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Gauss’ Law
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 Sample Problem

Figure 23-17a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on
one side. The magnitudes of the surface charge densities
are o, = 6:8 uC/m* for the positively eharged sheet
and o, = 4.3 uCim- for the negatively charged sheet.

Find the electric field £ (a) to the lett of the sheets,
(b) between the sheets, and (c) to the right of the sheets.
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Example

Positive charge Q 1s distributed uniformly along the x-axis
from x=0 to x=a. A positive point charge q 1s located on the
positive x-axis as shown in the figure. Calculate the x and y
components of the electric force exerted on g due the
charge distribution.

Y




Chapter 24
Electric Potential

Energy per Work means
charge energy

Electic force

Electric Field on charges Force does

work

around
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Electric (Potential Energy—Potential)

Remember!!
In Mechanics -
: DU =-| F.d8
AU == [ Food DU=U, -U, =-q, | E.dS
F(X) L J
x DL\JK
0 . X
A f DV ="==V, -V,
Energy required to move a charge in an E Field O,
"— _/
\AU/ Initial point—(Infinity=2ERO CHARGE)
A/ Path Field line U
aa £ -
U

M
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Electric Potential

k;/"‘ 1// \\\\ . POtentIaI Enel'
w»Tf Potential = &y
: I, vl Charge

We can think of the potential difference between pointsa and b in
either of two ways. The potential of a with respect to b

(V,, =V, —V,) equals:
»the work done by the electric force when a unit charge moves
fromato b.

»the work that must be done to move a unit charge slowly from
b to a against the electric force.



o0

B O

F (E field)

F... (agent)

S

Potential Due to A Point Charge

Bringing g from infinity to P is done by an applied force by an
external agent. That corresponds to W,,,. On the other hand,

E field does work against the external agent. So W=-W,,,

For the external force, Vi=infinity V.=point P

Since the work is done by an external force, no negative sign

Scalar product

Iﬁ'm I\?dr

ds VP:_qur_z
¥

1
VP = 'kCI('_)S DVP = kﬂ
r R



Potential Due to a Group of Point Charges

U9 @,
] e Consider the group of three point charges shown in the
.2 ........ ' 2 P figure. The potential V generated by this group at any
""""" point P is calculated using the principle of superposition.
“““ r : :
e ’ 1. We determine the potentials V,,V,, and V, generated

by each charge at point P:

V =V, +V, +V, Vlzii’ V. = - qz V. = 1 q,

drgy 1 : Ay T, ° Arg, T,
2. We add the three terms:
V =V, +V, +V,
1 % 1 % . 1 g

Arg, 1, Ame, 1, Amey Iy

\V =

The previous equation can be generalized for n charges as follows:
1 g, 1 g 1 qg,_ Z Ui

L + ...+ =
Arg, 1, 4rng, T, Arey, v Ams, T T,

V =
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Potential Due to a Continuous Charge Distribution
Consider the charge distribution shown in the figure.

In order to determine the electric potential V created

by the distribution at point P we use the principle of
superposition as follows:

1. We divide the distribution into elements of charge dag.
For a volume charge distribution, dgq = pdV.

1 ¢dg For a surface charge distribution, dq = ocdA.
V= Are, -[ r For a linear charge distribution, dq = Ad/.
1 dg

2. We determine the potential dV created by.dq at P: dV =

Argy 1

dg
-

3. We sum all the contributions in the form of the integral: V = 1 f
TTE,

Notel: The integral is taken over the whole charge distribution.
Note 2: The integral involves only scalar quantities.
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Example : Potential created by a line of charge of
length L and uniform linear charge density A at point P.
Consider the charge element dq = Adx at point A, a
distance x from O.  From triangle OAP we have:

r=+/d?+x? Here d-is the distance OP.
The potential dV created by dq at P 1s:

4V = 1 dg 1 Adx
drgy v Arey \d? + X2

4”50'[Vd2+x

dx o
f ﬁ%xz _In(x+x//d + X )

P

L

V = In(x+x/d2+x2ﬂ
Are, L 0

V = A _In(L+x/L2+x2)—Ind}
Argy L



Potential Energy U of a System of Point Charges

dz
ty P We define U as the work required to assemble the
rio system of charges one by one, bringing each charge
" T from infinity to its final position.
q, & ‘ Using the above definition we will prove that for
..... r' a system of three point charges U is given by:
13 )
s
. » X U= 0.9, i 0,0; n 0.9,
O Are Ny Ame N, Ame,l,
Note : Each pair of charges is counted only once.
For a system of n point charges {qi } the potential energy U is given by:
U=_1 > 9 Here r; is the separation between ¢, and q.

4rey i I
i<j

The summation condition i < J Is imposed so that, as in the
case of three point charges, each pair of charges is counted only once.

