables (factor1):	OK Paste
Okul demirbaşına z	Elestirel(1)	Reset
✓ Kapıyı çalmadan sıı u ✓ Derste bir şeyler ye ^E	Geleneksel(3)	Cance
Arkadaşlarıyla tartış	1	Help
Sorulan sorulara ka	_	
Cinsel tacizde bulu		
P Dersi izinsiz terk eti		
Derse geç gelmek Sonf i cinde delarm	Between Schieste Fastada)	
Yanındakilerle koni	between-Subjects Factor(s):	
Perste uyumak [0[)	
Söz almadan konu		
🤗 Öğretmene karşı gı	Coursistee	
Arkadaşlarının dikk	Covariates.	
Dersi kaynatmaya	>	

Daha sonra Options tuşuna basın. Karşınıza Repeated Measures: Options iletişim kutusu çıkacaktır. Bu iletişim kutusunda daha önce tanımladığınız ve üzerinde işlem yapacağınız faktörü aradaki oku kullanarak Display Means for kutucuğuna gönderin. Daha sonra Confidence interval adjustment aşağı açılır mönüsünü kullanarak Bonferroni testini seçin ve Diplay bölümündeki Descriptive seçeneğini işaretleyin.

Repeated Measures: Options	×
Estimated Marginal Means	
Factor(s) and Factor Interactions:	Display Means for:
(OVERALL) factor1	factor1
	Compare main effects
	Confidence interval adjustment:
	Bonferroni
Display Descriptive statistics Estimates of effect size Observed power Parameter estimates SSCP matrices Residual SSCP matrix	 Transformation matrix Homogeneity tests Spread vs. level plots Residual plots Lack of fit test General estimable function
Significance level: ,05 Con	fidence intervals are 95% Continue Cancel Help

Şimdi sırasıyla Continue ve OK tuşlarını tıklayın karşınıza aşağıdakilerin benzeri tablolar çıkacaktır.

	•		
	Mean	Std. Deviation	Ν
Elestirel	4,4939	,58962	413
Yapilandirmaci	4,7119	,47437	413
Geleneksel	4,1356	,89552	413

Descriptive Statistics

Descriptive Statistics tablosunda öğretmenlerin farklı öğrenme yöntemlerine ilişkin görüşlerine ait ortalama ve standart sapma değerleri görülmektedir. Bu tablodan örneğimizdeki yapılandırmacı öğrenme yaklaşımının en yüksek ortalamaya sahip olduğunu, bunu eleştirel öğrenme yaklaşımının izlediği, geleneksel öğrenme yaklaşımının ise en düşük ortalamaya sahip olduğu görülmektedir.

Ancak bu karşılaştırmalar sonucu gözlenen farklılıkların anlamlı olup olmadığını belirlemek içinse Tests of Within-Subjects Effects tablosunu incelememiz gerekir.

Tests of Within-Subjects Contrasts

Measure: MEA	SURE_1					
Source	factor1	Type III Sum of Squares	df	Mean Square	F	Sig.
factor1	Linear	26,518	1	26,518	55,890	,000
	Quadratic	43,416	1	43,416	169,948	,000,
Error(factor1)	Linear	195,482	412	,474		
	Quadratic	105,251	412	,255		

Tablonun anlamlılık sütunundaki değerlerden (p = 0,00, p < 0,01), söz konusu değişkenlerin ortalamaları arasındaki farkın istatistiksel olarak anlamlı olduğu görülmektedir.

Ancak söz konusu farklı değişkenlerden kaynaklandığını belirlemek, diğer bir ifade ile değişkenler arasındaki farklılıkları ikişerli gruplara halinde karşılaştırmak için Bonferroni testi sonuçları incelenmiştir.

Pairwise Comparisons

Measure: N	IEASURE_1					
		Mean Difference			95% Confiden Differ	ice Interval for ence ^a
(I) factor1	(J) factor1	(I-J)	Std. Error	Sig. ^a	Lower Bound	Upper Bound
1	2	-,218*	,031	,000	-,292	-,144
	3	,358*	,048	,000	,243	,474
2	1	,218*	,031	,000	,144	,292
	3	,576*	,045	,000	,467	,685
3	1	-,358*	,048	,000	-,474	-,243
	2	-,576*	,045	,000	-,685	-,467

Based on estimated marginal means

* The mean difference is significant at the ,05 level.

a. Adjustment for multiple comparisons: Bonferroni.

Tablonun Anlamlılık sütunundaki değerlerden değerlerden (p = 0,00, p < 0,01) her üç değişken arasındaki farklılıkların istatistiksel olarak anlamlı olduğu anlaşılmaktadır.

Bu bulgulardan hareketle İstanbul Beşiktaş bölgesindeki ilköğretim okullarında görev yapan öğretmenlerin yapılandırmacı öğrenme, eleştirel öğrenme ve geleneksel öğrenme yöntemlerine ilişkin görüşleri arasında fark bulunduğu sonucuna varılmıştır.

İlişkili Örneklem İki Yönlü Varyans Analizi

Bir ilacın etkilerini ölçmek için ikişer ay arayla yapılan dört farklı testin sonuçlarını ya da öğretmenlerin A, B, C eğitim yöntemlerine ilişkin görüşlerini İlişkili Örneklem Tek Yönlü Varyans Analizi yöntemini kullanarak karşılaştırdık. Peki bu ilaçların etkilerinin deneklerin cinsiyetlerine göre farklılık gösterip göstermediğini ya da öğretmenlerin farklı eğitim yöntemlerine ilişkin görüşlerinin kıdemlerine göre farklılık gösterip göstermediğini bulmak isterseniz... Bu durumda İlişkili Örneklem İki Yönlü Varyans Analizi yöntemini kullanmak mümkün.

Şimdi İlişkili Örneklem İki Yönlü Varyans Analizinin nasıl uygulandığını bir örnek üzerinde inceleyelim.

