

Criteria for the Recognition of Faults

Three basic criteria:

- 1. Fault rocks
- 2. Effects on geological and stratigraphical units
- 3. Effects on topography (physiographic elements)

1. Fault rocks

Cataclastic Rocks, Fault Breccia, Mylonite

Non-cohesive cataclasites

Cataclastic fault rocks

Mylonitic fault rocks

B.

Cataclastic rocks: (A) Megabreccia; (B) cataclasite

Cataclasite

Mylonite

Structures on the fault plane

Fault steps

Grooves and fault steps

Chatter marks

Riedel fractures

2- The effects on geological and stratigraphical units

A – Juxtaposition (Yanyana gelme)

B – *Omission and Repetition of Strata* (Eksik/Kayıp ve Bindirme/ Tekrarlanma Alanları)

C – Drag Folds (Sürüklenme /Sürüme Kıvrımları)

В.

D – 'Rollover' Anticlinal (Ters Sürüme Kıvrımı)

3- Effects on topography (physiographic elements)

A – Fault Scarp

B – Fault Line Scarp

C – Triangular facets and alluvial fans (Fay zonunda görülen üçgen yüzeyler ve sıralı birikinti konileri)

CLASSIFICATION OF FAULTS

Basically two criteria are used for the classification of faults:

1) Position of the fault plane;

2) Slip direction.

1) Classification based on position of the fault plane

2) Classification based on slip direction

Thrust-Slip Fault

Left-Handed Strike-Slip Fault

Right-Handed Strike-Slip Fault

Normal Left-Slip Fault

Left-Handed Reverse-Slip Fault

D. Rotational Fault

ANDERSON classification

Based on the principal stress directions

Principal stress (asal gerilme): stresses acting in the crust are divided into three normal stress (along the direction of which there is no shear stress) components:

 σ_1 , the greatest compressive stress,

 σ_2 the intermediate compressive stress, and

 σ_3 the least compressive stress. So , in general $\sigma_1 > \sigma_2 > \sigma_3$.

All three stresses are considered to be perpendicular to each other, and one of them is vertical while the two others are horizontal.

Normal faults

 $\boldsymbol{\sigma}_1$ is vertical, the two others are horizontal.

Reverse / thrust faults

Strike-slip faults

Faults and Principal Stress Directions

Normal Fault

Dip amount of fault plane > 45°, <90° in general: 60°

Reverse Fault

Dip amount of fault plane > 45°,

Low-angle reverse fault: ~30° named as Thrust fault

Thrust Fault

Strike-slip fault

Movement vector is paralel to the strike of fault and perpendicular to the dip of fault plane.

Oblique-slip fault

Movement vector is oblique to the strike of fault.

Rotational faults

JOINT is a fracture/structural plane along which no considerable amount of movement is visible.

Types of joints

- 1- Tectonic joints
- 2- Non-tectonic joints

1- Tectonic joints

(a) Extensional joints; (b) Shear joints; (c) Tension gashes

(a) Extensional joints

(a) Extensional joints

Orthogonal joints

If the space of extensional joints are filled by calcite, quartz or some other minerals, they are named as **veins**.

(b) Shear joints

(c) Tension gashes

Tension gashes are a special type of vein that can form rather in spectacular patterns.

2- Non-tectonic joints

(a) Mud cracks (kuruma çatlakları)

(b) Cooling joints (columnar joints) (soğuma çatlakları)

(b) Sheet joints
Formed by pressure release

UNCONFORMITIES

Representing times of nondeposition, erosion or both.

Paraconformity

Disconformity

Angular unconformity

Nonconformity

