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A mineral is a natural, homogeneous solid with a definite chemical composition and a highly ordered
atomic arrangement. Recently, fast and accurate mineral identification/classification became a necessity.
Energy Dispersive X-ray Spectrometers integrated with Scanning Electron Microscopes (SEM) are used to
obtain rapid and reliable elemental analysis or chemical characterization of a solid. However, mineral
identification is challenging since there is wide range of spectral dataset for natural minerals. The more
mineralogical data acquired, time required for classification procedures increases. Moreover, applied
instrumental conditions on a SEM–EDS differ for various applications, affecting the produced X-ray
patterns even for the same mineral. This study aims to test whether C5.0 Decision Tree is a rapid and
reliable method algorithm for classification and identification of various natural magmatic minerals.

Ten distinct mineral groups (olivine, orthopyroxene, clinopyroxene, apatite, amphibole, plagioclase,
K-feldspar, zircon, magnetite, biotite) from different igneous rocks have been analyzed on SEM–EDS.
4601 elemental X-ray intensity data have been collected under various instrumental conditions. 2400
elemental data have been used to train and the remaining 2201 data have been tested to identify the
minerals. The vast majority of the test data have been classified accurately. Additionally, high accuracy
has been reached on the minerals with similar chemical composition, such as olivine ((Mg,Fe)2[SiO4])
and orthopyroxene ((Mg,Fe)2[SiO6]). Furthermore, two members from amphibole group (magnesiohas-
tingsite, tschermakite) and two from clinopyroxene group (diopside, hedenbergite) have been accurately
identified by the Decision Tree Algorithm. These results demonstrate that C5.0 Decision Tree Algorithm is
an efficient method for mineral group classification and the identification of mineral members.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A mineral is a natural, homogeneous solid having a definite
chemical composition and a highly ordered atomic arrangement.
Their physical and chemical properties provide a basis for char-
acterizing the minerals and the mineral groups to which they
belong. The characteristic physicochemical properties can be uti-
lized for identification of minerals for various purposes focused on
mineralogical data. There are numerous analytical methods for the
identification and quantification of minerals which utilize their
characteristic physicochemical properties. Among all these meth-
ods, a Scanning Electron Microscope (SEM) equipped with an
Energy Dispersive X-ray Spectrometer (EDS) represents a con-
venient way to identify a mineral within a wide range of solid
specimens.
aş).
Among spectrometric methods, SEM–EDS is a fast and a reli-
able tool for qualitative and quantitative microchemical analyses.
SEM provides high-resolution raster data for different applications
virtually on any solid. The electron source (or electron gun) in a
SEM generates an incident focused electron beam which excites
the atoms on the surface of the sample. The “bombardment” of the
sample with an electron beam results in the emission of Auger
electrons, secondary electrons, backscattered electrons, X-rays and
photons (Goldstein et al., 2003; Seibert, 2004). Particles originat-
ing from the sample and their released energies are detected by
various types of detectors in a typical SEM–EDS. Thus, digital in-
formation on the “structure” of the samples can be acquired. EDS
“counts” the collected characteristic X-rays produced by electron
transitions between energy shells following the removal of an
inner shell electron upon excitation by the incident electron beam.
The vacancy in the inner shell is filled by the transition of an outer
shell electron. During such transition, released X-ray energy is
represented by the difference of energy between inner and outer
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Table 1
Number of performed analysis for each mineral groups and abbreviations used.

Mineral groups

Collected EDS data Abreviations

Alkali Feldspar 496 Afs
Amphibole 499 Amp
Apatite 498 Ap
Biotite 400 Bt
Clinopyroxene 498 Cpx
Magnetite 493 Mag
Olivine 447 Ol
Orthopyroxene 413 Opx
Plagioclase 439 Pl
Zircon 418 Zr
Total 4601
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shell electrons, which are characteristic for each element (Gold-
stein et al., 2003). A typical EDS data is represented by a simple
X-ray spectrum containing characteristic X-ray peaks and Brems-
strahlung (continuum X-rays) plot on a histogram where y-axis
represents X-ray counts per second (cps)/energy (eV) and x-axis
represents X-ray energies belong to each channel (keV) (Reed,
2005). For more detailed explanation on measuring peak in-
tensities and calculations, readers should refer to Reed (2005) and
Goldstein et al. (2003).

EDS is an analytical instrument used for the elemental analysis
or chemical characterization of a solid. Obtaining elemental data
by EDS technique is fast, which eases accurate and rapid char-
acterization of minerals. But on the other hand, it is a challenging
technique since there is wide range of spectral dataset for natural
minerals. The diversity of chemical constituents of mineral species
results in the spectral variability of the EDS datasets. Besides, ac-
curacy of an SEM–EDS data can be affected by various factors. The
electrical configuration of the instrument (e.g. accelerating vol-
tage, beam current, spot size) during the data acquisition may alter
spectral patterns. The physical parameters of the specimen (e.g.
topography, electrical conductivity) may differ for each acquisition
and analysis. These effects can cause drastic discrepancies in the
elemental analysis and/or chemical characterization of even the
same mineral sample. Moreover, the characterization of mineral
analyses may become a challenging process, considering the ef-
fects of working conditions on spectral data. In addition, during
mineralogical/petrological studies, recognition of a mineral
member is more valuable than the group to which it belongs.
Hence, correct identification of minerals according to their EDS
data often requires a prior knowledge of the analyte. Once the
spectral data obtained, then it can be treated for the calculation of
elemental concentrations and may be expressed in terms of either
% atomic mass or oxide weights. Upon the calculation of elemental
concentrations, distribution of cations in the ideal crystal formulae
is used to calculate proportions of end-members of a known mi-
neral group, which are then used to identify the mineral member.
This calculation, the basis for the proper identification of a mineral
member, strictly requires the mineral group to be known. In other
words, correct mineral identification is needed for classifying the
mineralogical data correctly.