Physics 11 2017 - summer 2th Week Dr. Mehmet Burak Kaynar



y Step 1 Stepl: Bringinq,:
q/\/ 0 W, =0
(no other charges around)
X} Step 2: Bring in q,:
o0
O Wz = qzv (2)
A Step 2
y r12 q2 V (2) — ql _)WZ — &
Gy e Aol eEohs
P Step 3: Bring in qg,:
W3 - q3V (3)
- » X
0 vE) = | & %,
dmey \ Ny Ty
Step 3 q b
y 4 e e [ W, =——| 3% ,
............ . Argy | Ia )
J, @ :
....... r23 W :Wl +W2 +W3
I’13 ....... é \J W _ qlqz n qzqg + q1q3
R 03 Argol, Ame,l,, 4ns,l,
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Calculating E Field from Electric Potential

V=- O E.dS If we know E field, we get potential by integration.
v

iy
Partial derivative, because-k field is-a véctor and by
taking the derivative of electric potential function with
respect to-a certain-directionwe-get;component, of.E
field at that direction. If we-needx component'of E'then

we take x derivative of V function.

E= If we know the potential, we get E field by derivation.

Ex:_ﬂ Ey:_ﬂ Ezz—ﬂ

X Ty Mz

\_ %
N

E=EI+E J+EK
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Equipotential Surfaces

A collection of points that have the same potential is known as an equipotential surface.

o

\Vn*\ If the potential stays constant then moving
a charge on an equipotential surface
requires NO WORK.

‘ ForpathI: W =0 because AV =0.
\ For path IT. 77, =0 because AV =0.
- For path III: 7, =qAV =q(V, V).

Equipotential surfaces with different For path V- HI‘»’ = gAY = q(VE N Vl )
constant potential.

Equipotential surfaces do not cross each other. [Remember E field lines.)
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Examples of Equipotential Surfaces and the Corresponding Electric Field Lines

Uniform electric field Isolated point charge Electric dipole
Equipotential surface / \
Field line LEN T e v ! A-T 9~ \
[ | [ / | | ¢ A 2 =] d S l
s - | 1 L e ] / N I
| | | | | I // \\ \ | ' I
| | | | [} f B2 \\ \‘l /LA ’—‘]\/\
. | & B ?
% oo { : _{ | 8 } /, / A D \\\ \\ §§) /
! I I | | | / / %l \ 1 \ /7
o ope ) | | 2 e i) / \
| = ' [ (5= | I o | |
| | | | | | | | | n | 1 ——— - LYY Y- - ——-
. | l s | \ y |
R T P \ \ -
| | | | | | \ Wi LA~ 4 / 2
I > : : : 1 - : \\ b e (B i // \\I | s ' l__/\\/
; | n | | | | ) , . \\ 1 \
T R ‘ | : |
e YaX: e % y ¢ = g : ,
[ [ [ I | | g ® 3 \\ = 3 I
L 1 ] 5 2 2 -l F-- /
(a) ’ : ! ' : (b) () \ p
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. What 1s the electrical potential at the origin due to a semicircle of
radius R with a linear charge density A? R

i

A) M2gg B) AAdeg C. Neg D) M 8&g E) 2Meg
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Sample Problem

What is the electric potential at point P, located at the
center of the square of point charges shown in Fig.
24-8a? The distance d i1s 1.3 m, and the charges are

gy 7~HiE pls; q: = +31nC,
g, = —24 nC, gy = +17nC.

&
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The electric potential at any point on the central axis of
a umiformly charged disk 1s given by Eq. 24-37,

ir
V=—(@z+ R - 2).
2o, (Vz 7)

Starting' with-this expression,-derive ‘an’ expression for
the electric field at any point on the axis of the disk.
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CAPACITOR

Symbol for a

System of Equal and Oppositly Charged Conductors capacitor in electric

Conductor a

Conductor b

circuits

-

CHARGE _Q
=C (Farad)
POTENTIAL DIFFERENCE VaIO
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Vv

N ——_
XA \

N

Calculating the Capacitance

The capacitance depends on the geometry of the plates
(shape, size, and relative position of one with respect
to the other). Below we give a procedure for
calculating C'.

Recipe :

1. Assume that the plates have charges +¢ and -g4.

2. Use Gauss' law to determine the electric field
£ between the plates (‘%Sﬁ £ -dd = qenc).

3. Determine the potential difference 7~ between

the plates using the equation

V.= f £-ds alongany path that connects the

negative with the positive plate.

4. The capacitance C' is given by the equation

c=2
y



Capacitance of a Parallel Plate Capacitor

4

P
T[ 1—/ 1*" ? e ) ) (‘31\8- . The plates in the figure have area A and are
1 T Tﬁy—’lT VA_LT Y T Y oo separated by a distance d. The upper plate
== = == \\- == has a charge +q and the lower plate a charge -a.
N Path of ’
mtegmnon i/} - ‘-": _ _I E‘d?,_‘

We apply Gauss' law using the Gaussian surface S shown in the figure.
The electric flux @ = EAcos0 =EA.

