Journal Articles

1 .         Sabuncuoglu B, Dag S and Yildirim B. Fatigue crack growth simulation by finite element method Journal of Mechanical Design and Production 2005; 7.

2.            Sabuncuoglu B, Acar M and Silberschmidt VV. A parametric finite element analysis method for low-density thermally bonded nonwovens. Computational Materials Science 2012; 52: 164-170.

3.            Sabuncuoglu B, Dag S and Yildirim B. Three dimensional computational analysis of fatigue crack propagation in functionally graded materials. Computational Materials Science 2012; 52: 246-252. DOI: http://dx.doi.org/10.1016/j.commatsci.2011.06.010.

4.            Baris Sabuncuoglu MA, Vadim V. Silberschmidt. Analysis of creep behavior of polypropylene fibers. Applied Mechanics and Materials 2011; 70: 410.

5.            Farukh F, Demirci E, Sabuncuoglu B, et al. Numerical modelling of damage initiation in low-density thermally bonded nonwovens. Computational Materials Science 2012; 64: 112-115. DOI: http://dx.doi.org/10.1016/j.commatsci.2012.05.038.

6.            Sabuncuoglu B, Acar M and Silberschmidt VV. Finite element modelling of thermally bonded nonwovens: Effect of manufacturing parameters on tensile stiffness. Computational Materials Science 2012; 64: 192-197. DOI: http://dx.doi.org/10.1016/j.commatsci.2012.02.043.

7.            Sabuncuoglu B, Acar M and Silberschmidt VV. Parametric code for generation of finite-element model of nonwovens accounting for orientation distribution of fibres. International Journal for Numerical Methods in Engineering 2013; 94: 441-453. DOI: 10.1002/nme.4453.

8.            Sabuncuoglu B, Demirci E, Acar M, et al. Analysis of rate-dependent tensile properties of polypropylene fibres used in thermally bonded nonwovens. The Journal of The Textile Institute 2013; 104: 965-971. DOI: 10.1080/00405000.2013.766391.

9.            Farukh F, Demirci E, Sabuncuoğlu B, et al. Characterisation and numerical modelling of complex deformation behaviour in thermally bonded nonwovens. Computational Materials Science 2013; 71: 165-171. DOI: http://dx.doi.org/10.1016/j.commatsci.2013.01.007.

10.          Sabuncuoglu B, Acar M and Silberschmidt VV. Finite element modelling of fibrous networks: Analysis of strain distribution in fibres under tensile load. Computational Materials Science 2013; 79: 143-158. DOI: http://dx.doi.org/10.1016/j.commatsci.2013.04.063.

11.          Farukh F, Demirci E, Sabuncuoglu B, et al. Mechanical behaviour of nonwovens: Analysis of effect of manufacturing parameters with parametric computational model. Computational Materials Science 2014; 94: 8-16. DOI: http://dx.doi.org/10.1016/j.commatsci.2013.12.040.

12.          Farukh F, Demirci E, Sabuncuoglu B, et al. Numerical analysis of progressive damage in nonwoven fibrous networks under tension. International Journal of Solids and Structures 2014; 51: 1670-1685. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2014.01.015.

13.          Sabuncuoglu B. On the high stress concentrations in steel fiber composites under transverse loading. Journal of Reinforced Plastics and Composites 2014; 33: 1941-1953. DOI: 10.1177/0731684414549334.

14.          Farukh F, Demirci E, Sabuncuoglu B, et al. Mechanical analysis of bi-component-fibre nonwovens: Finite-element strategy. Composites Part B: Engineering 2015; 68: 327-335. DOI: http://dx.doi.org/10.1016/j.compositesb.2014.09.003.

15.          Sabuncuoglu B, Orlova S, Gorbatikh L, et al. Micro-scale finite element analysis of stress concentrations in steel fiber composites under transverse loading. Journal of Composite Materials 2014; 49: 1057-1069. DOI: 10.1177/0021998314528826.

