epistolo didaktika

the European journal of distance education

1995/2
EPISLOLOGIDAKTIKA 1995/2
Founded in 1963 by Herbert Ahrens, Rudolf Manfred Delling and Kurt Graff

Subscriptions and business correspondence
Mrs Jane Walker
‘Bon-accord’
7 Wydell Close
Lower Morden
Surrey SM4 4NS
England

Correspondence for Network
Dr Kari Lempikoski
Markkinointi Instituutti
Töölönkatu 6
00250 Helsinki
Finland

Editor
Dr Charmian Clay
219 Woodlands Road
Holtwood
Aylesford
Kent ME20 7QG
England

DTP production
Eric Coles, 2 Meathop Grange, Meathop, Grange-over-Sands, Cumbria LA11 6RB

Printing and distribution
The Rapid Results College

Annual subscription
£10 + £5 postage and packing
Epistolodidaktika is usually published twice a year. Cheques should be made out in £
sterling payable to AECS – EPISLOLOGIDAKTIKA and sent to the above address.
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Editorial</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Internet: an innovative environment for information dissemination, access and retrieval in distance education</td>
<td>Yaşar Tonta</td>
</tr>
<tr>
<td>33</td>
<td>Database marketing</td>
<td>Laila Mäkelä</td>
</tr>
<tr>
<td>40</td>
<td>The telephone – taking the distance out of distance learning</td>
<td>Clare Parker</td>
</tr>
<tr>
<td>50</td>
<td>Handicapped students at Distance Teaching University – ten statements and comments</td>
<td>Rainer Ommerborn</td>
</tr>
<tr>
<td>68</td>
<td>An examination of the professional development through distance education in Singapore</td>
<td>Noel Chia and Angie Ng</td>
</tr>
<tr>
<td>76</td>
<td>Individual tuition courses at Koninklijke PBNA and the application of new technologies</td>
<td>Peter van Druenen</td>
</tr>
<tr>
<td>80</td>
<td>Second International Conference on Open Learning, Singapore: Empowering the Professionals (Report)</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Training of Technical Personnel in Distance Education (Interactive Seminar report)</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Book review</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Open and Distance Learning Quality Council</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>The University of Iowa</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>‘Life Long Learning: Open Learning : Distance Learning’ (EDEN Conference)</td>
<td></td>
</tr>
</tbody>
</table>
EDITORIAL

Following inclusion of Wim Jansen’s keynote address to the 1995 AECS Conference in *Epistolodidaktika* 1995/1, this edition continues coverage of the conference presentations with Professor Yaşar Tonta’s discussion of the Internet, Laila Mäkelä’s experience of database marketing at the Institute of Marketing in Helsinki, and Clare Parker’s account of the use of the interactive technology of the telephone at International Correspondence Schools in Glasgow.

Professional education through distance education was the subject of an international conference on open learning in Singapore earlier this year. Noel Chia and Angie Ng examine the role of distance education in professional development in Singapore and Angie Ng also reports on the keynote address given at the conference by Dr Geoffrey Squires of the University of Hull, UK.

Dr Peter van Druenen describes how new technologies are being applied to tuition at Koninklijke PBNA in the Netherlands, and a Dutch/Finnish training partnership using videoconferencing features in a report on an interactive seminar from Finland.

Continuing the theme of technology, Patrick Danaher reviews an ACSDE research monograph by Rosalie Wells, *Computer-Mediated Communication for Distance Education*. The UK’s former Council for the Accreditation of Correspondence Colleges explains its name change to the Open and Distance Learning Quality Council, and Pennsylvania State University and the University of Iowa in the USA join forces to offer degrees via distance education.

** * * *

The next AECS Conference takes place in Madrid from 7th-10th May 1996. The host organisation is the Spanish National Association of Distance Learning Centres (ANCED) and the theme is ‘Permanent education through distance learning’. The President of ANCED writes:

‘We are working for the 15th Conference of the AECS to be a milestone in the European Year for Education and Training throughout Life as a result of the depth with which the key papers to be debated will be tackled; the cordial atmosphere of
communication, friendliness and hospitality which we mean to all the delegates and their accompanying persons; and because Madrid, a very lively and dynamic city with a long history with a cultural and artistic wealth of the first order, is ready to receive the European “ambassadors” of distance learning.’

For the address to write to for further information and registration forms, see page 97 of this journal.

* * *

Articles for possible publication in Epistolodidaktika are welcome at any time and should be sent to the Editor. The views expressed in Epistolodidaktika are not necessarily those of the AECS.