Örnek: Bir işletmede çalışanların tatmin düzeyleri işletmede başlatılan "kalite çemberi" uygulamaları öncesi, bu uygulama tamamlanır tamamlanmaz ve uygulamadan bir ay sonra ölçülüyor. Çalışanların uygulama öncesi ve uygulama sonrasındaki iş tatmin düzeyleri cinsiyetlerine göre farklılık gösterir mi?

İlişkili Örneklem İki Yönlü Varyans Analizi için aşağıdaki mönüleri kullanın:

ANALYZE » GENERAL LINEAR MODEL » REPEATED MEASURES

Karşınıza aşağıdaki Repeated Measures Define Factor(s) iletişim penceresi gelecektir. Bu iletişim kutusuna karşılaştıracağınız değişken miktarını (Örneğimizde, 3) giriniz daha sonra sırasıyla Add ve Define tuşlarını tıklayınız.

lepeated Measur	es Define Factor(s)	6
Within-Subject Fac	ctor Name:	Define
	factor1	Reset
Number of Levels:	3	Cancel
Add	factor1(3)	Help
Change		-
Remove		
Measure Name:		
Add	-	
Change		
Remove		

Karşınıza aşağıdaki Repeated Measure iletişim kutusu gelecektir.

Performans [KS1]	Within-Subjects Variables (factor1):	OK Paste
Kopya cekmek [K: Derse geç gelmek Sinf içinde dolaşm Yanındakilerle konı Derste uyumak [K: Söz almadan konu Oğretmene karş ge Arkadaşlarının dikk Dersi kaynatmaya	KC1AY(1) KCONCE(2) KCSONRA(3)	Reset Cance Help
 Sinfi kirletmek [KS Okul demirbaşına z Kapıyı çalmadan sı Derste bir şeyler ye Arkadaşlarıyla tartış Arkadaşlarıyla tartış Arkadaşlarıyla kavış Sorulan sorulara ka Cinsel tacizde bulu Dersi izinsiz terk eti Elestirel 	Between-Subjects Factor(s): Covariates:	

www.istatistikmerkezi.com

Karşılaştıracağınız değişkenleri aradaki oku kullanarak Within-Subjects Variables kutucuğuna gönderin. Daha sonra grupşama için kullanacağınız değişkeni yine aradaki ou kullanarak Between-Subjects Factor(s) kutucuğuna gönderiniz.

Şimdi Opltions tuşunu tıklayın ve karşınıza gelen aşağıdaki iletişim kutusundan Descriptive statistics seçeneğini işaretleyin.

Sırasıyla Continue ve OK tuşlarını tıklayın. Karşınıza aşağıdakilere benzer tablolar gelecektir.

actor(s) and Factor Interactions: (OVERALL) Cinsiyet Yas Cinsiyet*Yas	Display Means for:
	Compare main effects
	Confidence interval adjustment:
	LSD (none) 👻
ienlav	
Descriptive statistics	Homogeneity tests
Estimates of effect size	Spread vs. level plot
Observed power	Residual plot
Parameter estimates	Lack of fit
Contrast coefficient matrix	General estimable function

Descriptive Statistics tablosunda ise tatmin düzeyinin farklı dönemlerde cinsiyete bağlı olarak değişimi sunulmuştur. Bu tablodan Bay ve Bayanların tatmin düzeylerinin cinsiyetlerine bağlı olarak değişimi görülmektedir. Ayrıca bu tabloyu kullanarak belirli bir dönemde bayanların tatmin düzeylerini erkelerin tatmin düzeyi ile karşılaştırmak mümkündür.

	Cinsiyet	Mean	Std. Deviation	Ν
Kalite Cemberi 1 Ay	Bay	4,4008	,63283	252
Sonra	Bayan	4,0683	,71697	161
	Total	4,2712	,68554	413
Kalite Cemberi Öncesi	Bay	4,0794	1,00678	252
	Bayan	3,9565	1,03288	161
	Total	4,0315	1,01755	413
Kalite Cemberi Sonrasi	Bay	4,5317	,62722	252
	Bayan	4,2795	,67279	161
	Total	4,4334	,65622	413

Ancak bu karşılaştırmalar sonucu gözlenen farklılıkların anlamlı olup olmadığını belirlemek içinse Multivarite Tests tablosunu incelememiz gerekir.

Multivariate Tests^b

Effect		Value	F	Sig.
factor1	Pillai's Trace	,130	30,501 ^a	,000
	Wilks' Lambda	,870	30,501 ^a	,000
	Hotelling's Trace	,149	30,501 ^a	,000
	Roy's Largest Root	,149	30,501 ^a	,000
factor1 * Cinsiyet	Pillai's Trace	,009	1,910 ^a	,149
	Wilks' Lambda	,991	1,910 ^a	,149
	Hotelling's Trace	,009	1,910 ^a	,149
	Roy's Largest Root	,009	1,910 ^a	,149

a. Exact statistic

b.

Design: Intercept+Cinsiyet Within Subjects Design: factor1 Tablonun factor 1 bölümündeki ilişkilerin anlamlı olması (p = 0,00, p < 0,01) farklı dönemlerde yapılan ölçümler arasındaki farklılıkların istatistiksel olarak anlamlı olduğunu ortaya koymaktadır.

Ancak uygulama öncesi ve uygulama sonrası tatmin puanlarının cinsiyete göre farklılaşma durumunu gösteren factor1 * Cinsiyet bölümündeki ilişkiler incelendiğinde söz konusu ilişkinin anlamlı olmadığı (p = 0,149, p > 0,05) anlaşılmaktadır.

Bu bulgulardan hareketle çalışanların kalite çemberi uygulamaları öncesi ve sonrasındaki tatmin düzeylerinin cinsiyetlerine göre farklılık göstermediği sonucuna varılmıştır.

