Modules Having \ast-Radical

A. Çiğdem Özcan

June 9, 2005

Abstract

ABSTRACT. Let R be a ring with identity and M a right R-module. Let $E(M)$ denote the injective hull of M and $Z^\ast(M) := M \cap \mathrm{Rad}E(M)$. We say M has \ast-radical if $Z^\ast(M) = \mathrm{Rad}M$. In this note we characterize rings in terms of modules having \ast-radical. First we prove that R is a right V-ring (GV-ring) if and only if every (singular) right R-module has \ast-radical. After that we show that R is a right H-ring if and only if every right R-module that has \ast-radical is lifting and, R is a semiprimary QF-3 ring if and only if R is right perfect and every projective right R-module that has \ast-radical is injective (extending). Finally we obtain that R is a QF-ring if and only if every right R-module that has \ast-radical is projective if and only if $Z^\ast(R) = J(R)$ and every projective right R-module that has \ast-radical is injective (extending).

1 Preliminaries

Throughout this paper we assume that R is an associative ring with unit and all R-modules considered are unitary right R-modules. Let M be an R-module. We write $E(M)$, $\mathrm{Rad}M$, $\mathrm{Soc}(M)$ and $Z(M)$ for the injective envelope, the Jacobson radical, the socle and the singular submodule of M, respectively. $J(R)$ is the Jacobson radical of R. A submodule N of M is indicated by writing $N \leq M$. The notation $N \leq_e M$ is reserved for essential submodules.

DEFINITION. A ring R is called a right V-ring if every right ideal of R is an intersection of maximal right ideals. R is called a right GV-ring if every simple right R-module is injective [12]. R is a right V-ring iff every simple right R-module is injective iff $\mathrm{Rad}M = 0$ for every right R-module M. [7]

DEFINITION. A module M is called extending if every submodule of M is essential in a summand of M. A module M is called quasi-continuous if it is extending and for summands M_1 and M_2 of M such that $M_1 \cap M_2 = 0$, $M_1 \oplus M_2$ is a summand of M. M is called continuous if it is extending and for a submodule A of M which is isomorphic to a summand of M, A is a summand of M. Note that quasi-injective modules are continuous (see, for example [15]).

1991 Mathematics Subject Classification. Primary 16L60; Secondary 16D50, 16D60, 16D80.
M is called Σ-extending (-injective) if every direct sum of copies of M is extending (-injective) (see for example [6] or [8]).

DEFINITION. Let N be a submodule of a module M. N is called a small submodule if whenever $N + L = M$ for some submodule L of M we have $L = M$ and in this case we write $N << M$. M is called lifting if for every submodule N of M there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq N$ and $N \cap M_2 << M$ (see, for example [15]). Oshiro [18] called a ring R a right H-ring if every injective right R-module is lifting. He also called a ring R a right $co-H$-ring if every projective right R-module is extending.

A ring R is called semilocal if $R/J(R)$ satisfies the minimum condition on right ideals. A ring R is semiprimary if R is semilocal and $J(R)$ is nilpotent. A ring R is called a right QF-3 ring if R has injective projective faithful right ideal. We call R is a right QF-3^+ ring if $E(R_R)$ is projective. Jans [13] showed that among rings with minimal condition on right ideals, the classes of QF-3 and QF-3^+ rings coincide.

A ring R is a semiprimary QF-3 ring when R is a semiprimary left and right QF-3 ring. The class of semiprimary QF-3 rings is a generalization of the class of QF-rings (Quasi-Frobenius rings). The class of H-rings and $co-H$-rings are generalizations of semiprimary QF-3 rings. Tachikawa [23, Proposition 3.3] proved that a semiprimary QF-3 ring is a right and left QF-3^+-ring.