From Gauss' law we have: @ = 9 — EA= a9 —>E = i.

&, &, Ag,
The potential difference V. between the positive and the negative plate is
- v efa . qd ~N
given by: V = _[ Edscos0 =E j ds =Ed = v Geometry of the
: ) A ° C=p A > capacitor
The capacitance C = a__ 9 _ D _ 0 d determines the
V. qd/As, d CAPACITANCE

/
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Cylindrical Capacitor
Total charge +¢ Total charge —¢ [t consists of two cylinders of radii @ and b
with a common axis. The two cylinders have
a height L. We choose a Gaussian surface S
that 1s also a cylinder with radius » and height L.
The flux of the electric field through S is
O =2xrLEcos0=2arLE.

Using Gauss'law we have: @ = g,

&

If we combine these equations we have:

Gaussian = q9 )
Path of surface g,27rL Comes from the SCALAR product
integration

The potential difference V" betwe ¢ positive and the negative plate is

7§ 9 -9 m[f].

g2xl, r __L-—:{.ZR'L g2l

given by: /' = I £ ar=-

g B EEL%

g
V (g/2rLe)in(b/ &) In(b/a)

The capacitance C =
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Total charge +¢ Total charge -g Spherical Capacitor

It consists of two concentric spheres of radii @ and b.
We choose a Gaussian surface S that is alsoa

sphere with radius r.

The flux of the electric field through S is:

@ =4xr'Ecos0=4rr"E.

Using Gauss'law we have: @ = g
)

If we combine these equations we have:

— Gaussian jr A | q
Path of surface
integralinn

The potential difference V' between the positive and the negative plate is

given by: V:];Edf':_ g [ar_ g {l] g [1 1}
b

= _.
4, r

g Ame, o, rt Ame,|rl, A a b/
The capacitance c=9_ 7 _ A7, =47, [a_ﬁ#]
/" g (1 1) [1 1] le-a

dzg\a b a b

Physics 11 2017 - summer 2th Week Dr. Mehmet Burak Kaynar



Capacitors are manufactured with certain standards. The capacitance required might
not be a standard one therefore we need to make that using the standard one by
implementing parallel and series connections

Capacitors in Series

(b) The equivalent single capacitor

(a) Two capacitors in series

Capacitors in series:

e The capacitors have the same charge Q.

» Their potential differences add:
v(l(' * V('/) =Y

ab*

a
ne T
Vab = ¥ L 4% %

U
Vi =i +V, = Qé—+—
C (

a
[

Chargeis
the same

Equivalent capacitance
1s less than the indi-
vidual capacitances:

2k ol o - Q
Y as for the —
. . B V
individnal — ¢
capacitors. e e
CC(] C] sz
@
b

:\/122
C




Capacitors in Parallel

(a) Two capacitors in parallel (b) The equivalent single capacitor
Capacitors in parallel: g o ‘ ]
 The capacitors have the same potential V. A +0 .Chc;nge I:S ﬂ‘]eﬁum, _Of -
* The charge on‘eaeh capacitor depends on its e Y ingiyidual charges:
capacitance: Q; = C,V, Q, = C,V. Vv @ Cg———0=0 +0,
a =i Equivalent capacitance:
° 4 @ Ceq e Cl + C2
b
Vap = V Ol O o 0
A

S @

Q=Q +Q, :C1V+C2VZ(C1+C2)V
Ceq=C, +C,



Energy Stored in E Field of a Capacitor

It can be found by calculating the WORK required to move a charge from the negative
conductor to the positive conductor.

dW = dq*V—qu
17
W=-0a9q |4\|
0
1 1 1
W=—0Q*==QV ==CV*
- ZCQ zQ 2
2 .
For@Amarallel®late@apacitor
u=1le 8l =Lanal paraleiplatetap
2 - A
_e _
145' (Volume)(V\ [ Hotalnergy g 'd
2% L4
U 1
=u

=—ekE ‘A0 Efield@nergy®@ensity@nBacuum
Molume 2



V= a constant

(a)

g=a constant

(b)

C - KCair

Capacitor with a Dielectric
In 1837 Michael Faraday investigated what happens to the
capacitance C of a capacitor when the gap between the plates
Is completely filled with an insulator (a.k.a. dielectric).
Faraday discovered that the new capacitance is given by
C=xC,,. HereC,_ isthe capacitance before the insertion
of the dielectric between the plates. The factor x is known
as the dielectric constant of the material.

Faraday's experiment can be carried-out in two ways:

1. With the voltage V across the plates remaining constant.
In this case a battery remains connected to the plates.
Thisis-shown in fig. a.

