Eigenfactor: Detailed methods

Here we describe the methods used to compute the eigenfactor score and
other journal statistics featured at www.eigenfactor.org. The purpose of the
eigenfactor algorithm is to estimate the relative influence of each of approx-
imately 111,000 reference items in our data set, based on the frequencies
with which they are cited by the approximately 7000 core journals listed by
Thompson Scientific in their Journal Citation Reports. The algorithm works
by computing eigenvector centrality weights for the value of citations from
the ~ 7000 source journals, and then calculating weighted citation rates for
each of the 110, 000 reference items.

1 Citation Data

We draw our data from the 2004 Journal Citation Reports (JCR) published
by Thompson Scientific. From these data, we extract a set of annual cross-
citation matrices Z, which indicate how often each of approximately 7000
source journals listed in the JCR have cited a much larger set of reference
items (the ~ 7000 source journals, plus many additional journals, newspa-
pers, books, and other materials). We then compute M(y, d), a d-year cross
citation matrix for year y as follows:

d
M(y,d) = > Z(y—k,y), where
k=1
Zij(y1,y2) = Citations from journal j in year y» to articles published in
journal ¢ in year y;.

When constructing M, we omit all self-citations®, setting the diagonal en-
tries to 0. In this paper, we work with M[(2004, 5); this a 5-year cross-citation

We ignore self-citations for several reasons. First, we want to avoid over-inflating
journals that engage in the practice of opportunistic self-citation and to minimize the
incentive that our measure provides for such practice. Second, we do not have self-citation
information for the journals not listed in the JCR. Considering self-citations for JCR-listed
but not non-listed journals would systematically over-value the journals in the former
set relative to the latter. Third, if self-citations are included, some small journals with
unusual citation patterns appear as nearly-dangling nodes, and thus receive dramatically
over-inflated scores. The tendency of the JCR data set to list some outgoing citations
under a single composite item ”others” — which we cannot use our calculations because
we do not know where they are directed — exacerbates this problem.



matrix for the year 2004. Hereafter we suppress the arguments of M unless
necessary to avoid confusion.

2 Calculating Eigenfactor

To compute the weights indicating the influence of a citation from each
of our ~ 7000 source journals, we extract M’, the square 7000 by 7000
submatrix of M indicating how often each of these source journals cites
each of the other source journals?’.We normalize M’ by the column sums
(i.e., by the total number of outgoing citations from each journal) to create
a column-stochastic matrix N:
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Following Google’s PageRank approach, we define a new stochastic ma-
trix P as follows®:

2We omit from M’ those journals which publish few than 12 articles per year, and
those “dangling node” journals which do not cite any other journals in the set of source
journals. This later procedure is conducted iteratively; after removing the first round of
dangling nodes, some new dangling nodes are created, and additional rounds of removal
may be needed until all journals remaining in M’ cite at least one other journal in M’.
After this process, we are left with a square matrix of cross citations among approximately
6000 source journals.

3Under our stochastic process interpretation, the matrix M’ corresponds to a random
walk on the citation network, and the matrix P corresponds to the Markov process which
with probability « follows a random walk on the journal citation network, and which with
probability (1—«) “teleports” to a random journal in proportion to the number of articles
published by each journal. Rather than using the leading eigenvector of M’ for our journal
weights, we compute the leading eigenvector of the matrix P. We do so for a number of
reasons.

1. The stochastic matrix M’ may be non-irreducible or periodic. Adding the teleport
probability 1 — a ensures that P is both irreducible and aperiodic, and therefore
has a unique leading eigenvector by the Perron-Frobenius theorem.

2. Even if the network is irreducible, without teleporting, rankings can be unreliable
and highly volatile when some components are extremely sparsely connected. Sup-
pose, for example, that a citation network comprises two fields are connected only
by the citations of two journals, one in each field. The relative weight of each field
would then be set solely by the relative frequencies with which these two journals
cited the other field. Similarly, teleporting keeps the system from getting trapped
in small nearly-dangling clusters. If a small clique of journals are occasionally cited
from outside but rarely cite out of clique itself, the Markov process characteried by
M’ can become trapped in this portion of the citation network for a very long pe-
riod in time, effectively overvaluing the journals in this clique. Teleporting corrects
this problem by reducing the expected duration of a stay in these small cliques.



P=aN+(1-a)A,

where, with e’ as a row vector of 1’s, A = a.e’ is a matrix with identical

columns a, such that a; = (articles in journal i) / (total articles).

We define the journal influence vector f as the leading eigenvector of P;
corresponds to steady-state fraction of time spent at each journal represented
in P. The journal influence vector f thus gives us our weights for the 6000
source items.

The weighted number of citations received by each of the 110,000 refer-
ence items is given by M.f. We define the eigenfactor w; of journal i as the
percentage of the total weighted citations that journal i receives from our
6000 source items. We can write the vector of eigenfactors as
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3 Calculating Article Influence

Eigenfactor provides a measure of the total influence that a journal provides,
rather than a measure of influence per article. Impact factor, by contrast,
measures the per-article influence of a given journal. To make our results
comparable to impact factor, we need to divide the journal influence by
the number of articles published. Let a; be the total number of articles in
journal 7 over the census period (5 years, in our case). We normalize a to
give us a vector of the fractions of articles that each journal ¢ contributes to

the total literature: o
1
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Finally, we compute the article influence as the ratio of the fractional con-

tribution of journal 7 to the total eigenfactor (w;/100) to the fractional
contribution of journal i to the total articles published (b;):
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We teleport to a journal with probability proportional to the number of articles published
by that journal in order to avoid over-inflating the influence of small journals and under-
inflating the influence of large ones. This is important because the journals in the social
sciences are much smaller, on average than the journals in the sciences. As a result,
an unweighted teleportation process, in which one teleports to each journal with equal
probability, overestimates influence of articles in social science journals relative to science
journals because the teleportation process.



4 Assigning field classifications

Thompson Scientific provides field classifications for the 7000 journals listed
in the Journal Citation Reports; each of these journals is assigned to one or
more of 205 categories. We do not have field classifications for the 100,000
additional journals that we list, but we can use their citation patterns to
assign them to primary categories. For each journal ¢, the distribution of
incoming citations from the 7000 source journals is given by the i—th column
of the cross citation matrix M.

Similarly, for each of the 205 JCR categories, we can construct a citation
vector v(cat) representing the incoming citations to journals in this category:

v(cat) = Z M.
jecat

We assign each journal ¢ to the field cat such that the angle between
their respective citation vectors is the smallest. In other words, journal i is
assigned to the category which maximizes

v(i).v(cat)

V(@) [v(cat)]

where || - || is the Euclidean norm.
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