DEFINITION. An R-module M is said to be small if it is a small submodule of some R-module and it is said to be non-small if it is not a small module. M is a small module if and only if M is small in its injective hull [14]. We put

$$Z^*(M) = \{ m \in M : mR \text{ is small} \}$$

[11]. Since $\text{Rad}(M)$ is the union of all small submodules in M, $\text{Rad}M \leq Z^*(M)$, and

$$Z^*(M) = M \cap \text{Rad} E(M) = M \cap \text{Rad} E'$$

for every injective module $E' \supseteq M$. Note that simple modules are either injective or small. If M is a small module then $Z^*(M) = M$.

In this note we say a module M has \ast-radical if $Z^*(M) = \text{Rad}(M)$. A ring R has \ast-radical if R_R has \ast-radical. Clearly injective modules have \ast-radical. But modules that have \ast-radical are not injective in general (Example 4.1). In the light of this result we define the following properties in this note.

(T1) Every module has \ast-radical.
(T2) Every singular module has \ast-radical.
(T3) Every projective module has \ast-radical.
(T4) Every module that has \ast-radical is projective.
(T5) Every module that has \ast-radical is injective.
(T6) Every projective module that has \ast-radical is projective.
(T7) Every projective module that has \ast-radical is extending.

At once it can be easily seen that (T1) \implies (T2) and (T3); (T5) \implies (T6) \implies (T7).

In the second part of this note we prove that R is a right V-ring \iff (T1) holds \iff Every quasi-injective module has \ast-radical \iff Every quasi-projective module has \ast-radical \iff (T3) holds and R is a right GV-ring. And (T2) holds \iff R is a right GV-ring.
In the third part we prove that (T4) holds \(\iff \) \(R \) is a QF-ring. Also we give some other results about (T3).

In the last part of this study we prove that \(R \) is a right H-ring if and only if every module that has \(*\)-radical is lifting if and only if \(R \) is a right perfect ring and (T5) holds. After that we show that (T7) holds \(\iff \) Every projective module that has \(*\)-radical is quasi-injective \(\iff \) Every projective module that has \(*\)-radical is continuous \(\iff \) Every projective module that has \(*\)-radical is quasi-continuous. If \(R \) is a right QF-3 \(+ \) ring, (T6) \(\iff \) (T7). And \(R \) is a semiprimary QF-3 ring \(\iff \) (T6) holds and \(R \) is right perfect \(\iff \) (T7) holds and \(R \) is right perfect. Finally we give a characterization of QF-rings by using these properties.

2 Properties (T1) and (T2)

First we give the following useful lemmas.

Lemma 2.1 Let \(R \) be a ring and let \(\varphi : M \to M' \) be a homomorphism of \(R \)-modules \(M, M' \). Then \(\varphi(Z^*(M)) \leq Z^*(M') \).

Proof If \(i : M' \to E(M') \) is the inclusion mapping, then the homomorphism \(i \varphi : M \to E(M') \) can be lifted to a homomorphism \(\theta : E(M) \to E(M') \). Now \(\theta(\text{Rad} E(M)) \leq \text{Rad} E(M') \) by [1, Proposition 9.14]. Then \(\varphi(Z^*(M)) \leq Z^*(M') \).

Lemma 2.2 Any direct summand of a module that has \(*\)-radical has \(*\)-radical.

Proof Let \(M \) be a module that has \(*\)-radical and \(N \) a direct summand of \(M \). Let \(x \in Z^*(N) \). Then \(xR << E(N) \leq E(M) \). It follows that \(x \in Z^*(M) = \text{Rad}(M) \) and then \(xR << M \). Since \(N \) is a direct summand of \(M \), \(xR << N \). Hence \(Z^*(N) = \text{Rad}(N) \).

Proposition 2.3 The following are equivalent for any ring \(R \).

(i) \(R \) is a right V-ring,
(ii) \(R \) satisfies (T1),
(iii) Every quasi-injective right \(R \)-module has \(*\)-radical,
(iv) Every quasi-projective right \(R \)-module has \(*\)-radical,
(v) \(R \) satisfies (T3) and is a right GV-ring.

Proof We first note that \(R \) is a right V-ring \(\iff \) for every right \(R \)-module \(M \), \(Z^*(M) = 0 \) [19, Theorem 12].