* * *

Since the last report in the journal (1994/2), students have successfully completed stages of the AECS Diploma as follows:

Certificate in Distance Education
Andrew Cripps
Angie Ng
Tony Wrightson

Single Module Certificates (D = Distinction)
Janet Wilson Tutors (D)
Fiona Bramhall Tutors
Stephen O’Leary Tutors (D)
Lorna Winstanley Tutors (D)
Nicholas Burrows Tutors (D)
Keith Tizzard Tutors (D)
Tracey J. Colton Tutors (D)
Andrew Cripps Tutors (D)
Val M. Shelley Writers II (D), Marketing
Angela Dixon Introduction to Distance Education (D)
Angie Ng Marketing, Introduction to Distance Education,
Administration and Management

Ian Warren Tutors
Melanie J. Wright Tutors (D), Counsellors I (D)
Tony Wrightson Administration and Management (D), Introduction to Distance Education (D), Marketing
Andrew P. Newens Tutors
E. A. Murphy Tutors (D)
Leo Watson Tutors
Chris R. Gardner Tutors
Janet P. Carlton Tutors
Petra Bridgemoohan Tutors
Internet: an innovative environment for information dissemination, access and retrieval in distance education

Yasar Tonta

INTRODUCTION

Information sources available through the networks such as the Internet and Bitnet have proliferated and diversified in recent years. Nowadays, in addition to textual information, multimedia databases containing 'documents' with graphics, images, sound and animation can often be found on the network. Government agencies, various institutions, commercial companies, and, more recently, individuals themselves, can disseminate information and open their own databases to the use of others who have access to the Internet services. End-users can easily get access to such information through the Internet, download it, and use it for their own purposes. Needless to say, availability of information through the Internet in various forms is having a profound impact upon how we work, educate and entertain.

This paper provides a brief overview of the Internet. We summarise the types of information that can be found on the network, describe basic Internet services (e.g. electronic mail, remote login, file transfer protocol), and introduce some of the information discovery and retrieval tools such as the Internet Gopher, WAIS, and the World-Wide Web. We then go on to discuss the impact of the Internet on resource sharing, document delivery, electronic publishing, telecommunications, and education. More specifically, we discuss the impact of the Internet on distance education and investigate the ways by which distance education can benefit from this new information dissemination, access, and retrieval environment. We conclude by drawing attention to some of the issues with regard to using the Internet in distance education projects and make some recommendations.
WHAT IS THE INTERNET?

Polly and Cisler (1994) suggest a number of metaphors to describe the Internet: ‘There’s the “Internet as highway” model: a blisteringly fast, multilane roadway where the vehicles are travelling in at least three dimensions at once, the directional signage changes all the time, and there are no rest stops.

There’s the “Internet as house” model suggested by Mimi King and developed by Peter Graham on the Coalition for Networked Information Big-ideas listserv discussion group:

…it’s a household with shared keys but where the lights are off and we have to grope around. Some of us are looking for the fuse box, some don’t care (and there are a few of us over in one of the darkrooms doing things others don’t want to know about). There’s a madwoman in the attic and some ranters on the stairs. Some of our publisher neighbours are worried about their property values … and others have asked the press to look into it. Some of us are having a good deal of success in getting the lights on and settling the zoning issues, which is moving others to light out for the territory. The guys building the extension out in back aren’t talking to the committee in front, though they have agreed to use the same plumbing pipes.

Our favourite analogy, though, is John Perry Barlow’s. He is a lyricist for the Grateful Dead, cattle rancher, and cofounder of the Electronic Frontier Foundation. At NationalNet ’93 he said, “it’s a biological phenomenon. Internet is not a vertebrate. It acts a lot like slime mould, growing without anyone in charge. Every time I try to describe Internet to anyone, everyone assumes I’m having a hippie mystic vision!”’ (Polly and Cisler, 1994: 38).

But what is the Internet?

The Internet is known as the ‘network of networks’. It comprises about 20,000 separate networks (federal, national, regional, campus) and interconnects almost five million computers all over the world. Every 30 seconds, another network of computers joins the network. Some 160 nations are interconnected to each other through the Internet. The number of people that can be reached via the network is said to be around 30 million. (But who is counting?)

The Internet was born about 25 years ago, as a U.S. Department of Defence network called the ARPAnet (Advanced Research Projects Association Network). ‘The ARPAnet was an experimental network designed to support military research – in particular, research about how to build networks that could withstand partial outages (like bomb attacks) and still function’ (Krol, 1993: 11). The Internet Protocol (IP),
developed in 1973, makes sure that the message put in an envelope (called ‘packet’) that is intended to be received by another computer reaches its destination (‘address’) successfully. The Transmission Control Protocol (TCP), developed in 1978, on the other hand, deals with the data inside the message and breaks it into pieces (packets) and puts them into separate envelopes so that data can efficiently be sent over the network. On the receiving side, a TCP software package collects the envelopes, extracts the data, and puts it into proper order. ‘The communicating computers – not the network itself – were also given the responsibility to ensure that the communication was accomplished. The philosophy was that every computer on the network could talk, as a peer, with any other computer’ (Krol, 1993: 11).

