Bilgi Görselleştirme Araçları

Umut Al
umutal@hacettepe.edu.tr
The Open Graph Viz Platform

Gephi is an interactive visualization and exploration platform for all kinds of networks and complex systems, dynamic and hierarchical graphs.

Runs on Windows, Linux, and Mac OS X. Gephi is open-source and free.

Support us! We are non-profit. Help us to innovate and empower the community by donating only €1.

APPLICATIONS

✓ Exploratory Data Analysis: intuition-oriented analysis by networks manipulations in real-time.
✓ Link Analysis: revealing the underlying structures of association between objects, in particular in scale-free networks.
✓ Social Network Analysis: easy creation of social data connectors to map community organizations and small-world networks.
✓ Biological Network analysis: representing patterns of biological data.
✓ Poster creation: scientific work promotion with high-quality printable maps.

METRICS READY

✓ Centrality: used in sociology to indicate how well a node is connected. Algorithms: degree (power-law), betweenness, closeness.
✓ And more: density, path length, diameter, HITS, modularity, clustering coefficient.

PAPERS

Like Photoshop™ for graphs.

LATEST NEWS

LATEST FORUM TOPICS

Google Summer of Code

BBY 375, 2 Ekim 2015
modest Maps is a small, extensible, and free library for
designers and developers who want to use interactive maps
in their own projects. It provides a core set of features in a
tight, clean package with plenty of hooks for additional functionality.

It doesn’t try to include every possible map control or layer type. It’s designed to be a simple platform to build upon. The code is well-designed, tested and deployed widely - thousands of maps already use the toolkit. And while we aim for the highest performance and compatibility with new technology, it is tolerant against older browsers, including Internet Explorer.

Get the code

Modest Maps JS
Compatible with Firefox, Chromium, Opera, iOS, Android, and
Internet Explorer 7-9

modestmaps.min.js 104k minified & gzipped
Clever tools for curious creatives.

The NodeBox family of tools gives you the leverage to create generative design the way you want.

Using our open-source tools we enable designers to automate boring production challenges, visualize large sets of data and access the raw power of the computer without thinking in ones and zeroes. Our tools integrate with traditional design applications and run on many platforms.

NodeBox 3
ACQUIRE, TRANSFORM, VISUALIZE
Cross-platform, node-based GUI for efficient data visualizations and generative design.
Read More

NodeBox 1
 CODE,ITERATE, PRINT
Mac app for creating 2D visuals using Python programming code.
Read More

NodeBox OpenGL
 CODE, ANIMATE
Fast cross platform graphics library.
Read More

Gallery

SelfieBot at Choke2014
NodeBox 3 Helsinki Workshop

Blog

Train the Trainer
How to make a kaleidoscope in NodeBox 3

Workshops

The creators of NodeBox have organized workshops internationally since 2004. These one-week sessions focus on learning the software combined with insights into the principles of generative art, data visualization and cognitive science.

Read more
Data in. Brilliance out.
Visualize and share your data in minutes—for free.
Scientific Visualization
Scientific visualization

Scientific visualization (also spelled scientific visualisation) is an interdisciplinary branch of science. According to Friendly (2008), it is “primarily concerned with the visualization of three-dimensional phenomena (architectural, meteorological, medical, biological, etc.), where the emphasis is on realistic renderings of volumes, surfaces, illumination sources, and so forth, perhaps with a dynamic (time) component.” It is also considered a branch of computer science that is a subset of computer graphics. The purpose of scientific visualization is to graphically illustrate scientific data to enable scientists to understand, illustrate, and glean insight from their data.

Contents

1 History
2 Methods for visualizing two-dimensional data sets
3 Methods for visualizing three-dimensional data sets
4 Scientific visualization topics
 4.1 Computer animation
 4.2 Computer simulation
 4.3 Information visualization
 4.4 Interface technology and perception
 4.5 Surface rendering
 4.6 Volume rendering
 4.7 Volume visualization
5 Scientific visualization applications
 5.1 In the natural sciences
 5.2 In geography and ecology
 5.3 In mathematics
 5.4 In the formal sciences
 5.5 In the applied sciences
6 Scientific visualization organizations
7 See also
8 References
9 Further reading
10 External links

History

One of the earliest examples of three-dimensional scientific visualisation was Maxwell's thermodynamic surface, sculpted in clay in 1874 by James Clerk Maxwell. This prefurged modern scientific visualization techniques that use computer graphics.

Notable early two-dimensional examples include the flow map of Napoleon's March on Moscow produced by Charles Joseph Minard in 1869, the "eocorba" used by Florence Nightingale in 1867 as part of a campaign to improve sanitary conditions in the British army, and the dot map used by John Snow in 1858 to visualise the Broad Street cholera outbreak.

Methods for visualizing two-dimensional data sets

Scientific visualization using computer graphics gained in popularity as graphics matured. Primary applications were scalar fields and vector fields from computer simulations and also measured...
News

Best Poster Award at IEEE Vis 2014
12.05.2014: Our poster on *A Framework for Verification of Corona Mass Ejection Ensemble Simulation* was awarded with the “Best SciVis Poster 2014” award. The poster describes the current development of a system that will use both in-situ measurements as well as real-time comparisons of scientific imagery with MHD simulations to improve predictions of space weather phenomena.

Paper accepted at IEEE Scientific Visualization Conference 2014
21.08.2014: Our paper on *boundary aware reconstruction of vector fields* has been accepted to be presented at IEEE VIS 2014. The paper presents a novel approach that improves classification of different materials and their boundaries by combining information from the classifiers at the reconstruction stage.