Çok Faktörlü Varyans Analizi

Eğer birden fazla bağımlı değişkenin (performans, tatmin düzeyi, başarı notu vb.), birden fazla bağımsız değişken (cinsiyet, gelir düzeyi, mezun olunan okul vb.) göre farklılaşma durumunu aynı anda incelemeniz gerekiyorsa çok faktörlü varyans analizi yöntemini kullanabilirsiniz. Şimdi Çok Faktörlü Varyans Analizinin nasıl uygulandığını bir örnek üzerinde inceleyelim.

Örnek: Bir işletmede çalışan personelin performansları ve tatmin düzeyleri cinsiyet ve gelir durumlarına göre farklılık göstermekte midir? Çok Faktörlü Varyans Analizi için aşağıdaki mönüleri kullanın:

Kopya çekmek (KS 🔺	Dependent Variables:	Model
Derse geç gelmek Sinfiçinde dolaşm. [■]	Performans [KS1] Zatmin [KS2]	Contrasts
Yanındakilerle kon		Plots
Söz almadan konu	Fixed Factor(s):	Post Hoc
Oğretmene karşı gı Arkadaşlarının dikk	Cinsiyet [Cinsiyet]	Save
Dersi kaynatmaya Sinfi kirletmek IKS	Constate(k)	Options.
Okul demirbaşına z		
Kapıyı çalmadan sı)	
Advadaslanula tartu		
Arkadaşlarıyla kavı	WLS Weight:	
Sorulan sorulara ka 🚽		

ANALYZE » GENERAL LINEAR MODEL » MULTIVARITE

Karşınıza yukarıdaki Multivarite iletişim penceresi gelecektir. Bu iletişim kutusuna karşılaştıracağınız değişkenleri (Örnekte, performans ve tatmin düzeyi) Dependent Variables, gruplandırmada kullanacağınız değişkenleri (Örnekte, cinsiyet ve gelir) Fixed Factor(s) kutusuna aradaki okları kullanarak gönderin. Daha sonra options tuşunu tıklayarak karşınıza gelen Mulitivare: Options iletişim kutusunda yer alan Descriptive statistics seçeneğini işaretleyin. Sırasıyla Continue ve OK tuşlarını tıklayın. Aşağıdakilerin benzeri tablolar elde edeceksiniz.

	Cinsiyet	Gelir	Mean	Std. Deviation	Ν
Performans	Bay	1500 YTL'den az	3,3386	,78902	127
		1501-2000 YTL	3,1125	,79546	80
		2000 YTL'den fazla	2,8667	,94388	45
		Total	3,1825	,83643	252
	Bayan	1500 YTL'den az	3,2364	,92223	55
		1501-2000 YTL	3,3200	,95704	50
		2000 YTL'den fazla	2,9091	1,05887	55
		Total	3,1500	,99179	160
	Total	1500 YTL'den az	3,3077	,83026	182
		1501-2000 YTL	3,1923	,86353	130
		2000 YTL'den fazla	2,8900	1,00398	100
		Total	3,1699	,89891	412
Tatmin	Bay	1500 YTL'den az	2,9764	,80143	127
		1501-2000 YTL	2,9375	,84709	80
		2000 YTL'den fazla	2,5778	,96505	45
		Total	2,8929	,85644	252
	Bayan	1500 YTL'den az	3,1455	,75567	55
		1501-2000 YTL	2,9000	,90914	50
		2000 YTL'den fazla	2,9091	,79983	55
		Total	2,9875	,82407	160
	Total	1500 YTL'den az	3,0275	,78965	182
		1501-2000 YTL	2,9231	,86817	130
		2000 YTL'den fazla	2,7600	,88899	100
		Total	2,9296	,84427	412

Descriptive Statistics

Descriptive Statistics tablosunda çalışanların performans ve tatmin düzeylerinin cinsiyet ve gelir düzeylerine göre değişimi verilmiştir. Bu tablodan çalışanların performans ve tatmin düzeylerinin cinsiyet ve gelir düzeylerine göre farklılık gösterdiği gözlenmektedir. Ancak gözlenen farklılıkların anlamlı olup olmadığını belirlemek içinse Tests of Between-Subjects Effects tablosunu incelememiz gerekir.

		Type III Sum				
Source	Dependent Variable	of Squares	df	Mean Square	F	Sig.
Corrected Model	Performans	13,126 ^a	5	2,625	3,341	,006
	Tatmin	8,483 ^b	5	1,697	2,421	,035
Intercept	Performans	3565,170	1	3565,170	4537,757	,000
	Tatmin	3075,690	1	3075,690	4389,577	,000
Cinsiyet	Performans	,220	1	,220	,281	,597
	Tatmin	2,165	1	2,165	3,090	,080,
Gelir	Performans	10,214	2	5,107	6,500	,002
	Tatmin	6,092	2	3,046	4,348	,014
Cinsiyet * Gelir	Performans	1,639	2	,820	1,043	,353
	Tatmin	1,906	2	,953	1,360	,258
Error	Performans	318,981	406	,786		
	Tatmin	284,476	406	,701		
Total	Performans	4472,000	412			
	Tatmin	3829,000	412			
Corrected Total	Performans	332,107	411			
	Tatmin	292,959	411			

Tests of Between-Subjects Effects

a. R Squared = ,040 (Adjusted R Squared = ,028)

b. R Squared = ,029 (Adjusted R Squared = ,017)

Tablonun anlamlılık sütunundaki değerlerden Performans ve tatmin düzeyinin cinsiyete bağlı değişiminin (p = 0,597, p = 0,08; p > 0,05) istatistiksel olarak anlamlı olmadığı, performans ve tatmin düzeyinin gelir düzeyine bağlı değişiminin ise (p = 0,002, p = 0,014; p < 0,05) istatistiksel olarak anlamlı olduğu anlaşılmaktadır. Bunun yanında cinsiyet ve gelir değişkenlerinin gerek performans, gerekse tatmin düzeyi üzerindeki ortak etkisinin (p = 0,353, p = 0,258; p > 0,05) istatistiksel olarak anlamlı olmadığı gözlenmektedir.

