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Positive charge Q is distributed uniformly along the x-axis

from x=0 to x=a. A positive point charge q is located on the

positive x-axis as shown in the figure. Calculate the x and y

components of the electric force exerted on q due the

charge distribution.

Example 
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Chapter  24

Electric Potential

Charge

Electric Field
Electic force 
on charges 

around

Force does 
work

Work means 
energy

Energy per 
charge
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Remember!!

In Mechanics

Electric (Potential Energy→Potential)

A

B

Energy required to move a charge in an E Field

∆U
Initial point→(Infinity=ZERO CHARGE)

DU = - F.dsò

DU =U f -Ui = -q0 E.dsò

DV =
DU

q0

= Vf -Vi

Energy per unit charge

V =
U

q0
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Electric Potential

We can think of the potential difference between points a and b in 
either of two ways. The potential of a with respect to b

(Vab = Va – Vb) equals:

the work done by the electric force when a unit charge moves 
from a to b.

the work that must be done to move a unit charge slowly from 
b to a against the electric force.

Potential =
Potential  Energy

Charge
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Bringing q from infinity to P is done by an applied force by an 

external agent. That corresponds to Wapp. On the other hand,   

E field does work against the external agent. So W=-Wapp

For the external force, Vi=infinity Vf=point P

Since the work is done by an external force, no negative sign

∞
q0

𝐸

𝑑 𝑠

Potential Due to A Point Charge

F (E field)

Fext (agent)

Vf -Vi = E.ds
i

f

ò

zero
dr

k
q

r 2

𝐸

𝑑 𝑠
VP = -kq

dr

r 2

¥

R

ò

VP = -kq(-
1

r
)¥

R Þ VP = k
q

R

Scalar product
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Consider the group of three point charges shown in the

figure.  The potential  generated by this group at any

point  is calculated using the principle of super

V

P

Potential Due to a Group of Point Charges

1 2 3

31 2
1 2 3

0 1

1 2

0 1 0 2 0

0 2 0 3

1 2 3

position.

 We determine the potentials ,  and  generated 

by each charge at point :   

1 1 1

1

,   ,   
4 4 4

We add the three ter

1 1

4 4 4
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1.

2. 

3

3r

1 2

10 1 0 2 0 0

The previous equation can be generalized for  charges as 

1 1 1 1
...

4 4 4

follow

4

s:

n
n i

n i

q qq q
V

r r r

n

r   
     

1 2 3V V V V  



.P
r

dq

Consider the charge distribution shown in the figure.

In order to determine the electric potential  created

by the distribution at point  we use the pr

V

P

Potential Due to a Continuous Charge Distribution

inciple of

superposition as follows:

We divide the distribution into elements of charge .

For a volume charge distribution, .

For a surface charge distribution, .

For a linear charge distr

dq

dq dV

dq dA









1. 

ibution, .dq d

0

0

1
 We determine the potential  created by  at :    .

4

1
 We sum all the contributions in the form of the integral:   .

4

  The integral is taken over the whole charge dist

dq
dV dq P dV

r

dq
V

r







 

2.

3.

Note 1 : ribution.

  The integral involves only scalar quantities. Note 2 :

0

1

4

dq
V

r
 
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dqO A

Potential created by a line of  charge of  

length  and uniform linear charge density  λ at point . 

Consider the charge element   at point , a

distance  from .     From triangle  we

L P

dq dx A

x O OAP



Example : 

 

 

 

2 2

2 2

2 2

2 2
0 0

2 2
0 0

2 2

00

2 2

0

 have:

.   Here  is the distance .

The potential  created by  at  is:

1 1

4 4

4

ln
4

l ln
4

ln

n

L

L

r d x d OP

dV dq P

dq dx
dV

r d x

dx
V

dx
x d x

d x

d x

V x d x

V L L x d



 













 

 





   
  

  

  


 
  







We define  as the work required to assemble the

system of charges one by one, bringing each charge

from infinity to its final position.

Using the above def

U

Potential Energy  of a System of Point ChargesU

inition we will prove that for 

a system of three point charges  is given by:U

2 3 1 31 2

0 12 0 23 0 134 4 4

q q q qq q
U

r r r  
  

x

y

O

q1

q2

q3

r12

r23

r13

  

, 10

Each pair of charges is counted only once.

For a system of  point charges   the potential en

1
 . 

ergy   is given by:

         Here  is the separation between  and 
4

 

n
i j

i j ij
i

i i

j

i

j

q q

n q U

r q qU
r 



 

Note :

.

The summation condition    is imposed so that, as in the 

case of three point charges, each pair of charges is counted only once.

j

i j
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1

2
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1 1 2
2

0 12 0 12

3

3 3

1 2

0 13 23

1 3
3

0

Bring in :     

0     

(no other charges around)

Bring in :   

(2)       

(2)
4 4

Bring in :  

(3)

1
(3
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Step 2 :

Step 3

Step : 

:

1

2 3 1 31 2

2 3

13 23

1 2 3

0 12 0 23 0 134 4 4

q q q qq q
W
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r

W W W W
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O
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y
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Step 1

x

y

O
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q1

q2

∞
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Step 3

x

y

O
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q1

q2
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∞
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Calculating E Field from Electric Potential

Partial derivative, because E field is a vector and by 

taking the derivative of electric potential function with 

respect to a certain direction we get component of E 

field at that direction. If we need x component of E then 

we take x derivative of V function.

V = - E.dsò

E = -
¶V

¶s

If  we know E field, we get potential by integration.

If  we know the potential, we get E field by derivation.

Ex = -
¶V

¶x
Ez = -

¶V

¶z
Ey = -

¶V

¶y

E = Exi + Ey j + Ezk
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A collection of  points that have the same potential is known as an equipotential surface. 