Although SEM–EDS provides speed and reliability in the ana-
lysis practice, considerable amount of time is needed for mineral
identification due to the crystal chemical calculations. Regarding
the spectral variations in elemental X-ray intensities that are af-
fected by analytical conditions, probability of misidentification
would increase on non-standard sample topography. In this study,
we employed an automatic classification scheme using char-
acteristic X-ray intensities based on rule induction principle which
is independent of the physical working conditions and post-ana-
lysis data recalculation.

Numerous attempts to establish an automatic classifier/identi-
fier for the minerals using various chemical, physical and the vi-
sual information have led the development of “smart systems”
with Artificial Neural Network techniques (ANN) and Genetic
Programming (GP). Ruisanchez et al. (1996) has used EDS spectral
data with Kohonen ANN methods for automated classification of
12 standard mineral samples. Koujelev et al. (2010) has treated
spectral data of Laser-Induced Breakdown Spectroscopy (LIBS)
with an ANN method for classification of the several minerals.
Thompson et al. (2001) and Baykan and Yılmaz (2010) have ap-
plied ANN; Ross et al. (2001) has used GP method for obtaining
automated classification of visual information of minerals, ac-
quired using rotating stage of a polarized light microscope. As a
commercial success, a fully automated mineral identification
platform, Mineral Liberation Analyzer (MLA), integrated with SEM
and EDS has been developed by Gu and Napier-Munn (1997). MLA
uses both visual grayscale information acquired via Backscatter
Electron Detector (BSD) and EDS spectra as X-ray intensities.
However, industrial applications of liberation data have been
limited because the acquisition of mineral liberation data has been
difficult and expensive (Gu, 2003). Among numerous studies on
mineral identification processes, no decision tree methods have
not been applied and evaluated yet.

Main objective of this study is to test whether Decision Tree
Algorithms can be applied for the mineral classification/identifi-
cation using raw, untreated X-ray intensity data without being
affected by physical analytical conditions. In this study, Univariate
Decision Tree (DT) algorithms were tested as the main classifier.
The fastest and considerably accurate results have been obtained
by using the C5.0 Decision Tree Algorithm (Quinlan, 2003).
2. Materials and methods

2.1. Data acquisition using SEM–EDS

Mineral samples in polished thin sections/epoxy mounts of
natural magmatic rock specimens have been analyzed at the
Electron Microscopy and Microanalysis Laboratory of Hacettepe
University, Department of Geological Engineering. Carl-Zeiss EVO
50 EP Scanning Electron Microscope equipped with Bruker AXS
X-Flash 3001 Silicon Drift Detector (SDD) Energy Dispersive X-ray
Spectrometer (EDS). All samples have been carbon-coated prior to
analyzing process. 4601 characteristic X-ray intensities (cps/eV:
counts per second per electron volts) of Na, Mg, Al, Si, K, Ca, Ti, Mn,
Fe, Zr and P for selected mineral groups were obtained using spot
analysis method for 10–100 s. Table 1 shows the number of col-
lected EDS data for each mineral used in this study.

Regarding the fact that the chemical compositions for analyzed
minerals can vary according to the nature of the host rock, various
types of magmatic rocks have been chosen. Ten mineral groups/
species (olivine, orthopyroxene, clinopyroxene, plagioclase,
K-feldspar, biotite, amphibole, magnetite, zircon and apatite) from
different types of magmatic rocks (e.g. basalt, andesite, rhyolite,
granite, gabbro, monzonite, diorite, and syenite) have been se-
lected under either polarized light microscope or SEM. For each
mineral, at least five points have been analyzed on different areas
of each crystal. Thus, compositional variations of minerals in dif-
ferent rocks and elemental variations in different regions of the
same crystals are incorporated into the dataset (see Section 4.2).
Such approach is applied in order to facilitate the recognition of
minerals having compositional variability by DT algorithm.

During data acquisition processes, the same analytical proce-
dures under various physical conditions have been applied. All
analyses have been performed under non-standard, random



Fig. 1. Representative variation of elemental X-ray intensities (depicted with lines) for different instrumental conditions. (A) clinopyroxene, (B) amphibole and (C) biotite.
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analytical conditions since each physical SEM parameter affects
the spectral EDS pattern (Fig. 1), and consequently the calculated
elemental concentrations for each mineral (see Section 4.1). The
rationale behind analyzing under different SEM conditions is to
help DT algorithm to characterize each mineral minimizing the
physical effects on their chemical data. Besides, this approach re-
duces the total time for the standardization of SEM conditions.
Table 2 shows the applied analytical condition sets during acqui-
sitions for the training data for final DT classification.

2.2. Decision tree

A simple decision tree is a set of procedures in order to classify
input training data into more homogenous subgroups using gen-
erated rules or decisions called nodes (Friedl and Brodley, 1997;
Quinlan, 2003). During the training, DT aims to obtain maximum
Table 2
Instrumental condition sets applied during the acquisition of 240 training data for each

Training analyses of mineral groups Apllied working cond

Condition sets Number of analyses Probe current (nA)

Clinopyroxene 1 43 2
2 36 1
3 24 2
4 71 3
5 66 2

Orthopyroxene 1 14 3
2 46 4
3 180 4

Olivine 1 27 3
2 12 2
3 23 3
4 178 5

Plagioclase 1 43 3
2 29 1.5
3 168 3

Alkali Feldspar 1 5 3
2 70 3
3 16 1.5
4 28 1.8
5 121 1.1

Amphibole 1 12 5
2 26 5
3 97 4
4 105 2

Biotite 1 18 2
2 142 3
3 26 3
4 54 1.5

Apatite 1 38 3
2 41 1
3 161 2

Magnetite 1 54 3
2 29 3
3 137 4
4 20 2

Zircon 1 8 5
2 172 5
3 60 3
information and minimum entropy in the generated subsets of the
tree (Quinlan, 2003). Fig. 2 shows an example of the workflow and
basic parts of decision tree classification for three mineral families.
All data have been gathered in a root node and divided into re-
latively more homogenous subsets called internal nodes (split)
using feature values (thresholds). Partitioning/dividing process
stops when DT reaches terminal nodes (leaf node). In this final
step, labels are defined/assigned in the leaf nodes by allocation
way (Pal and Mather, 2003).