(i)\(\implies \) (ii) As \(\text{Rad} M \leq Z^*(M) \) for any \(R \)-module \(M \), it is clear. (ii)\(\implies \) (iii) Clear.

(iii)\(\implies \) (i) Let \(M \) be a simple \(R \)-module. Then \(\text{Rad} M = Z^*(M) = 0 \), i.e. \(M \) is injective. (i)\(\implies \) (iv) Clear. (iv)\(\implies \) (v) Let \(M \) be a simple singular \(R \)-module. Since \(M \) is quasi-projective, \(\text{Rad} M = Z^*(M) = 0 \). Then \(M \) is injective. (v)\(\implies \) (i) Let \(M \) be a simple \(R \)-module. If \(M \) is singular \(M \) is injective. If \(M \) is projective, by (T3), \(\text{Rad} M = Z^*(M) = 0 \). Again \(M \) is injective.

Proposition 2.4 The following are equivalent for any ring \(R \).

(i) \(R \) is a right GV-ring,
(ii) \(R \) satisfies (T2).
Proof \(R \) is a right GV-ring \(\iff Z(M) \cap Z^*(M) = 0 \) for any right \(R \)-module \(M \) [19, Theorem 10].

(i) \(\implies \) (ii) Let \(M \) be a singular \(R \)-module. Then \(Z^*(M) = 0 \). Hence \(Z^*(M) = \text{Rad}M \).

(ii) \(\implies \) (i) Let \(M \) be a simple singular \(R \)-module. By hypothesis, \(Z^*(M) = \text{Rad}M = 0 \). Since \(M \) is simple, \(M \) is injective. \(\Box \)

Example 2.5 There exists a ring \(R \) with \(* \)-radical, but \(R \) has a right \(R \)-module which does not have \(* \)-radical. Let \(R \) be the endomorphism ring of an infinite dimensional (left) vector space \(V \) over a field \(F \). Then \(R \) is a von Neumann regular right self-injective ring but not a right \(V \)-ring, because \(VR \) is a simple small module (see [25, 23.6]). Then \(Z^*(R_R) = J(R) = 0 \) but \(0 = J(V_R) \neq Z^*(V_R) = VR \).

3 Properties (T3) and (T4)

Example 3.1 Every projective module does not have \(* \)-radical in general.

Proof Let \(R = \begin{bmatrix} F & 0 \\ F & F \end{bmatrix} \) be lower triangular matrices over a field \(F \). Then \(J(R) = \begin{bmatrix} 0 & 0 \\ 0 & F \end{bmatrix} \) and \(\text{Soc}(R_R) = \begin{bmatrix} F & 0 \\ F & 0 \end{bmatrix} \). By [19, Example 11], \(\text{Soc}(R_R) = Z^*(R_R) \neq J(R) \). \(\Box \)

By Proposition 2.3, V-rings satisfy (T3). Also QF-rings satisfy (T3) because over a QF-ring \(R \), every projective right \(R \)-module is injective [8, 24.8]. If \(R \) satisfies (T3), then \(R \) is not necessarily a V-ring nor a QF-ring. Because there are many examples of QF-rings which are not V-rings and V-rings which are not QF-rings.

Note that any projective module that has \(* \)-radical is non-small. Because projective modules do not equal to their radicals. Hence small rings, for example commutative domains (see [22]), do not satisfy (T3).

In [21], Rayar showed that \(R \) is a QF-ring iff every \(R \)-module is a direct sum of an injective and a singular module iff every \(R \)-module is a direct sum of a projective and a small module. Now,

Proposition 3.2 Let \(R \) be a right Noetherian or a semilocal ring. If \(R \) satisfies (T3) then every semisimple right \(R \)-module is a direct sum of an injective module and a singular module.