All computers connected to the Internet switched to the TCP/IP protocols in 1983. The ARPAnet was discontinued in 1990 after a new network (NSFNET) was set up in the 1980s by the National Science Foundation, an agency of the U.S. Government. As Shaw (1994) said, it has grown into a ‘chaotic and amorphous network of networks’.

Here are some recent statistics to help us understand how big the Internet is and how fast its use is growing in every field:

Growth in world usage of the Internet last year (1994) = 95%
Nations joining the network in 1994 = 22
Number of nations interconnected = 159
Number of computers connected to the Internet:
 U.S. = 3.2 million; Britain = 241,191; Germany = 207,717;
 Canada = 186,722; Australia = 161, 166; Japan = 96,632;
 France = 93,041
Number of organisations worldwide interconnected = 56,000;
 businesses = 32,000; business computers online: 1.3 million;
 school and university computers = 1.1 million;
 government computers = 209,345.

These are approximate figures. As Krol (1993) indicates, it is difficult to know exactly what comprises the Internet since the numbers would include various federal networks, a set of regional networks, campus networks, and some foreign networks. More recently, having seen that the Internet was good, some non-IP based (Bitnet, DECNets, etc.) networks joined the network too.

As can be seen from the above figures, the Internet is no longer a network to support military research only. Today the Internet is an international network used for research, commerce, education, entertainment, and so on. The U.S. Vice-President Al
Gore envisioned the Internet as an 'information superhighway' and saw the network as an environment to get access to rich information sources (archives and library catalogues, medical records, police records, etc.). In fact, he thought of a poor little girl in grade school in Tennessee who comes home from school and needs information to complete her homework. Through the network Gore envisioned to open all the resources of the Library of Congress to that little girl so that she could complete her homework and get a first-class education. He saw the endless opportunities the network may offer long before anyone else and continues to promote a stronger global information superhighway. Most recently, in February 1995, he was in Brussels for the meeting of the Group of Seven (G-7), the nations of Germany, Japan, Britain, France, Italy, Canada and the United States, where they discussed, among other things, how they could cooperate to design a global information superhighway.

Who governs the Internet?

This brings the question of who governs the Internet. There is no single authority, entity or organisation for the Internet as a whole. In many ways Krol (1993) likens the Internet to a church with its council of elders.

'Every member has an opinion about how things should work and you can either take part or not. The Internet Society (ISOC), a voluntary member organisation, has the ultimate authority for where the Internet is going. Its purpose is to promote global information exchange through Internet technology. It appoints a council of elders, which has responsibility for the technical management and direction of the Internet.

The council of elders is a group of invited volunteers called the Internet Architecture Board, or the IAB. The IAB meets regularly to "bless" standards and allocate resources, like addresses. The Internet works because there are standard ways for computers and software applications to talk to each other. This allows computers from different vendors to communicate without problems.

As in a church, everyone has an opinion how things ought to run. Internet users express their opinions through meetings of the Internet Engineering Task Force (IETF). The IETF is another volunteer organisation; it meets regularly to discuss operational and the near-term technical problems of the Internet. When it considers a problem important enough to merit concern, the IETF sets up a "working group" for further investigation' (Krol, 1993: 13–14).
Who pays for the Internet?

'The old rule for when things are confusing is “follow the money”. Well, this won’t help you to understand the Internet. No one pays for “it”; there is no Internet, Inc. that collects fees from all Internet networks or users. Instead, everyone pays for their part. NSF pays for NSFNET. NASA pays for the NASA Science Internet. Networks get together and decide how to connect themselves together and fund these interconnections. A college or corporation pay for their connection to some regional network, which in turn pays a national provider for its access’ (Krol, 1993: 15).

What does this mean for me?