Bu bölümü parametrik olmayan test yöntemlerine ayırdık. Aslında bu bölümde açıklanacak tüm yöntemler bundan önceki bölümlerde açıklanan parametrik yöntemlerin parametrik olmayan karşılıkları olacak.

Daha önce de belirttiğimiz gibi eğer verileriniz normal dağılım özellikleri gösteriyorsa, homojense, örneklem büyüklüğü 20'nin üzerindeyse, incelediğiniz bağımlı değişken aralık (interval) yada oran (ratio) ölçeğine (SPSS'de bu iki ölçek Scale olarak adlandırılır) uygunsa parametrik test yöntemlerini kullanıyorduk. Ancak verileriniz bu özelliklerden herhangi birini karşılamıyorsa parametrik olmayan analiz yöntemlerini kullanmanız gerekecek.

Bu bölümde Ki-Kare Uygunluk Testi, Ki-Kare Bağısızlık Testi, Mann-Whitney U Testi, Wilcoxon Eşleştirilmiş İki Örneklem Testi, Kruskal Wallis H Testi, ve Friedman Testlerini inceleyeceğiz.

Ki-Kare Uygunluk Testi

Ki – Kare uygunluk testi ile belirli bir değişkenin farklı kategorilerine ait gözlenen frekanslarının, beklenen frekanslarına uygunluğu araştırılır. Burada beklenen frekanslar birbirine eşit olabileceği gibi farklı da olabilir. İsterseniz konuyu örneklerle biraz açalım.

"Beşiktaş ilçesi sakinlerinin NTV, CNN Türk ve SKY Türk kanallarını izleme oranları arasında anlamlı bir fark var mıdır?" sorusunda bu üç kanalın izlenme oranlarının eşit olduğu varsayımından hareket edilmiştir.

Oysa soru 2007 Ocak ayında yapılan ölümlerde, Beşiktaş ilçesi sakinlerinin % 30'unun NTV, % 25'inin CNN Türk, % 45'inin ise SKY Türk kanalını tercih ettiği belirlenmiştir. Acaba bu ölçümler 2007 Kasım ayı içinde geçerliliğini korumakta mıdır? Dikkat edilirse bu örnekte bir beklenti söz konusu olup kategorilere ait değerler birbirine eşit değildir. Ki-Kare Uygunluk Testi için aşağıdaki mönüleri kullanın:

ANALYZE » NONPARAMETRIC TESTS » CHI-SQUARE

Karşınıza aşağıdaki Chi-Square Tests iletişim penceresi gelecektir. İnceleyeceğiniz değişkeni (Örneğimizde, TV Kanalı) aradaki oku kullanarak Test Variable List iletişim kutusuna gönderiniz. All categories equal (tüm kategoriler eşit) radyo düğmesini işaretleyiniz ve OK tuşuna tıklayınız.

Gelir [D2]	Test Variable List:	OK
Babanin Egitim Du	A LA House [0.1]	Paste
Ø Ogrenim Görülen C	•	Reset
Sinf Mevcudu [D6 A1		Cance
Expected Range	Expected Values	Help
Get from data	All categories equal	
O Use specified range	O Values:	
Lower:	Add	
Upper:	Change	Evant
	Remove	LADOL.

Aşağıdakiler benzer tablolar elde edeceksiniz. TV Kanalı tablosunun il sütunu gözlenen sıklık oranlarını, ikinci sütun beklenen sıklık oranlarını, üçüncü sütun ise aradaki farkı verir. Araştırmaya 200 kişi katıldığı ve tüm kategorilerin eşit olduğu varsayıldığı için beklenen sıklık oranı 200 / 3 = 66,7 olarak bulunmuştur.
Tablodaki değerlerden SKY Türk'ün diğer kanallardan daha fazla izlenme oranına sahip olduğu gözlenmektedir. Bununla birlikte kanalların izlenme oranları arasındaki farklılıkların anlamlı olup olmadığına ilişkin daha sağlıklı yorum yapabilmek için Test Statistics tablosunun incelenmesi gerekmektedir.

	Observed N	Expected N	Residual
NTV	56	66,7	-10,7
CNN Turk	58	66,7	-8,7
Sky Turk	86	66,7	19,3
Total	200		

Test Statistics tablosunun Asymp.Sig. (Anlamlılık) satırındaki değerlerden (p = 0,015, p < 0,05), her üç kanalın izlenme oranları arasındaki farklılıkların istatistiksel olarak anlamlı olduğu anlaşılmaktadır.

Test S	tatistics
--------	-----------

	TV Kanali
Chi-Square	8,440
df	2
Asymp. Sig.	,015

Bu bulgudan hareketle Beşiktaş ilçesi sakinlerinin NTV, CNN Türk ve SKY Türk kanallarını izleme oranları arasında anlamlı bir fark olduğu sonucuna varılmıştır. Şimdi Ocak 2007 tarihinde ölçülen izlenme oranlarının geçerli olup olmadığını sorgulayalım

Ki-Kare Uygunluk Testi için tekrar aynı menüleri kullanın.

Selir [D2]	Test Variable List:	OK
Annenin Egitim Dū.	TV Kanali [D1]	Paste
Ogrenim Gorulen C Sinif Mevcudu [D6 A1	•	Cance
Expected Range	Expected Values	Help
Get from data	All categories equal	
Use specified range	Values:	
Lower.	Add 30	
Upper:	Change 45	Exact
	Remove	

Bu sefer Chi-Square Tests iletişim penceresindeki Values radyo düğmesini işaretleyin. Şimdi her bir kategoriye ait beklenen değerleri (Örneğimizde, 30, 25, 45) sırasıyla Values satırına girin ve her veri girişinden sonra Add tuşunu tıklayın. Değerlerin girişini tamamladıktan sonra OK tuşuna basın.

Aşağıdakiler benzer tablolar elde edeceksiniz. Tablodaki değerlerden SKY Türk'ün izlenme oranının düşerken NTV ve CNN Türk'ün izlenme oranlarında bir artış olduğu gözlenmektedir.. Bununla birlikte kanalların izlenme oranları arasındaki değişimin anlamlı olup olmadığına ilişkin daha sağlıklı yorum yapabilmek için Test Statistics tablosunun incelenmesi gerekmektedir.