16.          Mehdikhani M, Aravand M, Sabuncuoglu B, et al. Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation. Composite Structures 2016; 140: 192-201. DOI: http://dx.doi.org/10.1016/j.compstruct.2015.12.020.

17.          Sabuncuoglu B, Vanhee F, Willems G, et al. Evaluation of fatigue behavior of lead-free solder joints in four-point bending test by finite-element modeling. IEEE Transactions on Components, Packaging and Manufacturing Technology 2017; 7: 1957-1964.

18.          Sabuncuoglu B, Gorbatikh L and Lomov SV. Analysis of stress concentrations in transversely loaded steel-fiber composites with nano-reinforced interphases. International Journal of Solids and Structures 2017.

19.          Al-Shawk A, Tanabi H and Sabuncuoglu B. Investigation of stress distributions in the resin rich region and failure behavior in glass fiber composites with microvascular channels under tensile loading. Composite Structures 2018; 192: 101-114. DOI: https://doi.org/10.1016/j.compstruct.2018.02.061.

20.          Balci MN and Sabuncuoğlu B. Computational Techniques for The Evaluation of Inhomogeneity Parameters on Transient Conduction in Functionally Graded Layers. International Journal of Engineering and Applied Sciences 2019; 11: 428-444.

21.          Sozumert E, Farukh F, Sabuncuoglu B, et al. Deformation and damage of random fibrous networks. International Journal of Solids and Structures 2020; 184: 233-247. DOI: https://doi.org/10.1016/j.ijsolstr.2018.12.012.

22.          Sabuncuoglu B, Tanabi H, Soete J, et al. Micro-CT analysis of deviations in fiber orientation and composite stiffness near the microvascular channels embedded in glass-fiber reinforced composites. Composite Structures 2020; 237: 111896. DOI: https://doi.org/10.1016/j.compstruct.2020.111896.

23.          Sabuncuoglu B and Lomov SV. Micro-scale numerical study of fiber/matrix debonding in steel fiber composites. Journal of Engineered Fibers and Fabrics 2020; 15: 1558925020910726.

24.          Sabuncuoglu B, Mutlu C, Kadioglu FS, et al. Stress redistribution around fiber breaks in unidirectional steel fiber composites considering the nonlinear material behavior. Composite Structures 2020; 239: 111959.

25.          Sabuncuoglu B, Cakmakci O and Kadioglu FS. Fiber/matrix interface stress analysis of flax-fiber composites under transverse loading considering material nonlinearity. Journal of Reinforced Plastics and Composites 2020; 39: 345-360. DOI: 10.1177/0731684420906608.

26.          Pehlivanoglu Y, Aydogan MO and Sabuncuoglu B. Mesh stiffness of micro-spur gears by finite element formulations based on modified couple stress theory. Microsystem Technologies 2020. DOI: 10.1007/s00542-020-04871-0.

27.          Demiral M, Tanabi H and Sabuncuoglu B. Experimental and numerical investigation of transverse shear behavior of glass-fibre composites with embedded vascular channel. Composite Structures 2020; 252: 112697.

28.          Yilmaz KB, Sabuncuoglu B, Yildirim B, et al. A brief review on the mechanical behavior of nonwoven fabrics. Journal of Engineered Fibers and Fabrics 2020; 15: 1-9. DOI: 10.1177/1558925020970197.

29.          Sabuncuoğlu B and Demirtaş O. Development of an artificial neural network using parametric correlation technique for the determination of machined torsional spring stiffness. Journal of the Faculty of Engineering and Architecture of Gazi University 2021; 36: 105-118.

30.          Şık A, Gürses E and Sabuncuoglu B. Development of a procedure to model the mechanical behavior of composites with embedded element method by considering the matrix non-linearity. Composite Structures 2021; 259: 113400. DOI: 10.1016/j.compstruct.2020.113400.

31.          Tanabi H, Atasoy AG, Demiral M, et al. Stress analysis of vascularized glass fiber composites exposed to bending loading. Advanced Composite Materials 2021: 1-13. DOI: 10.1080/09243046.2021.1945727.