'The concept that the Internet is not a network, but a collection of networks, means little to the end-user. You want to do something useful: run a program, or access some unique data. You shouldn’t have to worry about how it’s all stuck together. Consider the telephone system – it’s an internet too. Pacific Bell, AT&T, MCI, British Telecom, Telefonos de Mexico, and so on, are all separate corporations that run pieces of the telephone system. They worry about how to make it all work together; all you have to do is dial. If you ignore cost and commercials, you shouldn’t care if you are dealing with MCI, AT&T, or Sprint. Dial the number and it works ... You only care who carries your calls when a problem occurs’ (Krol, 1993: 15).
Information Sources on the Internet

- Library catalogs and bibliographic databases
- Archives of electronic texts, electronic journals and newsletters
- Logs of discussion lists and newsgroups
- Software archives
- Information about users
- Images and sounds

Figure 1
INFORMATION SOURCES AVAILABLE ON THE INTERNET

The amount of information on the Internet currently occupies about a few terabytes’ (10^12 bytes’) worth of space. Yet the amount is increasing tremendously as more multimedia information sources are added to the network. As there are many different types of information resources available through the Internet, it is difficult to list them all here. Here are some of the basic categories of information sources:

Library catalogues and bibliographic databases

Catalogues of large libraries and information centres are open to the public via the Internet. Bibliographic databases held in government and research institutions are also accessible through the network. They may also include indexes and abstracts of published articles in various subjects.

Archives of electronic texts, electronic journals and newsletters

The electronic copies of many printed books, dictionaries, encyclopaedias and other such reference materials are also available through the Internet. The Project Gutenberg aims to convert major non-copyrighted works into electronic form so that people can get access to them free of charge. Parallel publication of both the electronic and printed versions of the same journals started in the early 1980s and a number of publishers such as the American Chemical Society and the American Mathematical Society offer the full text of their journals through the Internet. More recently, the Internet has been used as a means of publishing scholarly articles in electronic form. The use of networks as a medium of publication has proliferated especially after the ‘cold fusion’ controversy of 1989. Hundreds of electronic journals are currently being ‘published’ through, and archived on, the network. The fifth edition of the Directory of Electronic Journals, Newsletters and Academic Discussion Lists contains entries for ‘nearly 2,500 scholarly lists, 675 electronic journals, newsletters, and related titles such as newsletter-digests – an increase in size of over 40% since the fourth edition of April 1994 and 4.5 times since the first edition of July 1991’ (Okerson, 1995). The full text of articles published in electronic journals can be downloaded from the archival sites.

Logs of discussion lists and newsgroups

Many researchers and scholars belong to specialised electronic mailing lists where tools of the trade, philosophical questions, and research queries are discussed. Similarly, less formal newsgroups are set up to discuss more mundane issues such as
social and cultural concerns. The logs of these discussion lists and newsgroups can be searched retrospectively to find the relevant postings and they can be obtained via the network.

Software archives

The copies of many useful public domain computer programs are held in some sites and made available to other network users. Such software programs are usually free of charge. Some shareware software programs are also offered through the network.

Information about the users

Electronic phone books are put on the network so that users can obtain the (electronic) addresses of other network users by consulting such phone books. Assorted campus information can also be found in such databases.

Images and sounds

As the Internet develops and gets more sophisticated, new electronic information sources such as documents with images or compound multimedia objects, weather maps, satellite pictures, electronic sensor feeds are also disseminated through the network. Television and film archives are likely to be available on the network soon once the economics of providing such services are determined. The Internet is also used to 'broadcast' the radio speeches of important personalities (such as the interview with the 'geek of the week').
Internet Services and Resource Discovery and Retrieval Tools

- Electronic mail
- Real-time applications (telnet, ftp)
- Discussion lists and newsgroups
- The Internet Gopher
- Wide Area Information Server (WAIS)
- World-Wide Web (WWW)
MAJOR INTERNET SERVICES AND RESOURCE DISCOVERY AND RETRIEVAL TOOLS

As described above, the Internet offers a wide range of information sources. Yet it's 'messy and poorly coordinated. There are incredible resources, but there is no central coordination to help you find what you want' (Krol, 1993). 'Resources can appear and disappear without notice, so considerable investment must be made in maintaining knowledge of what's there and what's where' (Shaw, 1994: 208).

Traditionally, electronic mail, remote login (telnet) and file transfer protocol (ftp) have been the first services offered by the Internet.

- **Electronic mail (e-mail)** lets you send and receive messages over the network. E-mail comes directly into people's mailboxes. It doesn't require that people take the time to seek out information actively or use any special software other than their familiar electronic mail programs.

- **Telnet** is used for (remote) logging into other computers on the Internet. It's used to access lots of public services, including library card catalogues and other kinds of databases.

- **File transfer protocol (ftp)** moves files back and forth. It's most useful for retrieving files from public archives that are scattered around the Internet. This is called 'anonymous FTP', because you don't need an account on the computer you are accessing.