Proof Let \(M \) be a semisimple module. As any simple module is projective or singular then \(M \) has a decomposition \(M = N \oplus K \) where \(N \) is the direct sum of projective simples and \(K \) is the direct sum of singular simples. Then \(K \) is singular. Also by (T3), \(Z^*(N) = \text{Rad}N = 0 \). Hence \(N \) is the direct sum of injectives. If \(R \) is right Noetherian, by [8, 20.1 Theorem], \(N \) is injective. If \(R \) is semilocal then \(N \) is also injective by [20, Theorem 4]. \(\Box \)

For the converse of the Proposition 3.2 we give the following example.

Example 3.3 [2, Example 12.18] Let \(S \) be \(\mathbb{Z} \) localised at \(2\mathbb{Z} \) and set

\[
R = \left\{ \begin{bmatrix} a & 2b \\ c & d \end{bmatrix} : a, b, c, d \in S, a - d \in 2S \right\}
\]
with the usual matrix operations, then R is a prime left and right Noetherian local ring which is not an integral domain. $J = J(R) = 2S_{e_{11}} + 2S_{e_{12}} + S_{e_{21}} + 2S_{e_{22}}$ then $R/J \cong \mathbb{Z}/2\mathbb{Z}$.

Let M be a semisimple R-module and N a simple submodule of M. As R is local, $N \cong R/J$; and as Z is uniform, N is singular. This implies that M is singular.

On the other hand since R is a prime right Goldie ring which is not primitive, $Z^*(M) = M$ for every right R-module M [19]. So R does not satisfy (T3) because $Z^*(R_R) = R$.

Harada proved that over a right perfect ring R, R is a right QF-3+ ring if and only if any non-small indecomposable projective R-module is injective [11, Theorem 1.3]. He also proved that if R is a right Artinian right QF-3+ ring with $Z^*(R) = J(R)$ then it is a QF-ring. Now we give the following result over a right perfect ring.

Theorem 3.4 Let R be a right perfect right QF-3+ ring and assume that R satisfies (T3). Then R is a QF-ring.

Proof Let $R = e_1R \oplus \ldots \oplus e_nR$ where $\{e_1, \ldots, e_n\}$ is an orthogonal set of idempotents with each e_iR is local indecomposable projective (see [1] and [15]). By (T3), $Z^*(e_iR) = J(e_iR)$ for all i. Then each e_iR is non-small. Hence each e_iR is injective by [11, Theorem 1.3]. This implies that R is right self-injective.

Now we claim that R is a semiprimary ring. Since R is extending and has no infinite set of orthogonal idempotents, R has acc on right annihilator ideals. $Z(R)$ and hence $J(R)$ is nilpotent by [10, Theorem 3.31]. This implies that R is a semiprimary ring.

Since R is semiprimary and a right QF-3+ ring R is a semiprimary QF-3 ring. Then $E(R) = R$ is \sum-injective by [5], i.e. R is a QF-ring. \square

Note that a ring R is a QF-ring if and only if every injective right R-module is projective by [8, 24.8].

Theorem 3.5 The following are equivalent for any ring R.

(i) R is a QF-ring,

(ii) R satisfies (T4).

Proof (ii)⇒ (i) Let M be an injective R-module. Then $Z^*(M) = \text{Rad}M$. Hence M is projective. This implies that R is a QF-ring.

(i)⇒ (ii) Let M be an R-module with $Z^*(M) = \text{Rad}M$. By [21], M has a decomposition $M = P \oplus S$ where P is projective and S is small. Then $Z^*(S) = \text{Rad}S = S$. Since R is right perfect, $S = 0$. Hence M is projective. \square

Corollary 3.6 (T4)⇒ (T3).

4 Properties (T5), (T6) and (T7)

In this section we characterize QF-rings, H-rings and semiprimary QF-3 rings.

Example 4.1 Every module that has $*$-radical need not be injective.
Proof Let \(R \) be the ring of polynomials in countably many indeterminates \(\{x_i\} \) over \(\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z} \) where we impose the following relations:
(i) \(x_k^3 = 0 \) for all \(k \),
(ii) \(x_k x_j = 0 \) for all \(k \neq j \) and,
(iii) \(x_k^2 = x_j^2 \) for all \(k, j \).