IV Kanali						
	Observed N	Expected N	Residual			
NTV	61	60,0	1,0			
CNN Turk	58	50,0	8,0			
Sky Turk	81	90,0	-9,0			
Total	200					

Test Statistics tablosunun Asymp.Sig. (Anlamlılık) satırındaki değerlerden (p = 0,333, p > 0,05), her üç kanalın izlenme oranları gözlenen değişimin istatistiksel olarak anlamlı olduğu anlaşıl-maktadır.

	TV Kanali
Chi-Square	2,197
df	2
Asymp. Sig.	,333

Bu bulgulardan hareketle Beşiktaş ilçesi sakinlerinin NTV, CNN Türk ve SKY Türk kanallarını izleme oranlarının OCAK 2007- KASIM 2007 tarihleri arasında değişmediği sonucuna varılmıştır.

Ki-Kare Bağımsızlık Testi

Ki – Kare Bağımsızlık Testi iki değişken arasındaki ilişkinin istatistiksel olarak anlamlı olup olmadığını belirlemek amacıyla kullanılır. Bu testte diğer ilişkisel analizlerden farklı olarak ilişki kurulan değişkenlerin her ikisi de Nominal (Sınıflama) ya da Ordinal (Sıralama) ölçeklidir. Daha açık bir ifade "gelir düzeyi ile siyasi parti seçimi", "eğitim düzeyi ile okunan gazete", "iş tatmini düzeyi (evet, kısmen, hayır) ile ücret" değişkenleri arasındaki ilişkiler Ki – Kare Bağımsızlık Testi ile incelenebilir. Şimdi Ki – Kare Bağımsızlık Testi ve SPSS uygulamasını bir örnek yardımıyla inceleyelim.

Bir fabrikada rastgele seçilen bir örnekleme anket uygulanarak en çok okudukları gazeteler belirleniyor. Acaba örneklem grubundaki kişilerin okudukları gazeteler eğitim düzeylerine göre farklılık göstermekte midir? Ki-Kare Bağımsızlık Testi için aşağıdaki mönüleri kullanın:

ANALYZE » DESCRIPTIVE STATISTICS » CROSSTABS

Karşınıza aşağıdaki Crosstabs iletişim penceresi gelecektir.

🔗 С9		Row(s):		ОК
C10		Egitim	[Egitim]	Paste
C11		-		Reset
C13		Column(s):		Cancel
✓ C14		Gazete	e [Gazete]	Cancer
C15				Help
Uyku [C16]	Laye	r 1 of 1		
Metod [F2]	Pre	vious	Next	
✓ F3	=	_		ř.
TV izleme [C17]	- F			
	*			
Display clustered ba	ar charts			
Suppress tables				
Exact	Stat	istics] Cells	Format]

Gruplamada kullanacağınız bağımsız değişkeni (Örneğimizde,

www.istatistikmerkezi.com

eğitim düzeyi) Row(s) kutusuna, inceleyeceğiniz bağımlı değişkeni (Örneğimizde, gazete) Cloumn(s) kutucuğuna aradaki oku kullanarak gönderin.

Şimdi sol alttaki Statistics düğmesini tıklayın. Karşınıza aşağıdaki Crosstabs: Statistics iletişim penceresi gelecektir. Buradan Chisquare seçeneğini işaretledikten sonra Continue tuşuna tıklayın.

Chi-square	Correlations	Continue
Nominal	Ordinal	Cancel
Contingency coefficient	Camma	
🖳 Phi and Cramér's V	Somers' d	Help
🕅 Lambda	📃 Kendall's tau-b	
Uncertainty coefficient	Kendall's tau-c	
Nominal by Interval	🕅 Kappa	
🗂 Eta	Risk	
	McNemar	
Cochran's and Mantel-Haen	szel statistics	

Son olarak Cells düğmesini tıklayın. Karşınıza aşağıdaki Crosstabs: Cell Display iletişim penceresi gelecektir.

Counts			Continue
Observed			Continue
			Cancel
Expected			Help
Percentages	Res	siduals	
Row		Instandardized	
Column		Standardized	
Total	I	Adjusted standard	ized
Noninteger Weigh	ts		
Round cell co	ounts	Round cas	e weights
Truncate cell	counts	🔘 Truncate c	ase weights
No adjustmen	ts		

Buradan Observed, Expected, Row, Coloumn seçeneklerini işaretledikten sonra Continue ve OK tuşlarını tıklayın. Aşağıdakiler benzer tablolar elde edeceksiniz.

				Gazete		
			Bulvar	Tünaydin	Entel Haber	Total
Egitim	llkögretim	Count	40	12	4	56
		Expected Count	15,1	26,6	14,3	56,0
		% within Egitim	71,4%	21,4%	7,1%	100,0%
		% within Gazete	74,1%	12,6%	7,8%	28,0%
	Lise	Count	14	70	0	84
		Expected Count	22,7	39,9	21,4	84,0
		% within Egitim	16,7%	83,3%	,0%	100,0%
		% within Gazete	25,9%	73,7%	,0%	42,0%
	Üniversite	Count	0	13	47	60
		Expected Count	16,2	28,5	15,3	60,0
		% within Egitim	,0%	21,7%	78,3%	100,0%
		% within Gazete	,0%	13,7%	92,2%	30,0%
Total		Count	54	95	51	200
		Expected Count	54,0	95,0	51,0	200,0
		% within Egitim	27,0%	47,5%	25,5%	100,0%
		% within Gazete	100,0%	100,0%	100,0%	100,0%

Egitim * Gazete Crosstabulation

Tablodaki değerlerden ilköğretim mezunu çalışanların Bulvar Gazetesini, lise mezunu çalışanların Tünaydın Gazetesini, üniversite mezunu çalışanların ise Entel Haber gazetesini ağırlıklı olarak tercih ettikleri gözlenmektedir. Bu durum özellikle tablodaki beklenen toplam (Expected Count) ile gözlenen toplam satırlarındaki değerler karşılaştırıldığında çok net olarak görülmektedir. Bununla birlikte daha sağlıklı bir yorum yapabilmek için Chi-Square Tests tablosunun incelenmesi yararlı olacaktır.