INFORMATION DISSEMINATION, DISCOVERY AND RETRIEVAL TOOLS

We have pointed out earlier that the Internet can also be used to disseminate information. People often wish to share information with groups of colleagues, sometimes within their own work groups or departments, and sometimes within a larger sphere. Novogrodsky et al. (1993) describe four information dissemination tools and compare them with one another: mailing lists, list server mailing lists, Usenet newsgroups, and the Internet Gopher. The following summary is based on their article. The Wide Area Information Server (WAIS) and the World-Wide Web (WWW), relatively newer Internet services, are also introduced in this section (Krol, 1993; Roth, 1994). Software packages that allow users to search all the Gopher servers (menu
items and titles) on the Internet using keywords (veronica, jughead) or searching for a given file name in public domain ftp archives (archie) are not discussed in this paper.

Mailing lists
Mailing lists allow you to ‘broadcast’ an electronic mail message to a group of people easily. By sending your message to a single address – the address of the mailing list, you can have your message automatically sent to all members of the list. They work well for announcing timely material such as upcoming meetings, and for group discussions among the list.

Since more people are likely to have access to and know how to use electronic mail software, mailing lists are probably the best method to use to reach a group of people who use different types of computers and software.

List server mailing lists
List servers, such as LISTSERV, listproc, and tulp, are programs that manage mailing lists. They provide all the capabilities of the simpler type of mailing list described above, and also provide a number of additional features including automated list management and document distribution.

Usenet newsgroups
A Usenet ‘newsgroup’ is an electronic bulletin board on a specific topic. By using ‘newsreader’ programs, people can read messages (‘articles’) that have been posted by other users, and can participate in discussions by posting their own articles. This may sound obscure, but it’s really what everyone else calls ‘bulletin boards’ or discussion groups. Usenet is the world’s largest bulletin board service.

Newsgroups are more efficient than mailing lists for large group discussions, since messages are stored on a central server. Since people can choose when to read articles on newsgroups, they will not become involuntarily inundated with large volumes of electronic mail.

Some newsreaders allow one to search for articles by their subject lines or even within the full text of the articles. This makes it possible to locate specific articles in your area of interest easily.
The Internet Gopher

The Internet Gopher is a distributed document search and retrieval system. It provides a whole new way for beginners to get to know the Internet. Because Gopher servers are menu-based, there is no memorisation of cryptic commands. When you find something you like, you can read or access it through the Gopher without having to worry about domain names, IP addresses, changing programs, etc. Because Gopher links you transparently to information services everywhere on the Internet, you can get information effortlessly from all over the world regardless of where. If you can navigate through a simple menu, you hold the resources of the Internet in your hand.

Gopher information servers are most appropriate as places to ‘publish’ information that does not change frequently. The big advantage of Gopher isn’t so much that you don’t have to look up the address or name of the resources, or that you don’t have to use several commands to get what you want. The real cleverness is that it lets you browse through the Internet’s resources, regardless of their type, as you might browse through your local library with books, films and recordings on the same subject grouped together. Gopher knows which application (telnet, ftp, etc.) to use to get a particular thing you are interested in and does it for you (Krol, 1993).

Sometimes a combination of these tools can be used to best reach your intended audience. For instance, you may choose to make documents available on a Gopher server and then send an announcement to a discussion list or a Usenet newsgroup.

Wide Area Information Server (WAIS)

WAIS, one of the newer Internet services, is a distributed text searching system. It is based on a standard (named Z39.50) that describes a way for one computer to ask another to do searches for it. WAIS is really a tool for working with collections of data, or databases. It’s great for searching through indexed material and finding articles based on what they contain. That is: WAIS lets you search through Internet archives looking for articles containing groups of words.

Like Gopher, WAIS allows you to find and access resources on the network without regard for where they really reside. In Gopher, you find resources by looking through a sequence of menus until you find something appropriate. WAIS does the same thing, but it does the searching for you. You tell it what you want; it tries to find the material you need.
World-Wide Web (WWW)

Imagine sitting in front of your computer screen and browsing through a Smithsonian Institute exhibit, downloading up-to-the-minute radar and weather maps, reading an online magazine about Internet news, watching the Olympic skaters and their scores, or becoming a virtual tourist.

In 1993, hundreds of universities and other organisations around the world formed a worldwide information system, called the World-Wide Web (WWW) based on specifications originally developed at CERN, the European Laboratory for Particle Physics located in Geneva, Switzerland. This system allows computers on the Internet to access all this shared information. A computer with information to share runs the Web server software, while a machine accessing this information uses the Web client software (typically NCSA Mosaic). Both use a common language to communicate with the other called HTTP (hypertext transfer protocol).