\(R \) is commutative, semiprimary, local, continuous but not self-injective by [17].
\(J(\mathbb{R}) = (x_1, x_2, \ldots) \) is the unique maximal ideal in \(\mathbb{R} \). Since \(J(\mathbb{R}) \leq \mathbb{Z}^*(\mathbb{R}) = J(\mathbb{R}) \) or \(\mathbb{Z}^*(\mathbb{R}) = \mathbb{R} \).

If \(\mathbb{Z}^*(\mathbb{R}) = \mathbb{R} \) then for any injective module \(M \), \(\mathbb{Z}^*(\mathbb{M}) = \text{Rad}(\mathbb{M}) = \mathbb{M} \). This contradicts that \(R \) is a perfect ring. Hence \(\mathbb{Z}^*(\mathbb{R}) = J(\mathbb{R}) \) but \(R \) is not self-injective.

Theorem 4.2 [18, Theorem 2.11] The following statements are equivalent for any ring \(\mathbb{R} \).
(i) \(\mathbb{R} \) is a right \(H \)-ring,
(ii) \(\mathbb{R} \) is right Artinian and every non-small \(\mathbb{R} \)-module contains a non-zero injective submodule,
(iii) \(\mathbb{R} \) is right perfect and for any exact sequence \(\phi : P \rightarrow E \rightarrow 0 \) where \(E \) injective and \(\ker \phi \) is small in \(P \), \(P \) is injective,
(iv) Every \(\mathbb{R} \)-module is a direct sum of an injective module and a small module.

When this is so, then \(\mathbb{R} \) is a semiprimary QF-3 ring.

Lemma 4.3 Let \(\mathbb{R} \) be a ring which satisfies \((T5) \). Then for any exact sequence \(\phi : P \rightarrow E \rightarrow 0 \) where \(E \) is injective and \(\ker \phi << P \), \(P \) is injective.

Proof Let \(\phi : P \rightarrow E \rightarrow 0 \) be an exact sequence where \(E \) is injective and \(\ker \phi << P \). Then \(\phi(\text{Rad}P) = \text{Rad}E \leq \phi(\mathbb{Z}^*(P)) \leq \mathbb{Z}^*(E) = \text{Rad}E \) by [1, Proposition 9.15] and Lemma 2.1, and so \(\phi(\text{Rad}P) = \phi(\mathbb{Z}^*(P)) \). Since \(\ker \phi \leq \text{Rad}P, \text{Rad}P = \mathbb{Z}^*(P) \). By hypothesis, \(P \) is injective.

Theorem 4.4 The following statements are equivalent for any ring \(\mathbb{R} \).
(i) \(\mathbb{R} \) is a right \(H \)-ring,
(ii) \(\mathbb{R} \) is right perfect and satisfies \((T5) \),
(iii) Every right \(\mathbb{R} \)-module that has \(\ast \)-radical is lifting.

Proof (i)\(\Rightarrow \) (ii) \(\mathbb{R} \) is right perfect by Theorem 4.2. Let \(M \) be a module that has \(\ast \)-radical. \(M = N \oplus K \) where \(N \) is injective and \(K \) is small by Theorem 4.2. Then \(K = \mathbb{Z}^*(K) \leq \mathbb{Z}^*(M) = \text{Rad}M \). Since \(R \) is right perfect, \(\text{Rad}M << M \). It follows that \(K << M \). So \(M = N \) is injective.

(ii)\(\Rightarrow \) (i) By Lemma 4.3 and Theorem 4.2.

(iii)\(\Rightarrow \) (ii) Let \(M \) be a right \(\mathbb{R} \)-module that has \(\ast \)-radical. By (ii), \(M \) is injective. Then \(M \) is lifting by Theorem 4.2.

(iii)\(\Rightarrow \) (i) It is clear.