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	194,112 ^a	4	,000
Likelihood Ratio	198,820	4	,000
Linear-by-Linear Association	112,843	1	,000
N of Valid Cases	200		

a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 14,28.

Tablonun Assymp.Sig. sütunun en üstündeki anlamlılık değerinin p = 0,00 olduğu görülmektedir. Bu değer p < 0,05 şartını karşıladığından eğitim düzeyi ile okunan gazete arasındaki ilişkinin anlamlı olduğu söylenebilir.

Bu bulgulardan hareketle fabrika çalışanlarının okudukları gazetelerin eğitim düzeylerine göre farklılık gösterdiği sonucuna varılmıştır.

Mann-Whitney U Testi

Bağımsız Örneklem T- Testini hatırlayın. O bölümde anlattıklarımızın tümü Mann-Whitney U Testi için de geçerli. Ancak tek bir farkla. Bağımsız Örneklem T- Testi parametrik veriler için uygun bir yöntem iken, Mann-Whitney U Testini parametrik olmayan veriler için kullanılmaktadır. Dolayısıyla Mann-Whitney U Testini, Bağımsız Örneklem T- Testinin parametrik olmayan veriler için karşılığı olarak tanım

Parametrik olmayan veriler hakkındaki bilgilerimizi hatırlayacak olursak, eğer verileriniz, normal dağılım özelliği göstermiyorsa, homojen değilse, örneklem büyüklüğünüz 20 ve daha az ise Bağımsız Örneklem T- Testi yerine Mann-Whitney U Testini kullanmanız gerektiğini söylenebilir.

Benzer durum bu bölümde anlatılacak olan üç test yöntemi için de geçerlidir. Bunlardan; (1) Wilcoxon İlişkili İki Örneklem Testi, Eşleştirilmiş Örneklem T-Testi, (2) Kruskal Wallis H Testi, Tek Yönlü Varyans Analizi, (3) Friedman Testi, İlişkili Örneklem Tek Yönlü Varyans Analizi yöntemlerinin parametrik olmayan veriler için kullanılabilecek karşılıklarıdır.

Bu yöntemleri incelerken normallik ve homojenlik testleri ile zaman kaybetmemek için 20'nin altında örneklem büyüklüğüne sahip sorular üzerinde çalıştık. Buradan örneklem büyüklüğü 20'nin üstünde olduğunda parametrik test yöntemlerini kullanabileceğinizi düşünmeyi istemeyiz. Doğru test yöntemini belirleyebilmek için mutlaka 7 nci Bölümde açıklanan basamakları uygulamalısınız.

Şimdi tekrar gelelim Mann-Whitney U testine... Bu yöntem iki ayrı grubun belli bir değişkene ait ortalamalarını karşılaştırmak için kullanılır. Örneğin hayvan hakları konusunda hakkında erkek ve kadınların görüşleri arasında fark olup olmadığını test etmek isterseniz Mann-Whitney U testini kullanabilirsiniz. Benzer şekilde evli ve bekar kadınların erkekler hakkındaki düşünceleri arasında fark olup olmadığını bulmak için kullanılabilecek yöntem yine Mann-Whitney U testidir.

Şimdi Mann-Whitney U testinin nasıl uygulandığını bir örnek üzerinde inceleyelim.

Örnek: 22 öğrenciden oluşan özel bir sınıfta kız ve erkek öğrencilerin fen bilgisi dersinden aldıkları notlar arasında anlamlı bir fark var mıdır? Mann-Whitney U test için öncelikle aşağıdaki mönüleri kullanın:

ANALYZE » NONPARAMETRIC TESTS » 2 INDEPENDENT SAMPLES

Karşınıza aşağıdaki Two-Independent-Sample T Test iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz değişkeni (Örnekte, Fen Bilgisi Notu) Test Variable List kutucuğunun içine, gruplandırmada kullanacağınız değişkeni (Örnekte, Cinsiyet) Grouping Variable satırına, aradaki okları kullanarak gönderin. Ardından Mann-Whitney U seçeneğinin işaretleyin.

Matematik	Test Variable List:	OK
Sosyal	Fen Bilgisi [Fen]	Paste
		Reset
	Grouping Variable:	Cance
	Cinsiyet(? ?)	Help
	Define Groups	
Test Type		
Mann-Whitney U	Kolmogorov-Smirnov Z	
Moses extreme reactions	Wald-Wolfowitz runs	

Şimdi kullanacağınız grupları tanımlamanız gerek. Bunun için Define Groups düğmesini tıklayın. Karşınıza aşağıdaki iletişim kutusu gelecektir. Burada Kızlar "1", Erkeler "2" ile temsil edildiğinden bu rakamları Group 1 ve Group 2 satırlarına girdik. Bunun dışında örneğin gruplamayı Eğitim Düzeyi değişkenine göre yapmayı düşündünüz ve üniversite mezunları ile lisansüstü eğitim görenler karşılaştırmak istiyorsunuz. Kodlarınızda "1" İlköğretim, "2" Lise", "3" Üniversite" "4"Lisanüstü" şeklinde olsun bu durumda Group 1 ve Group 2 satırlarına sırasıyla "3" ve "4" rakamlarını girmeniz gerekecek. Eğer lise ve daha az eğitim görmüşler ile üniversite ve daha yüksek eğitime sahip olanları karşılaştırmak istiyorsanız Cut point ifadesinin önündeki radyo düğmesini işaretlemeniz ve bu satıra "2" değerini girmeniz yeterli olacaktır. SPSS Cut point satırına girilen değeri "< =" (küçük eşit) olarak kabul eder.

