Instantaneous Center of Rotation of Knee Joint Under Load via Symmetrical CoR Estimation

Biomechanics Research Group http://www.biomech.hacettepe.edu.tr/ Faculty of Sport Sciences http://www.sbt.hacettepe.edu.tr/ Hacettepe University, Ankara, Turkey http://www.hacettepe.edu.tr/

Instantaneous Center of Rotation of Knee Joint Under Load via Symmetrical CoR Estimation

V. D. Yaylıoğlu¹ S. Arıtan¹

¹Faculty of Sport Sciences, Hacettepe University

Biomechanics of Human Motion Workshop, METU NCC, 2015

[ICoR Under Load](#page-0-0) Hacettepe University **Corp. And The Corp. And The Corp. And The Corp. Hacettepe University**

Hypothesis

(Instantaneous) Center of rotation changes as load change.

Hypothesis

(Instantaneous) Center of rotation changes as load change. Because,

 \blacktriangleright Bones are held together by ligaments and tendons

Hypothesis

(Instantaneous) Center of rotation changes as load change. Because,

- \blacktriangleright Bones are held together by ligaments and tendons
- \blacktriangleright Ligaments and tendons do stretch

Hypothesis

(Instantaneous) Center of rotation changes as load change. Because,

- \blacktriangleright Bones are held together by ligaments and tendons
- \blacktriangleright Ligaments and tendons do stretch
- \triangleright As a result, joints change geometry (in particular, under load)

Calculating CoR

Marker Tracking

Let the rotation R_i and the translation t_i transform a given reference marker set onto its position in frame $i = 1, \ldots, n$.

Let the rotation R_i and the translation t_i transform a given reference marker set onto its position in frame $i = 1, \ldots, n$. Then the joint center is the point c where

$$
c=R_i*\tilde{c}+t_i.
$$

That is,

$$
0=R_i*\tilde{c}+t_i-c.
$$

Hence the joint center can be found by minimizing

$$
f_{\mathsf{CTT}}(c,\tilde{c}) = \sum_{i=1}^n ||R_i\tilde{c} + t_i - c||^2
$$

where CTT stands for Center Transformation Technique. One way to solve that is the linear least squares problem:

$$
\begin{pmatrix} R_1 & -I_3 \ \vdots & \vdots \\ R_n & -I_3 \end{pmatrix} \begin{pmatrix} \tilde{c} \\ c \end{pmatrix} = - \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}
$$

where I_3 is the 3×3 identity matrix.

Problem: Center Transformation Technique assumes that the joint center is stationary, yet the CoR is almost always non-stationary.

Problem: Center Transformation Technique assumes that the joint center is stationary, yet the CoR is almost always non-stationary.

Solution: Introduce another marker set which shares that CoR, hence eliminate c.

Problem: Center Transformation Technique assumes that the joint center is stationary, yet the CoR is almost always non-stationary.

Solution: Introduce another marker set which shares that CoR. hence eliminate c. That is, minimise

$$
f_{SCoRE}(c_1, c_2) = \sum_{i=1}^n ||R_i c_1 + t_i - (S_i c_2 + d_i)||^2
$$

where (R_i,t_i) transforms one marker set while (\mathcal{S}_i,d_i) transforms the other one.

This amounts to the linear least squares problem:

$$
\begin{pmatrix} R_1 & -S_1 \ \vdots & \vdots \\ R_n & -S_n \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} d_1 - t_1 \ \vdots \\ d_n - t_n \end{pmatrix}
$$

Which gives two centers of rotation, c_1 & c_2 , which are not necessarily coincidental. One may take the mean of these two centers in order to estimate the actual center of rotation.[1]

[1] Ehrig et al, 2005, A Survey of Formal Methods for Determining the Centre of Rotation of Ball Joints

Let's have a look at it...

Reference Frames

Motion

SCoRE Result

Notes

• Change of step size (frames between data samples) did not affect the result

- \triangleright Change of step size (frames between data samples) did not affect the result
	- \triangleright Though things would get ugly as the displacements approach machine epsilon (ie. minimum number representable by the software)

- \triangleright Change of step size (frames between data samples) did not affect the result
	- \triangleright Though things would get ugly as the displacements approach machine epsilon (ie. minimum number representable by the software)
- \triangleright We did not employ any noise, yet that will be present in a real world data

Let's see how does that fare in the real world!

Experiment Setup - Marker Placement

- \blacktriangleright 1 for pedal
- \triangleright 2 for upper leg
- \triangleright 2 for tibia
	- \triangleright both on tibial crest
- \triangleright 2 for fibula
	- \blacktriangleright head of fibula
	- \blacktriangleright lateral malleolus

Experiment Setup

- MONARK Ergomedic 834
- **Photron SA3 FASTCAM High Speed Camera**
- \triangleright LED light, positioned (roughly) perpendicular to the motion plane
- \triangleright 5% of body weight as load

Experiment Procedure

- ^I 60 RPM
- $\triangleright \approx 4$ seconds
- ▶ 3 sets of 2 takes: empty & loaded
- **Filtered in MATLAB with** local regression using weighted linear least squares and a 2nd degree polynomial model with a span of 10%:

 $smooth(data, 0.1, 'loess');$

Experiment Issues

Possible sources of error:

 \triangleright Motion is not planar

Experiment Issues

- \triangleright Motion is not planar
- \blacktriangleright Markers do move

Experiment Issues

- \triangleright Motion is not planar
- \blacktriangleright Markers do move
	- Because of viscoelasticity of the skin and/or inertia

Experiment Issues

- \triangleright Motion is not planar
- \blacktriangleright Markers do move
	- Because of viscoelasticity of the skin and/or inertia
	- \triangleright Because of muscle contraction

Experiment Issues

- \triangleright Motion is not planar
- \blacktriangleright Markers do move
	- Because of viscoelasticity of the skin and/or inertia
	- \triangleright Because of muscle contraction
- \triangleright Markers protrude from the surface

Experiment Issues

- \triangleright Motion is not planar
- \blacktriangleright Markers do move
	- Because of viscoelasticity of the skin and/or inertia
	- \triangleright Because of muscle contraction
- \triangleright Markers protrude from the surface
- \triangleright Markers' positions will be recorded off because the lights shine on different parts of the marker throughout the motion

Experiment Issues

- \triangleright Motion is not planar
- \blacktriangleright Markers do move
	- Because of viscoelasticity of the skin and/or inertia
	- \triangleright Because of muscle contraction
- \triangleright Markers protrude from the surface
- \triangleright Markers' positions will be recorded off because the lights shine on different parts of the marker throughout the motion
- Discrete nature of image data

Experiment Issues

Possible sources of error:

- \triangleright Motion is not planar
- \blacktriangleright Markers do move
	- Because of viscoelasticity of the skin and/or inertia
	- \triangleright Because of muscle contraction
- \triangleright Markers protrude from the surface
- \triangleright Markers' positions will be recorded off because the lights shine on different parts of the marker throughout the motion
- Discrete nature of image data

 \blacktriangleright ...

Preliminary Results Reuleaux vs SCoRE

Preliminary Results

Reuleaux vs SCoRE

Conclusion

This approach seems promising, but more research is required to shed light on this problem.

Thank you for your attention!