The C5.0 Decision Tree Classifier uses the information gain ra-
tio; the metric which tests each node and selects the subdivisions
of the data in order to maximize the “Entropy Decrease” of the
connected node (Friedl and Brodley, 1997). Thus, the best attri-
butes (features) obtained are used to describe each case belonging
to only one separate class (Friedl et al., 1999; Quinlan, 1999). These
attributes are tested in the nodes of each split, and partitioning
mineral groups.

itions

Working distance (mm) Filament current (A) Accelerating voltage (kV)

12 2300–2600 15
15 2600–2750 15
10 2300–2600 20
10 2300–2600 17
10 2300–2600 15
15 2600–2750 15
12 2300–2600 15
10 2300–2600 15
14 2600–2750 20
10 2300–2600 15
12 2600–2750 15
10 2300–2600 15
12 2600–2750 20
15 2600–2750 15
10 2300–2600 15
15 2600–2750 15
12 2600–2750 20
12 2600–2750 17
15 2600–2750 15
10 2300–2600 15
15 2600–2750 15
17 2300–2600 15
17 2300–2600 15
12 2600–2750 20
12 2600–2750 20
11 2300–2600 15
12 2600–2750 17
12 2600–2750 15
10 2600–2750 20
12 2600–2750 15
10 2300–2600 15
10 2600–2750 15
12 2600–2750 17
10 2300–2600 15
10 2600–2750 20
10 2600–2750 15
10 2300–2600 15
10 2300–2600 15



Fig. 2. Typical workflow of a simple Decision Tree Algorithm for the classification
of three distinct mineral families (phosphates, silicates, sulfides).

Fig. 3. Wo–En–Fs ternary diagram for nomenclature of Ca–Mg–Fe pyroxenes ac-
cording to Morimoto (1988).
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processes are continued until reaching to a terminal (leaf) node
downwards the tree (Pal and Mather, 2003). For this study, C5.0
Decision Tree Algorithm, the successor of C4.5 algorithm produced
by Quinlan (2003), has been used for the classification/identifica-
tion of mineralogical EDS data. For a detailed description of the
C5.0 Decision Tree, the reader should refer to Quinlan (2003).

The results obtained by the training procedure may perform
poorly due to errors in the dataset, which generate noise produ-
cing false splits. In this case, these splits can lead to inaccurate
results, especially for the new data (Brown de Colstoun, 2003;
Friedl et al., 1999; Quinlan, 2003; Weiss and Kulikowski, 1991). In
order to reduce the errors during processing the new data, DT has
to be pruned back. This is the most important step in all of the
decision tree methods (Friedl and Brodley, 1997). There are several
methods for pruning, based on the separation of the noise from
the leaf nodes and also from the tree branches. In C5.0, pruning
back starts automatically on leaf nodes and spreads upward to the
whole tree using the information gain ratio. Further details on the
pruning methods are described in the following sources: Breiman
et al. (1984), Mingers (1989) and Quinlan (1999)).

Freund and Schapire (1996)'s Boosting Method is another way
of increasing the predictive capability of C5.0. The Boosting
Method focuses on the “weak” classifier within the learning al-
gorithm. In this method, equal weights are set for each event of
the training data based on the first tree produced. After setting the
first tree, all weights are adjusted according to the misclassified
events of the training data. Therefore, the next trial weights are
changed proportionally according to the error for each event,
which provides a model focused on the complicated classification.
Each new classification tree generated by those trials, contains
correction data against misclassification (Freund and Schapire,
1996; Quinlan, 1996).

2.3. Mineral classification

Minerals have well-defined chemical composition and crystal
structures; thus these properties provide subdivisions into fa-
milies, groups and subgroups. Upon the acquisition of the ele-
mental data, a reliable distinction between the members of a
mineral group can be established by calculating the chemical
formula. Further detail about calculation of mineral formulae have
been explained by Deer et al. (2013). Regarding the major element
compositions and recalculation of a mineral formula, silicon drift
detector (SDD)–EDS produces comparable results with that of a
WDS (Çubukçu et al., 2008). Calculating the chemical formula of a
mineral is based on the ideal proportions of its structural anions
and cations. The number of cations in the mineral composition
should be balanced by an appropriate number of oxygen anions.
The number of balancing oxygen anions is different for virtually
most of the mineral groups, depending on their crystal structure.
Therefore, prior to the calculation of a mineral formula, identifi-
cation of the mineral/mineral groups is compulsory. However,
during SEM–EDS studies on natural rocks, coming across an “un-
known” mineral with an indistinguishable EDS spectrum is not
infrequent.

In order to provide a basis for efficient mineral identification
using X-ray intensity data, we employed C5.0 Decision Tree Al-
gorithm on 4601 spectral data acquired from known mineral sets.
For the purpose of generating reliable training data for the testing
stage, single-algorithm filtering, Brodley and Friedl (1999) has
been applied on the identified mineral EDS datasets prior to the
final classification. Training and testing blocks were generated for
final classification, after this filtering process.