Lemma 4.5 \(\mathbb{R} \) satisfies \((T7) \) if and only if for every \(\mathbb{R} \)-module \(M \) that has \(\ast \)-radical and has a projective cover \(P \), \(P \) is \(\sum \)-extending.

Proof (\(\Leftarrow \)) It is clear.

(\(\Rightarrow \)) Let \(M \) be a module that has \(\ast \)-radical and \(f : P \rightarrow M \) an epimorphism with
ker f \ll P. Then by the proof of Lemma 4.3, Z^*(P) = \text{Rad}P. Hence Z^*(P^{(\Lambda)}) = \text{Rad}(P^{(\Lambda)}) for any index set \Lambda. Since any direct sum of projective modules is projective, P^{(\Lambda)} is projective. By (T7), P is \sum\text{-extending}.

\section*{Proposition 4.6} The following are equivalent for any ring R.

(i) R satisfies (T7),

(ii) Every projective R-module that has \(*\)-radical is quasi-continuous,

(iii) Every projective R-module that has \(*\)-radical is continuous,

(iv) Every projective R-module that has \(*\)-radical is quasi-injective.

\textbf{Proof} (iv) \implies (iii) \implies (ii) \implies (i) Clear.

(i) \implies (iv) Let M be a projective R-module that has \(*\)-radical. Then M is \sum\text{-extending by Lemma 4.5. By [4, 3.6], M has a decomposition } M = \oplus M_i (i \in I) \text{ where each } M_i \text{ is finitely generated, quasi-injective and indecomposable. In addition, } M_i \text{'s have local endomorphism ring by [25, 19.9] and then } M_i \text{'s are local by [25, 19.7]. Since } M_i \text{'s are non-small and local, every monomorphism } M_i \rightarrow M_j (i \neq j) \text{ is an isomorphism. Hence by [6, Corollary 8.9], M is quasi-injective.} \qed

Now we deal with the relationship between (T6) and (T7).

\section*{Proposition 4.7} Assume that R is a right QF-3+ ring and satisfies (T7). Then R satisfies (T6).

\textbf{Proof} Let M be a projective R-module that has \(*\)-radical. Then M is \sum\text{-extending by Lemma 4.5. By [4, 3.6], M has a decomposition } M = \oplus M_i (i \in I) \text{ where each } M_i \text{ is finitely generated, quasi-injective and indecomposable. In addition, } M_i \text{'s have local endomorphism ring by [25, 19.9] and then } M_i \text{'s are local by [25, 19.7]. Since } M_i \text{'s are non-small and local, every monomorphism } M_i \rightarrow M_j (i \neq j) \text{ is an isomorphism. Hence by [6, Corollary 8.9], M is quasi-injective.} \qed

\section*{Example 4.8} If R is (right and left) perfect right QF-3+ then R need not satisfy (T7).

\textbf{Proof} Let R be any (right and left) perfect ring such that E(R_R) is projective but E(R_R) is not (for the existence of such a ring see [16]). Let M be a direct sum of countably many copies of E(R_R). Then M is not quasi-injective by [26, Lemma 3.1]. But M is projective and has \(*\)-radical. Hence R_R does not satisfy (T7) by Proposition 4.6. \qed

We do not know whether (T7) is equivalent to (T6) for any ring R. Now we give some results over a perfect ring.

Colby and Rutter [5, Theorem 1.3] proved that a ring R is semiprimary QF-3 if and only if R is right perfect and the projective cover of every injective R-module is injective if and only if R is right perfect and injective envelope of every projective R-module is projective. After that Vanaja [24, Theorem 1.5] showed that R is semiprimary QF-3 if and only if R is right perfect and any projective R-module whose indecomposable direct summands are non-small is extending.

Now, let R be a semiperfect ring and M a projective R-module that has \(*\)-radical. Then M has a decomposition M \cong \oplus \alpha M_\alpha (\alpha \in \Lambda) where each M_\alpha is indecomposable local (see [1, 27.11], [1, 27.6] and [25, 19.7]). By Lemma 2.2, Z^*(M_\alpha) = \text{Rad}(M_\alpha) and then M_\alpha is non-small for all \alpha.
Theorem 4.9 The following are equivalent for any ring R.