Use specified values	Continue
Group 1: 1	Cancel
Group 2: 2	Help

Şimdi örneğimize dönelim. Sırasıyla Continue ve OK tuşlarını tıklayınız. Karşınıza aşağıdakiler benzer tablolar gelecektir.

		Ranks	5	
	Cinsiyet	Ν	Mean Rank	Sum of Ranks
Fen Bilgisi	Kiz	10	14,55	145,50
	Erkek	12	8,96	107,50
	Total	22		

Test	Statistics ^b
------	-------------------------

	Fen Bilgisi
Mann-Whitney U	29,500
Wilcoxon W	107,500
Z	-2,126
Asymp. Sig. (2-tailed)	,034
Exact Sig. [2*(1-tailed Sig.)]	,043 ^a

a. Not corrected for ties.

b. Grouping Variable: Cinsiyet

Test Statistics tablosunun Asymp. Sig. (Anlamlılık) satırındaki değerin 0,034 olduğu görülmektedir. Söz konusu değer 0,05'den küçük olduğu için, cinsiyet ile fen bilgisi dersi başarısı arasındaki ilişkinin p < 0,05 düzeyinde istatistiksel olarak anlamlı olduğunu söyleyebiliriz.

Bu bulgulardan hareketle örneğimizde

kız öğrencilerin fen bilgisi dersinde erkelerden daha başarılı olduğu sonucuna ulaşılmıştır.

Wilcoxon İlişkili İki Örneklem Testi

Özellikle deneme modelli araştırmalarda deney öncesi ve sonrası değerlerin karşılaştırılmasına ihtiyaç duyulabilir. Bunun dışında belli bir grubun ilişkili fakat farklı iki konu ya da uygulamaya ilişkin görüşlerini karşılaştırmak isteyebilirsiniz. Eğer bu tür durumlarda kullandığınız veriler parametrik değilse Wilcoxon İlişkili İki Örneklem Testini kullanmanız gerekecek.

Örneğin bir işletmede yeni genel müdürün öncesi ve sonrası per-

www.istatistikmerkezi.com

formansını karşılaştırmak istiyorsunuz. Ya da öğretmenlerin "eleştirel öğrenme" ile "çoklu öğrenme" yöntemlerinin etkinliklerine ilişkin görüşlerini karşılaştırmanız gerek.

Şimdi Wilcoxon İlişkili İki Örneklem testinin nasıl uygulandığını bir örnek üzerinde inceleyelim.

Örnek: Bir lisedeki fen bilgisi öğretmenlerinin, "Adım Adım Fen Bilgisi" yardımcı kitabı ile "Aşama Aşama Fen Bilgisi" yardımcı kitabının etkiliğine ilişkin görüşleri arasında fark var mıdır?

Wilcoxon İlişkili İki Örneklem testi için öncelikle aşağıdaki mönüleri kullanın:

ANALYZE » NONPARAMETRIC TESTS » 2 RELATED SAMPLES

Karşınıza aşağıdaki Two-Related Samples Tests iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz değişkenleri birbiri ardına tıklayınız. Tıkladığınız değişkenler Current Selections kutusunda görüntülenecektir. Daha sonra aradaki oku kullanarak bu değişkenleri Test Pair(s) List kutusuna gönderin. Son olarak Wilcoxon seçeneğini işaretleyin.

Adim Fen [A]		Test Pair(s) List: A - B	ОК
2 23	•		Paste Reset Cance Help
Current Selections Variable 1:		Test Type Vilcoxon Sign McNemar	

OK tuşuna tıklayınız. Karşınıza aşağıdakiler benzer tablolar gelecektir.

	Rar	nks			
		Ν		Mean Rank	Sum of Ranks
Asama Fen - Adim Fen	Negative Ranks	2	2a	2,50	5,00
	Positive Ranks	4	tp	4,00	16,00
	Ties	3	3c		
	Total	9)		

a. Asama Fen < Adim Fen

b. Asama Fen > Adim Fen

c. Asama Fen = Adim Fen

Test	Statistics ^b
------	-------------------------

	Asama Fen - Adim Fen
Z	-1,190 ^a
Asymp. Sig. (2-tailed)	,234

a. Based on negative ranks.

b. Wilcoxon Signed Ranks Test

Test Statistics tablosunun Asymp. Sig. (Anlamlılık) satırındaki değerin 0,234 olduğu görülmektedir. Söz konusu değer 0,05'den büyük olduğu için, Asama Asama Fen yardımcı kitabı ile Adım Adım Fen yardımcı kitabının etkinliği arasındaki farkın istatistiksel olarak anlamlı olmadığını söyleyebiliriz.

Örneğimizde Wilcoxon İlişkili İki Örneklem testi sonuçlarından hareketle, fen bilgisi öğretmenlerinin "Aşama Aşama Fen Bilgisi" kitabının etkinliği ile "Adım Adım Fen Bilgisi" kitabının etkinliği hakkındaki görüşleri arasında anlamlı bir fark bulunmadığı sonucuna varılmıştır.

Kruskal-Wallis H Testi

Krusukal-Wallis H Testi parametrik olmayan verilere sahip ikiden fazla grubun ölçümlerinin karşılaştırılmasında kullanılan bir yöntemdir. Öreğin erkeklerin kadınlar hakkındaki görüşlerinin medeni durumlarına (evli, bekar, dul) göre farklılık gösterip göstermediği, farklı eğitim düzeylerindeki kadınların yemek yapma yetenekleri arasında fark olup olmadığını bulmak için bu yöntemi kullanabilirsiniz. Şimdi tek yönlü varyans analizinin nasıl uygulandığını bir örnek üzerinde inceleyelim.

Örnek: 17 kişilik bir sınıftaki öğrencilerin Fen Bilgisi dersinden aldıkları ortamla puanlar babalarının eğitim durumlarına göre farklılık gösterir mi?

