

EXCAVATION AND SUPPORT CATEGORIES OF NATM

Prepared by Zeynep ŞEKER January,2012

About Me

Studied at Hacettepe University

- First Summer Practice: Turkish Coal Enterprises Garp Lignites Establishment
- Second Summer Practice: Koza Gold Operations Company
- <u>e-Mail:</u> zeynep_seker@live.com
- Phone number: 0 555 706 61 53

New Austrian Tunnelling Method

THE NEW AUSTRIAN TUNNELLING METHOD (NATM), AN ALTERNATIVE AND CHEAPER WAY FOR TUNNELLING

OUTLINE

 ✓ History of NATM
 ✓ Philosopy of NATM
 ✓ Design Elements of NATM
 ✓ Excavation and Support Categories of NATM
 ✓ Conclusion

History of NATM

- NATM was developed between 1957 and 1965 in Austria.
- The main contributors to the development of NATM were Ladislaus von RABCEWICZ, Leopold MULLER and Franz PACHER.

MAIN IDEA!

 The main idea is to use the geological stress of the surrounding rock mass to stabilize the tunnel itself!

Philosophy of NATM

"Design as you go!!"

Seven Important Features

- 1) Mobilization of the strength of rock mass
- 2) Shotcrete protection
- 3) Measurement
- 4) Primary Lining
- 5) Closing of Invert
- 6) Rock mass classification
- 7) Dynamic Design

Design Elements of NATM

1. Theoretical excavation line

5.

6.

- 2. Immediate support
- 3. Foundation
- 4. Lateral drainage pipe covered 7. with porous concrete
- Waterproofing system Final unreinforced concrete lining Main tunnel drain pipe covered with porous concrete
- covered with porous concrete 11.
- Sidewalks with/without utility
- conduit
- Precast gutter curb
- Road surface

8.

9.

10.

Ventilation fans

Excavation and Support Categories in Rock

Description Intact Rock:

- Spot bolting
- Occasional sealing shotcrete
- Full face or top heading/bench excavation
- Example: Bergen Tunnels, NJ

Bergen Tunnel

Excavation and Support Categories in Rock

Description Stratified Rock:

- Systematic rock doweling
- Systematic shotcrete initial lining
- Top heading excavation
- Bench excavation follows distant
- Example: Zederhaus, Austria

Cross Section

Zederhaus Tunnel

Excavation and Support Categories in Rock

Description

Fractured Rock:

- Systematic rock doweling
- Systematic shotcrete initial lining
- Top heading excavation
- Bench excavation follows any time
- Example: Devil's Slide Tunnels, CA

Cross Section

Devil's Slide Tunnel;CA

Excavation and Support Categories in Soft Ground

Description

Soft Ground - shallow cover:

- Systematic pre-support
- Systematic shotcrete initial lining support with early ring closure
- Top heading excavation (with temporary invert), bench and invert excavation
- Example: Fort Canning Tunnel, Singapore

Cross Section

Fort Canning Tunnel

Excavation and Support Categories in Soft Ground

Description

Soft Ground - deep level:

- Systematic shotcrete support with early ring closure
- Top heading excavation closely followed by bench/invert excavation
- Example: London Bridge Station, London, UK

SHOTCRETE TOP HEADING BENCHINVERT

Cross Section

Excavation and Support Categories in Soft Ground

Description

Soft Ground - deep level:

- Systematic shotcrete support with early ring closure
- Sub-division into sidewall drifts
- Top heading excavation closely followed by bench and invert excavation
- Example: London Bridge Station, London, UK

Cross Section

London Bridge Station

Face recently opened sealed with Shotcrete

Application of Primary Lining Shotcrete

Lattice Girder

Fixing of Wire Mesh and Pipe Roofing/Forepoling

Shotcreting with CIFA Robotic Arm

Rock Bolting In Progress with Rocket Boomer

NATM support tubes installation (single layer)

NATM SUPPORT TUBES INSTALLATION (DOUBLE LAYER)

Placement of Support System

Face Development

- One of the ultimate advantages of the NATM is that complex underground structures can be built without the use of open cut.
- This is a major consideration when planning the construction of metros or underground rail systems in urban areas.

Pir Panjal Tunnel

Conclusion

The success of execution of the NATM is based on three premises:
> thoughtful, skilful design
> skilled execution
> competent supervision and interpretation of observation results

THANK YOU!

Any Question?