(i) R is a semiprimary QF-3 ring,

(ii) R satisfies (T6) and is right perfect,

(iii) R satisfies (T7) and is right perfect.

Proof (ii) \implies (iii) It is clear.

(i) \implies (ii) Let M be a projective module that has \ast-radical. By above remark, $M \cong \bigoplus M_{\alpha}$ ($\alpha \in \Lambda$) where each M_{α} is indecomposable and non-small. Since R is a right QF-3$^+$ ring, all M_{α} is injective. $M \cong \bigoplus M_{\alpha}$ is a direct summand of $E(RR)^{(\Lambda)}$. Then as $E(RR)$ is \sum-injective M is injective.

(iii) \implies (i) Let M be a projective module which every indecomposable summands are non-small. Then $M \cong \bigoplus M_{\alpha}$ ($\alpha \in \Lambda$) where each M_{α} is indecomposable non-small and local. Then $Z^*(M_{\alpha}) = \text{Rad}(M_{\alpha})$ ($\alpha \in \Lambda$). This implies that $Z^*(M) = \text{Rad}(M)$. By (T7), M is extending. Thus by [24, Theorem 1.5], we get the result.

\[\square \]

Example 4.10 If R satisfies (T6), R need not satisfy (T5).

Proof Let $R = \begin{bmatrix} R & 0 & 0 \\ R & Q & 0 \\ R & R & R \end{bmatrix}$ where R is the real numbers and Q is the rational numbers. R is a semiprimary QF-3 ring but not right Noetherian [5, 1.4 Remarks]. By Theorem 4.9, R satisfies (T6) and by Theorem 4.2 and Theorem 4.4, R does not satisfy (T5).

\[\square \]

Proposition 4.11 Assume that R is semiperfect. If R satisfies (T6) then any non-small indecomposable projective R-module is injective. The converse holds when, in addition, R is right Noetherian.

Proof Let M be a non-small indecomposable projective R-module. Since R is semiperfect, M is local. This implies that $Z^*(M) = \text{Rad}(M)$. By (T6), M is injective.

For the converse, let M be a projective R-module that has \ast-radical. Again $M \cong \bigoplus M_{\alpha}$ ($\alpha \in \Lambda$) where each M_{α} is non-small indecomposable projective. By assumption, M_{α}’s are injective. As R is right Noetherian, M is injective.

Another relationship between (T6) and "any non-small indecomposable projective module is injective" is given over a right GV-ring. In [19, Theorem 10] it is also proved that R is a right GV-ring if and only if every small module is projective.

Proposition 4.12 If R is a right GV-ring and satisfies (T6) then any non-small indecomposable projective module is injective.

Proof Let M be a non-small indecomposable projective module. We claim that $Z^*(M) = \text{Rad}(M)$. If not, let $x \in Z^*(M) - \text{Rad}(M)$. Then there exists a maximal submodule B of xR such that $xR/B \leq_d M/B$. Then $M/B = xR/B \oplus L/B$ for some L. Since xR is small, then xR/B is small. By [19, Theorem 10], xR/B is projective. This implies that M/L is simple projective. Hence $L \leq_d M$. If $L = 0$, $M/B = xR/B$ and then $B \leq_d M$. If $B = 0$, $M = xR$ which is contradicted by M is non-small. If $B = M$, $xR = B$, a contradiction. If $L = M$, again $xR = B$, a contradiction. Hence $Z^*(M) = \text{Rad}(M)$. By (T6), M is injective.

\[\square \]
Theorem 4.13 [18, Theorem 3.18], [6, 11.13] The following are equivalent for any ring R.

(i) R is a right co-H-ring,
(ii) Every R-module is expressed as a direct sum of a projective module and a singular module,
(iii) The family of all projective R-modules is closed under taking essential extensions,
(iv) R is right \sum-extending.