Krusukal-Wallis H Testi için aşağıdaki mönüleri kullanın:

ANALYZE » NONPARAMETRIC TESTS » K INDEPENDENT SAMPLES

Karşınıza aşağıdaki Tests for Several Independent Samples iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz değişkeni (Örnekte, Fen Bilgisi Notu) Test Variable List kutucuğunun içine, gruplandırmada kullanacağınız değişkeni (Örnekte, Baba Eğitim Düzeyi) Grouping Variable satırına, aradaki okları kullanarak gönderin.

Cinsiyet Matematik	Test Variable List:	OK Paste
 Y Türkçe Anne Egitim [Anne] 		Reset
	Grouping Variable:	Cance
	Define Range	Help
Test Type		
	100 M P	

Şimdi kullanacağınız grupları tanımlamanız gerek. Bunun için Define Range düğmesini tıklayın. Karşınıza aşağıdaki iletişim kutusu gelecektir.

Range for G	rouping Variable	Continue
Minimum:	1	Cancel
Maximum:	3	Help

Burada İlköğretim "1", Lise "2", Üniversite "3" ile temsil edildiğinden minimum kutucuğuna "1", maksimum kutucuğuna "3" girdik. Şimdi sırasıyla Continue ve OK tuşlarını tıklayın karşınıza aşağıdakilere benzer tablolar gelecektir.

	Rail	NS	
	Baba Egitim	Ν	Mean Rank
Fen Bilgisi	llkokul	3	16,83
	Lise	7	13,57
	Universite	12	8,96
	Total	22	

Danka

Test	Statistics ^{a,b}
------	---------------------------

	Fen Bilgisi
Chi-Square	5,111
df	2
Asymp. Sig.	,078

a. Kruskal Wallis Test

b. Grouping Variable: Baba Egitim

Test Statistics tablosunun Asymp. Sig. (Anlamlılık) satırındaki değerin 0,078 olduğu görülmektedir. Söz konusu değer 0,05'den büyük olduğu için, babanın eğitim düzeyi ile fen bilgisi dersi başarısı arasındaki ilişkinin istatistiksel olarak anlamlı olmadığını söyleyebiliriz.

Bu bulgulardan hareketle örneğimizde

babaları farklı eğitim düzeyine sahip öğrencilerin Fen Bilgisi dersinden aldıkları ortamla arasında anlamlı bir fark bulunmadığı sonucuna ulaşılmıştır.

Friedman Testi

Hatırlarsanız, eşleştirilmiş örneklem t-testini kullanarak; belirli bir değişkene ait deney öncesi ve sonrası değerlerini karşılaştırılmıştık. Ayrıca yine bu yöntemi, bir grubun ilişkili fakat farklı iki konuya ilişkin görüşlerini karşılaştırmak için kullanmıştık. Ölçüm sayısının ikiden fazla olduğu durumlarda ise İlişkili Örneklem Tek Yönlü Varyans Analizi yönteminden yararlanmıştık. Verilerimizin parametrik olma şartlarını taşımadığı durumlarda ise bu iki test yönteminin her ikisinin de yerine Friedman Testini kullanabilirsiniz.

Örneğin bir ilacın etkilerini ölçmek için ikişer hafta arayla yapılan dört farklı testin sonuçlarının ya da öğretmenlerin A, B, C eğitim yöntemlerine ilişkin görüşlerini Friedman Testini kullanarak karşılaştırabiliriz.

Şimdi Friedman Testinin nasıl uygulandığını bir örnek üzerinde inceleyelim.

Örnek: Nimetullah Mahruki İlköğretim Okulunda görev yapan öğretmenlerin yapılandırmacı öğrenme, eleştirel öğrenme ve geleneksel öğrenme yöntemlerine ilişkin görüşleri arasında fark var mıdır. İlişkili Örneklem Tek Yönlü Varyans Analizi için aşağıdaki mönüleri kullanın:

ANALYZE » NONPARAMETRIC TESTS » K RELATED SAMPLES

Karşınıza aşağıdaki Repeated Measures Define Factor(s) iletişim penceresi gelecektir.

	Yapilandimaci [A]	OK Paste
	Jeleneksel [C]	Reset
Comment		Cancel
		Help

Bu iletişim kutusuna karşılaştıracağınız değişkenleri (Örneğimizde, yapılandırmacı öğrenme, eleştirel öğrenme ve geleneksel öğrenme) aradaki oku kullanarak Test Variables kutucuğuna gönderin. Daha sonra OK tuşunu tıklayın karşınıza aşağıdakilerin benzeri tablolar gelecektir.

	Mean Rank
Yapilandirmaci	2,26
Elestirel	2,38
Geleneksel	1,35

Test Statistics^a

Ν	17
Chi-Square	13,107
df	2
Asymp. Sig.	,001

a. Friedman Test

Test Statistics tablosunun Asymp. Sig. (Anlamlılık) satırındaki değerin 0,001 olduğu görülmektedir. Söz konusu değer 0,01'den Küçük olduğu için, öğretmenlerin farklı eğitim yöntemlerine ilişkin görüşleri arasındaki farkın istatistiksel olarak anlamlı olduğunu söyleyebiliriz.

Bu bulgulardan hareketle Nimetullah Mahruki İlköğretim Okulunda görev yapan öğretmenlerin yapılandırmacı öğrenme, eleştirel öğrenme ve geleneksel öğrenme yöntemlerine ilişkin görüşleri arasında fark bulunduğu sonucuna varılmıştır.

Tartata bize barakan,

Siz kelebekle ilailenin...

istatistik@merkezi

PROFESYONEL YARDIM

- Anket Tasarımı,
- Veri Analizi,
- Tezlerinizin Araştırma Bölümlerinin Hazırlanması,
- Tez Önerisinin Hazırlanması

konularında U.Erman EYMEN[‡]'den profesyonel yardım almak için;

www.istatistikmerkezi.com adresi "Bize Ulaşın" menüsü kullanarak bizimle irtibat kurabilirsiniz.

[‡] U. Erman EYMEN İstatistik Merkezi® direktörüdür.