In order to identify mineral species within chemically complex
mineral groups (i.e. amphibole and pyroxene in the dataset) fur-
ther classification procedure has been applied after the final
classification, which identified the mineral groups only. Thus, two
members (magnesiohastingsite and tschermakite) from amphibole
group and two members (diopside and hedenbergite) from clin-
opyroxene group have been selected, where 50% their EDS data
has been used for training. Mentioned members of each group
have been named according to their chemical formulae using ap-
propriate nomenclature. Cationic distribution of pyroxene mem-
bers have been calculated for 6 oxygen per formula units (Table 3)
and molar concentrations of three end-member compositions
(wollastonite (Wo; Ca2Si2O6), enstatite (En; Mg2Si2O6) and ferro-
sillite (Fs; Fe2Si2O6)) in each analysis have been plotted on Ca–Mg–
Fe ternary diagram according to Morimoto (1988). Hence, these
pyroxene minerals are named as hedenbergite and diopside
(Fig. 3). Cationic distribution in amphibole members have been
calculated for 23 oxygen units and the mineral members have
been named as magnesiohastingsite and tschermakite according
to Leake et al. (2004) (Table 4).
3. Results

3.1. Filtering process

Efficiency of single-algorithm filtering used by decision trees
(C4.5, C5.0) has been demonstrated by several studies (Brodley and
Friedl, 1999; Brown de Colstoun, 2003). In order to filter X-ray
intensity spectral dataset, 10-fold cross-validation based on C5.0



Table 3
Major oxide concentrations and calculated cationic proportions 10 clinopyroxene analyses.

Analysis no.

I13-100-A-5 I13-100-A-14 I13-100-A-15 I13-100-A-17 m I13-100-A-63 m N256-12 N256-4 N256-6 N256-7 N256-25

Na2O 0.14 0.16 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MgO 14.83 16.27 16.27 16.84 16.71 0.00 0.00 0.00 0.00 0.00
K2O 0.01 0.00 0.00 0.00 0.00 0.17 0.21 0.25 0.19 0.20
CaO 24.22 24.67 24.67 24.26 24.14 20.54 20.98 20.83 20.93 20.96
TiO2 0.38 0.53 0.53 0.23 0.07 0.31 0.05 0.25 0.43 0.36
Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 5.79 4.12 4.12 3.42 3.86 31.11 30.88 29.69 30.01 30.27
MnO 0.00 0.00 0.00 0.00 0.00 0.85 0.64 0.68 0.48 0.58
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SiO2 50.59 51.38 51.38 52.92 53.62 46.86 47.00 48.22 47.17 46.89
Al2O3 3.16 2.54 2.54 2.07 1.93 0.00 0.00 0.00 0.00 0.00
Total 99.12 99.66 99.66 99.74 100.33 99.84 99.76 99.94 99.23 99.25

Cations based on 6 oxygens
Si 1.88 1.88 1.88 1.93 1.95 1.95 1.96 2.00 1.97 1.96
Al 0.14 0.11 0.11 0.09 0.08 0.00 0.00 0.00 0.00 0.00
Fet 0.18 0.13 0.13 0.11 0.12 1.08 1.07 1.03 1.05 1.06
Mg 0.82 0.89 0.89 0.92 0.91 0.00 0.00 0.00 0.00 0.00
Ca 0.96 0.97 0.97 0.95 0.94 0.92 0.94 0.93 0.94 0.94
Na 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
Ti 0.01 0.02 0.02 0.01 0.00 0.01 0.00 0.01 0.01 0.01
Mn 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.02 0.02 0.02
Tot_Cat 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
Fe3 0.10 0.11 0.11 0.03 0.01 0.08 0.10 0.00 0.04 0.07
Fe2 0.09 0.02 0.02 0.07 0.11 1.00 0.98 1.03 1.01 0.99
Fe2O3 3.40 4.00 4.00 1.19 0.44 2.65 3.04 0.00 1.24 2.19
FeO 2.73 0.52 0.52 2.35 3.47 28.73 28.15 29.69 28.90 28.30
Al (IV) 0.12 0.11 0.11 0.07 0.05 0.00 0.00 0.00 0.00 0.00
Al (VI) 0.02 0.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00
Jd 1.62 0.00 0.00 2.21 3.41 0.00 0.00 0.00 0.00 0.00
Ae 9.61 10.36 10.36 3.32 1.20 3.65 5.23 0.05 1.14 2.99
Aug 88.78 89.64 89.64 94.47 95.39 96.35 94.77 99.95 98.86 97.01
Wo (%) 49.06 48.84 48.84 48.17 47.89 45.15 46.01 46.77 46.81 46.55
En (%) 41.77 44.80 44.80 46.50 46.11 0.00 0.00 0.00 0.00 0.00
Fs (%) 9.17 6.36 6.36 5.32 6.01 54.85 53.99 53.23 53.19 53.45
Mineral names Diopside Hedenbergite
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has been employed. Filtering has been applied to EDS data of pre-
defined minerals. The rationale behind the filtering process is to
determine misidentified data, so that a better training dataset can
be constructed. Ten-fold cross validation technique requires a
well-defined/labelled data to test the validity of each subset. For
this reason, this process does not applicable for undefined/un-
labelled datasets. For filtering, all datasets have been selected
randomly and have been divided into 10 equal-sized subsets. For
each run, one of the subsets has been used for testing and the
remaining nine datasets have been used for training. After 10 runs,
each tree has been evaluated using independent training and test
subsets. As a result of cross-validation, only 8 of 4601 spectra have
been misclassified. Table 5 shows the results of user-identified
mineral groups and produced classification with misclassified data
after 10-fold cross-validation process by C5.0. The determined
8 misclassification data were re-evaluated after the filtering pro-
cess, but no subjective misclassification error has been identified.
Therefore, in order to obtain the best results or to prevent prob-
able noise in the training data, mentioned 8 EDS data have been
discarded from the dataset before the selection of reference da-
taset for final classification.