The Web is a distributed information access service based on the hypertext model of information representation. What you see on the computer screen are documents and links, which themselves contain other documents and links. Hypertext documents can also contain images, sounds, and animation. The hypertext structure allows you to navigate through webs of information. When you find a document, you can display the text contained within, or you can print it or save a copy of it on your computer. Some Web servers allow you to perform a full-text search on a group of documents, displaying those documents that contain the matched word.

Web is an attempt to organise all the information on the Internet, plus whatever local information you want, as a set of hypertext documents. You traverse the network by moving from one document to another via 'links'. Many of the resources available through the Web are WAIS resources.

You really have to see it for yourself to appreciate what the Web has to offer.
Impact of the Internet

- Telecommunication
- Resource sharing
- Document delivery
- Information retrieval
- Electronic publishing
- Education

Figure 3
THE IMPACT OF THE INTERNET

The Internet is having a great impact upon almost every conceivable field one can think of. Exploring the detailed impact of the Internet on all aspects of life is beyond the reach of the present paper. Suffice to say the Internet has changed the way we communicate, share resources, deliver and access information, publish, do business and commerce, and educate. For instance, developed nations are trying to improve their telecommunications infrastructures so that they could move billions of bytes' worth of information back and forth. For they see 'information' as as important and valuable a resource as energy for the development of the Gross National Product (GNP). They are aware of the relationship between economic development and the availability of information resources. They take the information dissemination, access and retrieval issues as a whole and plan such services accordingly.

The National Information Infrastructure (NII) of the U.S. is the result of such an initiative and it paves the way for sharing information among various components of the government and private sector (health, police, legal system, banking, insurance, education, media, etc.). Such sharing is not confined to printed information only. It can be in any form: X-ray films taken in hospitals, 'digital cash', film and television archives, estate agents' information, architectural details of buildings, and so on.

The National Research and Education Network (1991) Act of the U.S. authorises the setting-up and development of a network for the purposes of research and education. Students and faculty alike at all levels are encouraged to acquaint themselves with the Internet services as early as possible (e.g. in grade schools). The use of the Internet by all segments of the society as much as possible is the goal to be strived for. A similar approach can also be seen in other developed countries (e.g. the United Kingdom and France).

THE INTERNET AND DISTANCE EDUCATION

Just as the remote diagnosis of diseases is becoming possible thanks to sharing health data between medical centres by means of the Internet, it should be possible to educate and train people better using the Internet facilities. In fact, this is being done already. A number of courses are offered through the Internet and some schools (online universities) offer degrees to those who complete the degree requirements using the Internet facilities. Residency is not part of the requirements! Anyone who has access to the Internet facilities, regardless of where he or she lives, can enrol in such degrees. All course material is offered through the network. Students complete and turn in their
assignments in the same way. Professors could grade their work interactively when they have access to the same databases and information sources.

Over the years, the field of distance education seems to have accumulated a wealth of knowledge about the use of technology for educational purposes. Distance education and training literature is filled with articles on computer-mediated communication (CMC) and its use in distance education projects. Therefore I think that you are in the best position to appreciate what the Internet can offer to distance education. I am not here to tell you what you should do to make use of the Internet facilities to improve distance education curricula. I firmly believe that the quality of correspondence school programmes would increase and new courses based on what the Internet has to offer could be designed in the near future. For instance, a European Electronic University that Professor Bates envisioned a few years ago could be supported best with the Internet's information access and retrieval tools. The central databases of course materials can be accessed by all the students via the Internet. Such repositories would include multimedia information as well as the electronic copies of course texts.

In the context of distance education, the Internet can be used in three main application areas: academic, management and research. Zorkoczy's framework for the use of CMC in distance education also applies to the Internet. Zorkoczy identified three factors that play important roles in the success of CMC in distance education:

- the features and characteristics of the technology itself
- the applications
- the characteristics of the users and their environment.

We think his framework can also be used to characterise the Internet and its use in distance education. We have to deal with these three aspects when considering the use of the Internet facilities.

The Internet is still an evolving technology. Telecommunication networks of today are simply inadequate to transmit a large amount of non-textual information. For instance, it may take several minutes to transmit a single colour picture when the network is busy. Yet multimedia information in the form of graphics, pictures, sound and video can be extremely important for research and teaching in some fields (e.g. scientific visualisation, teaching foreign languages, cinema and television). It is highly unlikely that research and teaching without such visual information will be useful. Moreover, we should remember what Bates pointed out: 'technological applications,
no matter how powerful or sophisticated, must serve rather than determine the educational goals’. Allow me to summarise his other thoughtful comments:

- ‘Black box’ approaches, based on the notion that all learning can be conveyed through a single piece of equipment, are naïve and dangerous. A multimedia approach, including direct human interaction, is essential for effective distance education.