Equipotential Surfaces

If the potential stays constant then moving 

a charge on an equipotential surface 

requires NO WORK.

Equipotential surfaces do not cross each other. (Remember E field lines.)

Equipotential surfaces with different 

constant potential.
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Examples of Equipotential Surfaces and the Corresponding Electric Field Lines 

Uniform electric field Isolated point charge Electric dipole
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Chapter  25

Capacitance 
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CAPACITOR

System of Equal and Oppositly Charged Conductors
Symbol for a 

capacitor in electric 

circuits 

CHARGE

POTENTIAL DIFFERENCE
®C =

Q

Vab

 (Farad)

23
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V+
V-
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S

P

N

n̂

The plates in the figure have area  and are 

separated by a distance .  The upper plate 

has a charge  and the lower plate a charge - .

A

d

q q

Capacitance of a Parallel Plate Capacitor

0 0 0

We apply Gauss' law using the Gaussian surface  shown in the figure.

The electric flux  cos0 .   

From Gauss' law we have:    .

The potential difference  between the positive a

S

EA EA

q q q
EA E

A

V

  

  

     

0

0

0

nd the negative plate is

given by:  cos0 .

The capacitance  .
/

qd
V Eds E ds Ed

A

Aq q
C

V qd A d







 

 

   

  

 

C =e
0

A

d

Geometry of the 

capacitor 

determines the 

CAPACITANCE
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Capacitors in Series

Capacitors are manufactured with certain standards. The capacitance required might 

not be a standard one therefore we need to make that using the standard one by 

implementing parallel and series connections

Vac = V1 =
Q

C1

Vcb = V2 =
Q

C2

Vab = V1 +V2 = Q
1

C1

+
1

C2

é

ë
ê

ù

û
ú

Vab

Q
=

1

Ceq

1

Ceq

=
1

C1

+
1

C2



Capacitors in Parallel

Q= Q1 +Q2 = C1V +C2V = (C1 +C2 )V

Ceq= C1 +C2



-
-
-

-
-

+

+

+

+

+

dq

Q-Q

V

Energy Stored in E Field of a Capacitor

It can be found by calculating the WORK required to move a charge from the negative 

conductor to the positive conductor.

		

dW = dq*V =
q

C
dq

W =
1

C
qdq

0

Q

ò

W =
1

2C
Q2 =

1

2
QV =

1

2
CV 2

		

For	a	parallel	plate	capacitor

		C=e
0

A

d

		

U =
1

2
e

0

A

d

é

ë
ê

ù

û
úV 2 =

1

2
e

0
Ad

V

d

æ

èç
ö

ø÷

2

U =
1

2
e

0
(Volume)

V

d

æ

èç
ö

ø÷

2

Þ 	Total	Energy

U

Volume
= u =

1

2
e

0
E2 	 Þ E	field	energy	density	in	vacuum
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q

-q'
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V

V

V
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In 1837 Michael Faraday investigated what happens to the

capacitance  of a capacitor when the gap between the plates 

is completely filled with an insulator (a.k.a. dielectri

 C

Capacitor with a Dielectric

air air

c).

Faraday discovered that the new capacitance is given by 

   Here  is the capacitance before the insertion 

of the dielectric between the plates.  The factor   is known

as the dielectric c

. CC C





onstant of the material.  

Faraday's experiment can be carried out in two ways:

 With the voltage  across the plates remaining constant.

In this case a battery remains connected to the plates. 

This is

V1.

 shown in fig. .

 With the charge  of the plates remaining constant.

In this case the plates are isolated from the battery.

This is shown in fig. .

a

q

b

2.

air  C C



q

-q

q'

q

q

-q'

-q

-q

V

V

V

V'

air  C C

This is because the battery remains connected to the plates. 

After the dielectric is inserted between the capacitor plates 

the plate charge changes from q

Fig. :  Capacitor voltage   remains constanta V

air

 to  

The new capacitan  .

.

ce 
q κq q 

C κ κC
V V V

q q


 









This is because the plates are isolated. 

After the dielectric is inserted between the capacitor plates 

the plate voltage changes from  to . 

The new c

V
VV


 

Fig. :  Capacitor charge   remains constantb q

air

  
apacitance  .

/

q q q
C C

V V V
 


   





conductor dielectric

q
0

0 0

In a region completely filled with an insulator of

dielectric constant , all electrostatic equations 

containing the constant  are to be modified by 

replacing   with .

 Electric field o





 

Example 1 :

2

0

0

f a point charge inside 

a dielectric is:   

The electric field outside an isolated conductor 

immersed in a dielectric become

1
.

4

.

s: 

q
E

r

E











Example 2 :



cosU pE  



  
E =

E
0

k





e0 kE.dA= qò











A parallel -plate capacitor has a capacitance C0 in the 

absance of a dielectric . A slab of dielectric material of 

dielectric constant κ and thickness d/2 is inserted 

between the plates. What is the new capacitance when 

the dielectric is present ?



The area of the plates in a plane capacitor is 100cm2 and the 

distance between them is 5mm. A potential difference of 

300V is applied to the plates. After capacitor is disconnected 

from the source of power, the space between the plates is 

filled with ebonite. What is the surface charge density (in 

C/m2) on the plates after filling? (κebonite=2.6)



At a distance of 0.6 m, the magnitude of potential of a 

solid sphere of radius 0.3 m is 1620V. What is the surface 

charge density (C/m2) of the solid sphere?



An electric field is given by  Ex=5x2 (kN/C).  What is the 

potential difference (V1 – V2 ) ( in kV ) between the points 

on the x axis at  x1=3m and x2=5m?



A spherical shell of radius R = 10 cm has a uniform 

surface charge density σ =4 nC/m2. What is the electric 

field (in N/C) at r = 5 cm?