When this is so, then R is a semiprimary QF-3 ring.

Theorem 4.14 [18, Theorem 4.3] The following are equivalent for any ring R.

(i) R is a QF-ring,
(ii) R is a right H-ring with $Z(R) = J(R)$,
(iii) R is a right co-H-ring with $Z(R) = J(R)$.

Lemma 4.15 Let R be a semiperfect ring. If $Z^*(R_R) = Z(R_R)$ then $Z^*(R_R) = J(R)$. The converse holds when R is right or left perfect right quasi-continuous.

Proof Let R be a semiperfect ring and assume $Z^*(R_R) = Z(R_R)$. Then there exists an idempotent e of R such that $eR \leq Z(R_R)$ and $(1-e)R \cap Z(R_R)$ is small in R by [15, Corollary 4.42]. Since $Z(R_R)$ does not contain any non-zero idempotents, it follows that $Z(R_R) \leq J(R)$. Hence $Z^*(R_R) = J(R)$.

For converse, assume that $Z^*(R_R) = J(R)$. Since R is right or left perfect right quasi-continuous $Z(R_R) = J(R)$ by [3, Lemma 6]. Hence $Z^*(R_R) = Z(R_R)$.

Theorem 4.16 The following are equivalent for any ring R.

(1) R is a QF-ring,
(2) $Z^*(R_R) = J(R)$ and
 (a) R satisfies (T5) or
 (b) R satisfies (T6) or
 (c) R satisfies (T7) or
 (d) R is a right co-H-ring or
 (e) R is a right H-ring,
(3) $Z^*(R_R) = Z(R_R)$ and
 (a) R is semiperfect and
 (i) R satisfies (T5) or
 (ii) R satisfies (T6) or
 (iii) R satisfies (T7) or
 (d) R is a right co-H-ring or
 (e) R is a right H-ring.

Proof (1\Rightarrow2a) Since R is right self-injective, $Z^*(R_R) = J(R)$. By Theorem 4.4, R satisfies (T5).
(2a\Rightarrow2b\Rightarrow2c) Clear.
(2c\Rightarrow2d) By Lemma 4.5, R is \sum-extending. Hence R is a right co-H-ring.
(2d\Rightarrow1) Let $F = R^{(N)}$ be the free right R-module which is the direct sum of a countably infinite number of copies of R. By Theorem 4.13, $E(F)$ is projective. Since R is right perfect, $E(F)$ is lifting. Then $E(F) = X \oplus Y$ where $X \leq F$ and $F \cap Y <\lhd E(F)$. Hence $F = X \oplus (F \cap Y)$. As $Z^*(F) = \text{Rad} F$ and $F \cap Y \leq_d F$, x^*
Since $F \cap Y$ is projective, this is a contradiction. Hence $F = X$ is injective. By [8, Proposition 20.3A], R_R is \sum-injective. By [6, 18.1], R is a QF-ring.

$(2e\iff 1)$ By [11, p. 673 Corollary].

$(1\implies 3a(i))$ As R is self-injective, $Z(R_R) = J(R) = Z^*(R_R)$.

$(3a(i)\implies 3a(ii)\implies 3a(iii))$ Clear.

$(3a(iii)\implies 3d)$ As $Z^*(R_R) = Z(R_R)$ and R is semiperfect, $Z^*(R_R) = J(R)$ by Lemma 4.15. Hence R is \sum-extending by Lemma 4.5.

$(3d\implies 1)$ As by Lemma 4.15, $Z^*(R_R) = J(R)$ the proof is completed by the proof of $(2d\implies 1)$.

$(3e\iff 1)$ By Lemma 4.15 and [11, p. 673 Corollary].

References

MODULES HAVING *-RADICAL

DEPARTMENT OF MATHEMATICS, HACETTEPE UNIVERSITY, 06532 BÝYTEPE, ANKARA TURKEY.

E-mail address: ozcan@hacettepe.edu.tr