3.2. Classification into mineral groups

Upon filtering process, remaining 4593 X-ray intensity spectral
have been divided into “training” and “test” datasets. The effects of
analytical working conditions and chemical variation of the
minerals have been considered for the selection of the training
data (Fig. 1). A total of 2400 characteristic spectral data in 10 sets
of groups with 240 analyses, have been selected as the training
dataset (Table 1). Remaining 2193 X-ray intensity data have been
used for testing and classified using a boosted decision tree. Ta-
ble 6 shows the confusion matrix of boosted decision tree. After
the final classification, 4 analyses in the test dataset were mis-
classified and remaining 2189 X-ray intensity data were classified
correctly. Specified misclassifications and the reference analyses
are shown in Table 7. The measured elemental intensities might be
lower or higher than the reference intensities due to the afore-
mentioned effects. Orthopyroxene is misclassified as amphibole in
the test data, due to considerably high calcium content acquired
during the analysis of orthopyroxene. Generally the Ca intensity of
an orthopyroxene lies between the ranges of 4000–7000 cps/eV.
Considerably high Ca X-ray intensity ( 16,580 cps/eV) might be the
result of either the impurity of the surface of the crystal or co-
existence of a Ca-bearing mineral adjacent to the beam spot. Be-
sides these, the determined two misclassifications between the
olivine–orthopyroxene testing blocks seem to be caused by the
subjective errors. During the evaluation of the two misclassified
results within the orthopyroxene and olivine test blocks, it was
recognized that the results and the reference elemental intensities
were matching. In the final boosted decision tree, considerable
high accuracy of the 2400 training data against 2193 test data were
achieved after 10 trials. This demonstrates the effectiveness of the
boosting technique.



Table 4
Major oxides concentrations and calculated cationic proportions 10 amphibole analyses.

Analysis no.

I13-013-1 I13-013-8 I13-013-16 I13-025-5 I13-025-13 Amp-exp-3-6 Amp-exp-3-9 Amp-exp-3-12 Amp-exp-3-14 Amp-exp-3-36

SiO2 39.99 41.56 38.87 38.20 38.17 45.64 43.38 44.92 44.62 45.04
TiO2 2.81 1.98 2.37 2.14 2.79 1.77 1.48 1.98 1.69 1.96
Al2O3 11.39 13.03 11.41 11.65 12.79 9.19 9.16 9.62 9.58 10.82
MnO 0.11 0.44 0.39 0.40 0.18 0.19 0.52 0.00 0.39 0.05
FeO 16.32 16.93 16.85 16.66 18.77 13.82 14.25 12.02 12.58 10.01
MgO 10.25 11.25 10.76 10.91 9.18 14.80 13.29 14.88 14.67 15.52
CaO 11.56 10.23 10.67 11.24 10.93 11.22 11.05 10.95 10.59 10.42
Na2O 1.62 2.29 2.13 2.01 1.86 1.46 1.91 1.63 1.76 1.81
K2O 1.78 1.51 1.72 1.87 1.91 0.62 0.58 0.47 0.47 0.43
Total 95.83 99.20 95.16 95.07 96.60 98.71 95.61 96.46 96.36 96.05

Cations based on 23 oxygens
Si 6.20 6.18 6.10 6.02 5.95 6.65 6.59 6.64 6.63 6.60
Ti 0.33 0.22 0.28 0.25 0.33 0.19 0.17 0.22 0.19 0.22
Al 2.08 2.28 2.11 2.16 2.35 1.58 1.64 1.68 1.68 1.87
Mn2 0.01 0.05 0.05 0.05 0.02 0.02 0.07 0.00 0.05 0.01
Fe2 2.11 2.11 2.21 2.20 2.45 1.68 1.81 1.48 1.56 1.23
Mg 2.37 2.50 2.52 2.56 2.13 3.22 3.01 3.28 3.25 3.39
Ca 1.92 1.63 1.79 1.90 1.83 1.75 1.80 1.73 1.69 1.64
Na 0.49 0.66 0.65 0.61 0.56 0.41 0.56 0.47 0.51 0.51
K 0.35 0.29 0.34 0.38 0.38 0.12 0.11 0.09 0.09 0.08
Sum 15.86 15.93 16.06 16.14 16.01 15.63 15.76 15.58 15.64 15.54
Si 6.15 6.02 5.98 5.91 5.85 6.48 6.45 6.49 6.45 6.45
Aliv 1.85 1.98 2.02 2.09 2.15 1.52 1.55 1.51 1.55 1.55
SumT 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
Alvi 0.21 0.25 0.04 0.03 0.15 0.02 0.05 0.13 0.08 0.27
Ti 0.32 0.22 0.27 0.25 0.32 0.19 0.17 0.21 0.18 0.21
Fe3 0.34 1.17 0.93 0.85 0.83 1.17 0.97 1.00 1.20 1.06
Mg 2.35 2.43 2.47 2.51 2.10 3.13 2.95 3.20 3.16 3.31
Fe2 1.75 0.88 1.24 1.30 1.58 0.47 0.80 0.46 0.32 0.14
Mn2 0.01 0.05 0.05 0.05 0.02 0.02 0.07 0.00 0.05 0.01
SumC 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
Ca 1.90 1.59 1.76 1.86 1.79 1.71 1.76 1.69 1.64 1.60
Na 0.10 0.41 0.24 0.14 0.21 0.29 0.24 0.31 0.36 0.40
SumB 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Na 0.39 0.23 0.39 0.46 0.35 0.11 0.31 0.15 0.14 0.10
K 0.35 0.28 0.34 0.37 0.37 0.11 0.11 0.09 0.09 0.08
SumA 0.74 0.51 0.73 0.83 0.72 0.22 0.42 0.24 0.22 0.18
Mineral names Magnesiohastingsite Tschermakite
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3.3. Identification of mineral members