Paper accepted at IEEE BioVis 2013
02.05.2013: Our paper on *large scale MSA visualization* has been accepted to be presented at IEEE BioVis 2013. In this paper we propose how to use visualization in order to analyze otherwise hard to perceive patterns in MSA data. Khoa Tan-Ruoyan will give the presentation.

Second Best Paper Award at SCGG 2013
02.05.2013: A collaborative paper with the visualization group at the University of Bergen and the Visualization Group at the TU Vienna, on molecular surface abstraction received the second best paper award at SCGG 2013.

Talk - Visualization and Mesoscopic Simulation in Systems Biology
08.08.2013:
Martin Pals from the University of Stuttgart will hold a talk at Wednesday the 13th of August, at 15:15 in the VR Arena. An abstract of the talk can be found here.
Forschungsthematik: Visual Computing

Teaching

The visualization group at the UiB dep. of informatics in Bergen, Norway, offers a number of courses for students who specialize in visualization. Most courses are part of a master studies plan, specialized on visualization.

Fall Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visualization,</td>
<td>Base course in visualization, including visualization basics, volume & flow visualization, and information visualization.</td>
</tr>
<tr>
<td>INF252</td>
<td></td>
</tr>
</tbody>
</table>

Spring Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Graphics,</td>
<td>Base course in computer graphics, including basics of modeling, shading, and rendering.</td>
</tr>
<tr>
<td>INF251</td>
<td></td>
</tr>
</tbody>
</table>

All Year Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisSeminar,</td>
<td>Seminar in visualization: how to research and present. Note that this course is also called VISUAL.</td>
</tr>
<tr>
<td>INF358</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisSpecial,</td>
<td>Selected topics in visualization put emphasis on essential visualization theoretical background. Note that this course is also called VISUAL2.</td>
</tr>
<tr>
<td>INF359</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisProject,</td>
<td>Project in visualization: hands-on experience by implementing a visualization assignment.</td>
</tr>
<tr>
<td>INF219/INF319</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Thesis</td>
<td>The Master thesis project is the fundamental part of the master study programme in Visualization.</td>
</tr>
</tbody>
</table>

BBY 375, 2 Ekim 2015
Örnekler ve Daha Fazlası
Baby Names Popularity - NameVoyager: Baby Name Wizard Graph of Most Popular Baby Names

Looking for the perfect baby name? Sign up for free to receive access to our expert tools!

Baby Name:

Click a name graph to view that name. Double-click to read more about it.

See top names by decade, trends by letters, and more with Expert Name Voyager! Sign up for free!

Facebook: 16,612 people like this.
Information Visualization

Editor-in-Chief: Chaomei Chen, Drexel University, USA

Information Visualization, an international, peer-reviewed journal, is essential reading for researchers and practitioners of information visualization and is of interest to computer scientists and data analysts working on related spaces. This journal acts as a dedicated forum for the theories, methodologies, techniques and evaluations of information visualization and its applications.

This journal is a member of the Committee on Publication Ethics (COPE)

Impact Factor: 0.787 | Ranking: Computer Science, Software Engineering 57 out of 105

OnlineFirst
(Polling articles published ahead of print)

Current Issue: October 2014

All Issues
March 2012 - October 2014
Information Visualization

Editor-in-Chief:
Chao-mei Chen
Drexel University, USA

Advisory Editor:
Ben Shneiderman
University of Maryland, USA

2013 Impact Factor: 0.707
2013 Ranking: 87/105 in Computer Science, Software Engineering
Source: 2013 Journal Citation Reports® (Thomson Reuters, 2014)

Read the Information Visualization blog!

Information Visualization is essential reading for researchers and practitioners of information visualization and is of interest to computer scientists and data analysts working on related specialisms. This journal is an international, peer-reviewed journal publishing articles on fundamental research and applications of information visualization. The journal acts as a dedicated forum for the theories, methodologies, techniques and evaluations of information visualization and its applications.

The journal is a core vehicle for developing a generic research agenda for the field by identifying and developing the unique and significant aspects of information visualization. Emphasis is placed on interdisciplinary material and on the close connection between theory and practice.

This journal is a member of the Committee on Publication Ethics (COPE).
Information is Beautiful

- ideas, issues, knowledge, data — visualized!
<table>
<thead>
<tr>
<th>İsim</th>
<th>Araç</th>
<th>İsim</th>
<th>Araç</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eda</td>
<td>The InfoVis Toolkit</td>
<td>Dilara</td>
<td>HighCharts</td>
</tr>
<tr>
<td>Kübra</td>
<td>prefuse</td>
<td>Gamze Hatun</td>
<td>dimple</td>
</tr>
<tr>
<td>Kerime Pınar</td>
<td>D3</td>
<td>Kardelen</td>
<td>JavaScript InfoVis Toolkit</td>
</tr>
<tr>
<td>Guvanch</td>
<td>Vega</td>
<td>Elçin</td>
<td>Google visualization tools</td>
</tr>
<tr>
<td>Esma</td>
<td>Processing</td>
<td>Zeynep</td>
<td>Lyra</td>
</tr>
<tr>
<td>Hale</td>
<td>p5.js</td>
<td>Semra</td>
<td>iVisDesigner</td>
</tr>
<tr>
<td>Nimet</td>
<td>Piccolo</td>
<td>Eda</td>
<td>Datawrapper</td>
</tr>
<tr>
<td>Gamze</td>
<td>Aperture JS</td>
<td>Ali Can</td>
<td>Statwing</td>
</tr>
<tr>
<td>Gizem</td>
<td>Bokeh</td>
<td>Muhammet</td>
<td>Keshif</td>
</tr>
</tbody>
</table>
Bilgi Görselleştirme Araçları

Umut Al

umutal@hacettepe.edu.tr