- The older, more familiar technologies such as print and audio still have much to offer in terms of learning and cost-effectiveness; newer technologies are not automatically superior, and will still need to prove themselves.

- Technology alone is not enough; there still needs to be a system of teachers, management and administration to ensure that courses are properly designed, delivered and supported in this field. Thus the technology needs a sophisticated educational sub-structure to maintain it (Bates).

As for the applications given in Zorkoczy’s framework, I think we will see more and more hypertext and hypermedia applications designed for distance education students on the Internet. Yet it is not clear whether the correspondence schools can easily incorporate such applications in their curricula. The economic and operational issues may hinder such efforts.

We are especially thinking of the characteristics of the users and their environment. Providing distance education students with needed skills and technology to utilise the Internet resources to complete their education is easier said than done. The computer (and information) illiteracy is a common problem everywhere. This is perhaps more so for distance education students as they may not have enough time or financial resources to polish their computer skills. Furthermore, from the management point of view, you may not just assume that everyone knows how to use the Internet services efficiently. Educating them until they get conversant with the Internet services requires additional resources (teachers, equipment, materials, etc.). As we pointed out earlier, the Internet is a messy environment and it is not always easy to find what you are looking for.

Not all courses offered by the distance education programmes will be suited for the use of the Internet. Yet it is no exaggeration to suggest that distance education will become more and more Internet-assisted. As the computer literacy levels rise in our society, it will get easier to design distance education courses incorporating the Internet technology. Meanwhile, planners of contemporary distance education programmes should strive for the maximum utilisation of the Internet as an environment for information dissemination, access and retrieval.
Distance Education Databases and Education Gophers

- National Distance Learning Center
 (telnet://ndlc.occ.uky.edu login as ndlc)

- International Centre for Distance Learning
 (telnet://sun­nsf.ac.uk login as janet, password is icdl, hostname:
 acsvax.open.ac.uk; account code: tur, password: aaa)

- U.S. Dept. of Education (gopher://gopher.ed.gov)

- California Dept. of Education
 (gopher://goldmine.cde.ca.gov)

- Chronicle of Higher Education
 (gopher://chronicle.merit.edu)
Access to ICDL Databases

Eti (1) -> telnet sun.nsf.ac.uk

Trying...
Connected to sun.nsf.ac.uk.

SunOS UNIX (sun.nsfnet-relay.ac.uk)

login: janet
Password: [Enter "icdl" and press return]

Welcome to the JANET X.25 PAD Service.

Enter a JANET hostname (i.e uk.ac.janet.news) ‘h’ for help or ‘q’ to quit.

hostname: uk.ac.open.acs.vax

SunLink X.25 PAD V7.0. Type ^P<cr> for Executive, for break
Calling... connected...

OU Academic Computing Service - VAXcluster

Username: ICDL

Logged on at 22:26:30 on Sunday 21-MAY-1995

Welcome to the Database of the ICDL at Open University

Please give your country name (English version, no spaces) as Account code.
Account code: turkey
Password: [Enter "AAA" and press Return]
Welcome Screen of the ICDL Database

DISTANCE EDUCATION DATABASE

prepared for

COMMONWEALTH OF LEARNING

There are three sections in the database:

Courses - C
Institutions - I
Literature - L

Please type C, I, or L to make your selection, H for Help, or E to End.

The International Centre for Distance Learning, Open University, United Kingdom
Database last updated 11th May 1995
COURSE SEARCH

Please enter your searchword below (or ? for Help):

[INFORMATION TECHNOLOGY]

University of Central Queensland, Australia, UCQ
Programme: CA18, Bachelor of Information Technology

University of New England - Armidale, Australia

University of Southern Queensland, Australia, USQ
Programme: SQ21, Master of Information Technology

Edinburgh’s Telford College, United Kingdom

Henley Management College, United Kingdom
Programme: Information Technology Hybrid Manager, Master of Busi...

Heriot-Watt University, United Kingdom

International Correspondence Schools, United Kingdom
Course: SCN10, Understanding Information Technology

Keele University, United Kingdom
Programme: Information Technology, Certificate

Open University, United Kingdom, UKOU
Course: THD204, Information Technology and Society

University of Wales, Aberystwyth, United Kingdom
Course: Information Technology
Information about the School

University of Wales, Aberystwyth, United Kingdom

Searchword: INFORMATION TECHNOLOGY under TITLE heading

DESCRIPTION

The University was founded in 1872 and was incorporated by Royal Charter in 1889. It is a constituent college of the University of Wales and is situated in Aberystwyth, a university town and holiday centre in West Wales.