For the classification of mineral groups, 100 X-ray intensities
(25 intensities for each of magnesiohastingsite, tschermakite,
diopside and hedenbergite) have been used for filtering process.
After running 10-fold cross-validation process according to the
generated confusion matrix one magnesiohastingsite mis-
classification was found within the tschermakite data. The analysis
was re-evaluated in the cationic proportion process and identified
as the magnesiohastingsite within calcic amphibole classification
Table 5
Confusion matrix after 10-fold cross-validation filtering procedures.

Afs Amp Ap Bt Cpx Mag

Afs 494 0 0 0 0 0
Amp 0 496 0 1 2 0
Ap 0 0 498 0 0 0
Bt 1 0 0 399 0 0
Cpx 0 0 0 0 498 0
Mag 0 0 0 0 0 493
Ol 0 0 0 0 0 0
Opx 0 0 0 0 0 0
Pl 0 0 0 0 0 0
Zr 0 0 0 0 0 0

Note: The classified names have been shown in the columns and user identified names
diagram. The cause of the misclassification was the occurring of
the slight chemical variations between magnesiohastingsite and
tschermakite compositions within the same crystal structure. On
the contrary, compared to the group characterization, the small
chemical differences may lead to considerable differences for the
characterization of mineral members. This result indicated that all
analyses used for training the member characterization, should
also be subjected to the cationic calculations.

After the filtering, the site intensity for the magnesiohastingsite
has been replaced within its member training site. For the final
Ol Opx Pl Zr Total misclassifications

0 0 2 0 2
0 0 0 0 3
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

445 2 0 0 2
0 413 0 0 0
0 0 439 0 0
0 0 0 418 0

have been shown in the rows.



Table 8
Confusion matrix of final boosted decision tree for mineral member identification for 40 test data.

Diopside Hedenbergite Magnesiohastingsite Tschermakite

Diopside 10 0 0 0
Hedenbergite 0 10 0 0
Magnesiohastingsite 0 0 11 0
Tschermakite 0 0 0 9

Note: The classified names have been shown in the columns and user identified names have been shown in the rows.

Table 6
Confusion matrix of boosted decision tree for final mineral group classification used with 2193 test data.

Afs Amp Ap Bt Cpx Mag Ol Opx Pl Zr Total misclassifications

Afs 252 0 0 0 0 0 0 0 1 0 1
Amp 0 256 0 0 0 0 0 0 0 0 0
Ap 0 0 258 0 0 0 0 0 0 0 0
Bt 0 0 0 159 0 0 0 0 0 0 0
Cpx 0 0 0 0 258 0 0 0 0 0 0
Mag 0 0 0 0 0 253 0 0 0 0 0
Ol 0 0 0 0 0 0 204 1 0 0 1
Opx 0 1 0 0 0 0 1 171 0 0 2
Pl 0 0 0 0 0 0 0 0 200 0 0
Zr 0 0 0 0 0 0 0 0 0 178 0

Note: The classified names have been shown in the columns and user identified names have been shown in the rows.

Table 7
Reference and misclassified analyses of final group classification.

Testing block X-ray intensity Final labelling

Na Mg Al Si K Ca Ti Mn Fe O

Afs Reference 19,998 1 59,371 156,891 13,945 2986 271 1 295 63,297 Afs
Misclassified 9969 1 28,925 78,141 6768 1583 85 1 176 32,689 Pl

Opx Reference 1 84,349 4448 149,513 696 5637 690 298 18,917 79,068 Opx
Misclassified 1 69,700 5452 148,494 818 16,746 1436 547 19,355 64,799 Amp
Misclassified 1 59,948 2135 157,332 323 7670 1291 1117 31,858 58,989 Ol

Ol Reference 1 106,477 1 102,670 252 744 1 865 32,486 93,980 Ol
Misclassified 605 70,438 73 142,948 625 1142 299 334 23,414 80,109 Opx
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boosted decision tree; 40 test data were classified using 60
training data (15 intensities per member). Generated tree and
confusion matrix have demonstrated that the efficiency of C5.0
algorithm was achieved within 100% accuracy level for 40 testing
intensities (see Table 8).
4. Discussion

4.1. Effects of working conditions on EDS analyses

Even though the “standardless” analysis is one of the most
important advantages of EDS instruments; Statham (2002) mea-
sured that, the X-ray energies and intensities of the same mineral,
even at the same point, might show discrepancies due to effects of
different working conditions of SEM. Maintaining standard work-
ing conditions and analytical standards on SEM–EDS is a challen-
ging process considering the diversity of solid analytes. Ad-
ditionally, special analyzing procedures may be required for some
mineral groups such as amphibole, biotite and feldspar. For ex-
ample; due to the migration of alkalis (Na, K), feldspars are sen-
sitive for long measurement durations, high probe currents and
accelerating voltages. Similarly, the alkaline and OH contents of
amphibole and mica minerals are also affected by high probe
currents and prolonged analyses. Therefore, different working
conditions should be applied as per the type of the studies and
minerals.