The University offers three Masters degrees by distance

Enquiries regarding any of the courses offered by the institution should be addressed to:

ADMISSION

SERVICES

Modules are based upon supplied study materials and requires practical and written assignments which are subject to formal assessment. Assignments take various forms according to the needs of the subject being studied, including reports, essays and case studies involving interview and questionnaire techniques.

REGISTRATION

STATISTICAL SUMMARY

The department has 22 academic staff [2 tutors and 20

DATA ENTERED
13 April 1994 mn
LITERATURE SEARCH

To select a SUBJECT, type a number and press the ENTER key

1 > ALL
2 DISTANCE EDUCATION (THEORY/POLICY/ACCESS/DEVELOPMENT)
3 AREAS AND LEVELS OF APPLICATION OF DISTANCE EDUCATION
4 PREPARATORY, SUBJECT & VOCATIONAL ASPECTS
5 STUDENT PSYCHOLOGY, MOTIVATION, CHARACTERISTICS
6 STUDENT ADMINISTRATION & SUPPORT
7 COURSE & CURRICULUM DEVELOPMENT & MANAGEMENT
8 TEACHING MATERIALS/RESOURCES/MEDIA/SCHOOLS
9 INSTITUTIONS, STAFF, MANAGEMENT
10 * FULL TEXT ENTRIES
11 JOURNAL CONTENTS PAGES

There are 7415 document titles for a search on:
Subject: ALL

T to view the Titles S to enter a Searchword
 B/N to look at Broader/Narrower fields
 H for Help A to select Another database or to end
FULL TEXT ENTRIES

There are 144 document titles for a search on: LITERATURE SEARCH

Please enter your searchword below (or ? for Help):

[CORRESPONDING]

Results for the Keyword "corresponding"

There are 8 document titles for a search on: CORRESPONDING

1 Feenberg, A.: The written world: On the theory and practice of co...
2 Henderson, E.: Theoretical perspectives on adult education
3 Owen, T.: Computer-mediated writing: the writer in electronic res...
4 Paulsen, M.F.: GO MEEC!: A Goal Oriented Method for Establishment...
5 Paulsen, M.F.: The NKI Electronic College: five years of computer...
6* > Thomas, R.: Implications of electronic communication for the Open...
7 Zimmer, B.: The relational glossary: an aid to learning and review
8* > Zorkoczy, P.: CMC in distance education and training: the broader...
Chapter 11
Implications of electronic communication for the Open University
Ray Thomas, Open University Milton Keynes, UK

CMC AS INTERMEDIATE TECHNOLOGY

The benefits derived from the implementation of new computerised information systems in business organisations are commonly divided into two categories - cost displacement and value added. Cost displacement is the tangible benefit, calculable in financial terms, derived from reduction or abolition of the cost of the comparable ‘manual’ system. Value added is the benefit derived from the provision of new facilities in the computerised system which were not available in the existing ‘manual’ system. Value added benefits are often intangible, and they cannot usually be estimated in financial terms.

...............................[rest deleted]
Contents Pages of Journals on Distance Education

The American journal of distance education, vol.1, no.1, 1987

The American journal of distance education, vol.8, no.3, 1994

Adults learning, vol.5, no.1, 1993

ASPESA papers no.6, 1988 Australian and South Pacific External St...

ASPESA papers, no.12, December 1992 Australian and South Pacific...

Distance education, vol.1, no.1, March 1980

Distance education, vol.14, no.2, October 1993

DEANZ bulletin, no.13, June 1991 Distance Education Association o...

DEANZ bulletin, no.16, 1993 Distance Education Association of New...

EADTU news, issue 1, April 1989 European Association of Distance...

EADTU news, issue 18, December 1994 European Association of Dist...

EC newsletter, vol.1, no.1, September 1989

EC newsletter, vol.2, no.3, September - December 1990

Education for information, vol.8, no.4, December 1990

Epistolodidaktika, 1977/1
REFERENCES

Bates, A. W. 'Towards a European Electronic University: Technology and Course Design for European-Wide Distance Education Courses', data file available at the following address: telnet://sun.nsf.ac.uk (login: janet, password: icdl; hostname: uk.ac.open.acs.vax, username: icdl)

Zorkoczy, Peter. ‘CMC in Distance Education and Training: The Broader Context’, data file available at the following address: telnet://sun.nsf.ac.uk (login: janet, password: icdl; hostname: uk.ac.open.acs.vax, username: icdl)

Professor Yaşar Tonga holds a Chair in the Department of Library Science at Hacettepe University, Ankara, Turkey.