For electron microanalysis; analytical working conditions de-
pend on electrical/physical parameters (accelerating voltage, fila-
ment/beam/probe currents, chamber vacuum), sample features
(structure, working distance/geometry, surface topography) and
the duration of analysis. These are the most important parameters
on the acquired X-ray intensity patterns. The effects of measure-
ment duration, chamber vacuum, electrical conductivity or surface
topography of the sample on the quality of analyses are not in-
cluded in this study. However, it must be noted that; qualitative
and quantitative EDS measurements are affected by all of these
analytical conditions.

During all the analyses, we kept the “emission current”, the
leaving part of the electron beam from the gun, constant as
100 mA. The smaller portion of beam current passes through the
anode, the smaller it becomes passing through the column aper-
tures leading to insufficient energy (Goldstein et al., 2003). For the
electron microprobe analysis, an accelerating voltage between
15 kV and 25 kV is generally accepted. Thus, sufficient voltage and
current are obtained to excite the atoms having atomic numbers as
much as Z¼83 (Small, 2002). The accelerating voltages during the
analyses for this study were between 15 kV and 20 kV.
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For X-ray detection, the working distance between the sample
and the detector should also be optimum; neither too close nor
too far away (Reed, 2005). The working distances during the
analyses have varied between 9 and 17 mm. Probe current of the
focused electron beam provides emission of backscattered elec-
trons, secondary electrons and X-rays from a specimen (Sun-Jong
and Chan-Hong, 2008). For microanalysis in a thermionic system,
Goldstein et al. (2003) have defined the efficient probe current as
10 nA. However, Si-drift X-ray detectors have high X-ray collection
efficiency which are convenient even at 1 nA probe current (Ware
and Reed, 1973). The ranges of probe current values in this study
have changed between 1.1 nA and 5 nA. Thus, sufficient amount of
X-ray energy and backscattered electrons have been emitted for
the analyses and for visualization. The duration of analyses have
been kept constant at 40 s.

Respective working conditions applied (condition sets) during
analyses have been given in Table 2. Fig. 1 depicts the observed
elemental concentrations of training sets of three mineral group,
which were affected by condition sets as depicted in Table 2.

All of the working conditions have been changed randomly by
the analyst throughout data acquisition. However, the filament
heating current and the beam current have been kept constant
throughout the study. Saturation of the filament heating current
means that electrons are concentrated in a tight bundle (Goldstein
et al., 2003). Saturation value mostly affects the lifetime of the
filament and can be changed by the user during the analyses. The
effects of varying filament currents for the three analysis of one
orthopyroxene are depicted in Table 9. Especially, the oxide values
calculated using X-ray energies exhibit significant difference than
the X-ray intensity values.

Arranging standard physical/electrical working conditions on
SEM requires considerably difficult preparation procedures. Both
uncontrolled (filament life, chamber vacuum etc.) and user con-
trolled conditions (beam current, accelerating voltage etc.) lead to
change either X-ray intensities for each element or major oxides in
mineral formula. In order to either determine spectral effects or
testing the effectiveness of C5.0 DT method, different conditional
sets are used/arranged during different analyzing period for each
mineral group (Table 2). Although, all differences in collected
mineral chemical dataset, DT method obtains high accuracy on
classification of mentioned mineral groups and identification of
end-members. Effectiveness of DT method for classifying on
nonlinear spectral or intensity dataset has been demonstrated to
be qualified for rapid characterization of minerals. Moreover, no
standardization of analytical conditions is required for the accu-
rate output of DT method.

4.2. Effects of variation in mineral chemistry

Most of the natural crystals exhibit chemical variations within
their structure. Elemental X-ray intensity spectral patterns exhibit
spatial variation in the crystal as a result of ionic substitution or
solid solution. These differences occur during crystallization or
after the crystallization process (Klein et al., 1993). As a result of
ionic substitution in a mineral, different compositional zones can
occur in the crystal. Especially magmatic solid solution minerals
such as plagioclase, pyroxenes and olivine show compositional
zoning since the crystals react continuously with the surrounding
melt or liquid during crystallization or cooling of magma (Vernon,
2004). In some cases this zoning is generated by the changing
physical conditions (e.g. pressure or temperature fluctuations in
the magma) during crystal growth (Humphreys et al., 2006;
Streck, 2008). Spatial chemical variation in a crystal often makes it
difficult for the analyst to characterize mineral groups or members
at the first glance. If these chemical variations had not been re-
cognized, erroneous misclassification would occur. Subjective



Fig. 4. Elemental variation along a profile within a compositionally zoned clinopyroxene crystal. (A) Electron backscatter detector image on SEM of clinopyroxene crystal
(analysis profile is given as an arrow). (B) Cps/eV (X-ray counts per electron volts) variations of Ca, Mg, Fe and Na along the profile.

E. Akkaş et al. / Computers & Geosciences 80 (2015) 38–4846
misclassification of two olivines, one orthopyroxene (in Section
3.2) and one magnesiohastingsite in tschermakite test blocks (in
Section 3.3) are due to the chemical compositions between mi-
neral groups and the members. Significant chemical variation in a
clinopyroxene mineral is exemplified in Fig. 4, which indicates that
varying elemental concentrations of Na, Mg, Ca and Fe in the
clinopyroxene crystal cause respective X-ray energies (Cps/eV) to
reflect the effects of compositional zoning.

Additionally, a solid solution mineral exhibits spatial compo-
sitional difference. For instance, olivine group is a complete solid
solution series between Mg-rich forsterite (Mg2SiO4) and Fe-rich
fayalite (Fe2SiO4). Another solid solution is orthopyroxene group
formed between enstatite (MgSiO3) and ferrosillite (FeSiO3). Ele-
mental intensities (Table 10) and X-ray spectra (Fig. 5) which be-
long to the two olivine, and two orthopyroxene groups have been
obtained under nearly identical working conditions. These two
orthopyroxene and olivine analysis from different type of rocks
have shown significant chemical discrepancy in the between Mg
and Fe concentrations. These examples emphasize the chemical
similarity between members and mineral groups.

In order to obtain various compositional dataset for each mi-
neral group, different type of rock samples have been selected.
Elemental similarities and varieties between same group minerals
have been considered during data collection for either referencing/
training or testing the chemical dataset. Obtained results have
shown that DT method is considerably successful for the classifi-
cation and identification of minerals having compositional vari-
eties in similar group. The results have been demonstrated that DT
method might be applicable for classifying minerals without being
affected by compositional variations.

4.3. Accuracy of Decision Tree Algorithm on EDS spectra for mineral
identification

Decision tree has several advantages over similar supervised
classification procedures. These advantages have been proved
Table 10
Chemical variations depicted as X-ray intensities of representative olivine and orthopyr

Mineral and analysis no.

Mg Al Si K Ca Ti Mn

Olivine-381 73,062 1 100,818 316 1482 409 1370
Olivine-141 110,036 1 103,427 808 1526 560 670
Orthopyroxene-15 91,170 3193 156,428 1 5321 431 531
Orthopyroxene-274 68,373 2584 151,858 978 6990 1256 428
especially in the remote sensing studies (e.g. Friedl et al., 1999;
Brown de Colstoun, 2003; Pal and Mather, 2003).

Perhaps the most protruding advantages of decision trees are;
being fast, providing flexibility over datasets and they are easy to
interpret. Benefits of boosting, pruning and various filtering
techniques on C5.0 Decision Tree are mentioned especially in
image analysis for remote sensing studies. Although such ad-
vantages can be gained from available methods, the accuracy of
supervised classifiers can be affected by the quality and the size of
the training data sets. The quality of training data depends on the
capability of representation of the test data. In brief, the quality of
the characteristic data that were used to train has significant im-
pacts on the accuracy of the classification (Pal and Mather, 2003).
Similarly; the effects of quality, size and dimensions of the training
data should contain adequate information to represent all classi-
fied data.

Achieving quality training data set was challenging considering
the chemical variations for 10 mineral groups. As indicated pre-
viously in Section 3.1, in order to obtain best quality on the
training data, a single filtering algorithm technique was applied.
Consequently, 240 selected reference training intensities from
each group for 10 mineral groups provided 99.77% accuracy in the
final boosted decision tree classification. Achieving this accuracy
implies that the training data can be accepted as representative. In
order to determine the adequacy of training data, and to evaluate
the effects of the dimension of the training set, five different
subsets of training data have been generated by partitioning pre-
vious training data: Equal numbers of intensities from each mi-
neral group for 10 groups (40, 80, 120, 160, 200), and total number
of intensities for five subsets (400, 800, 1200, 1600, 2000) were
used to train five distinct boosted and un-boosted decision trees.
For each classification, the same 2193 intensities were used for the
test groups.

Fig. 6 shows achieved accuracies for six distinct boosted and
un-boosted decision trees when six different-sized training sets
have been applied. The boosting techniques have shown slightly
oxene analyses under nearly identical instrumental conditions.

Fe O Working distance (mm) Probe current–spot size (nA)

45,492 95,721 11 4
30,454 88,503 10 5
17,534 78,197 11 4
25,945 75,917 10 4



Fig. 5. (A–D) Elemental X-ray spectra of olivine and orthopyroxene analyses from different type of rock samples. (A) Olivine, analysis no 141, (B) orthopyroxene, analysis no:
15, (C) Olivine, analysis no 381, and (D) orthopyroxene, analysis no: 274.

Fig. 6. Relationship between number of training data and the accuracy of boosted
and unboosted decision trees.
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higher accuracy compared to those of un-boosted decision trees.
Second training set on boosted tree (80 intensities per group) was
adequate to classify 2193 number of intensities. The accuracy in-
creases steeply from 80 to 800 training intensities and then line-
arly when the number of training data is bigger than 800. As a
result, 2400 intensity training data on boosted tree have shown
the highest accuracy (99.77%) among all the decision trees for the
final mineral group classification.

For both boosted and un-boosted trees, the last five subsets
produced nearly identical accuracy, and these results indicate that
a considerable increase in the accuracy is also limited with the
increasing size of the training dataset. This conclusion conforms to
Pal and Mather (2003)'s Univariate Decision Tree results for the
effects of training set size.
5. Conclusions

Generated trees and achieved results have demonstrated that
C5.0 Decision Tree Algorithm stands as an accurate and rapid
method for mineral classification/identification using character-
istic X-ray intensities produced in a typical SEM–EDS without the
need for standardized analytical conditions. Time spent on the
procedures for the standard (manual) mineral classification and
standard working conditions have been diminished by using de-
cision tree models. Furthermore, the variety of working conditions
are negligible for Decision Tree Algorithm during both mineral
group and member classifications. These results indicate that,
accurate and rapid mineral group/member classification might be
accepted as possible without being dependent on instrumental
working conditions.

The Decision Tree Algorithm showed that it is capable of
identifying the mineral members as diopside, hedenbergite,
tschermakite and magnesiohastingsite without calculating the
cationic formulae which requires time and post-analysis data
treatment. At the same time, the effects of quality and training set
were evaluated for mineralogical EDS data by this study. As a re-
sult; the evaluation produced six boosted trees which have
achieved high accuracy rates for training sets with 800 data, even
though by using non-standard quality training sets.

The capability of C5.0 Decision Tree Algorithm for mineralogical
datasets has been shown that it might be a promising tool for
further development.
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