2. With the charge q of the plates remaining constant.

In this case the plates are isolated from the battery.

This is shown in fig. b.



V= a constant

(a)

g=a constant

(b)

Fig.a: Capacitor voltage V remains constant

This is because the battery remains connected to the plates.
After the dielectric is inserted between the capacitor plates
the plate charge changes from g to g’ =«q.

9_xq _ 49 _ -

The new capacitance C = e
V V

Fig. b : Capacitor charge g remains constant
This is because the plates are isolated.
After the dielectric is inserted between the capacitor plates

the plate voltage changes fromV to V'= \L.
K
The new capacitance C = 1.9 _ 8. KkC,, .
V' V/k Vv



field lines

conductor dieleciric

In a region completely filled with an insulator of
dielectric constant «, all electrostatic equations
containing the constant ¢, are to be modified by
replacing &, with xe,.

Examplel: Electric field of a point charge inside

E-_+ 9
Arke, ¥

a dielectricis:

Example 2:
The electric field outside an isolated conductor
immersed in a dielectric becomes:

O

E=—.
KE,



A
7 \\, 2
7 » \
e n I \
A % |
-~ 1
\ &
\
—d> \\
/ A
\{/ " V-X
A \
~
- /
P
+ |
(a)
= -
\\. \'“"’».,. -
. e =
//. o
_/'&"‘_’— & *—// - )
— oy X -
,/"' “\'.’_
— ~ P
B s
o= "—’——
X L %
-~
o~ —
(b)
U =—-pEcosé

Dielectrics : An Atomic View

Dielectrics are classified as "polar" and "nonpolar."

Polar dielectrics consist of molecules that have a nonzero

electric dipole moment even at zero electric field

due to the asymmetric distribution of charge

within the molecule (e.g., H O ). At zero electric field
(see fig. a) the electric dipole moments are randomly
oriented. When an external electric field EO 1s applied
(see fig. b) the electric dipole moments tend to align
preferentially along the direction of EO because this
configuration corresponds to a minimum of the potential
energy and thus is a position of stable equilibrium.
Thermal random motion opposes the alignment and
thus ordering is incomplete. Even so, the partial
alignment produced by the external electric field
generates an internal electric field that opposes

EO. Thus the net electric field E is weaker than EO.



+ - o -
¥ -+ -+ -+ -+ B L - +
+ - + -
o & A A - = + N
= =5 > = ok D>< =
Ey=0 + E = + — D> -
s @y oagn, g + — E, + =
= - th -

(a) (h)

|
—

-~
p—

A nonpolar dielectric, on the other hand, consists of molecules that in the absence of

an electric field have zero electric dipole moment (see fig. a) . If we place the dielectric
between the plates ofa capacitor the external electric field EO induces an electric dipole
moment p that becomes aligned with EO (see fig. b). The aligned molecules do not create
any net charge inside the dielectric. A net charge appears at the left and right surfaces

of the dielectric opposite the-capacitor plates. These-charges . come from negative and
positive ends of the electric dipoles. These induced surface charges have sign opposite

that of the opposing plate charges. Thus the induced charges create an electric field

E’ that opposes the applied field EO (see fig. c¢). Asa result, the

net electric field E between the capacitor plates is weaker. K




"r-’.;m.mi'.ln surface Ga“ss' Law ﬂﬂd Dlelﬂtt]’iﬂs

S s e

In Chapter 22 we formulated Gauss' law assuming that the

S 7 l ‘Lf'-:; =ty charges existed in vacuum: Eﬂ§ Edd = g or £P=g.
—=q
--------- - In this section we will write Gauss' law in a form that

(a) 1s suitable for cases in which dielectrics are present.

Consider first the parallel plate capacitor shown in fig. «.

Gaunssian surface ~ i

Jor s s +/; I We will use the Gaussian surface §'. The flux @ = £ A4 = g

~ & E ~. - &
S rﬁ'l L 7
+ 4+ 4w w o —F =—— _ Now we fill the space between the plates
------ FHF o

- E with an insulator of dielectric constant k (see fig. #) .
We will apply Gauss' law for the same surface §. Inside S in addition to the plate charge ¢

we also have the induced charge ¢’ on the surface of the dielectric: ®=£4= 9-9 s

%0

(eq. 2).

E:q_q’

)

(eq. 1). From Faraday's experiments we have: £ =

£_ ¢
Kk KAg

[f we compare eq. 1 with eq. 2 we have: ¢— ¢ = AN ED[[:K;_E- A= q.
K




f(}au.m:iun surface ¥y |

’
IE3E I B I I RE R YL NE . \ .
i = -\ Gauss' Law in the Presence of Dielectrics

b7 ==
“RAeHgE” U e kE dA

(b)

g

Even though the equation above was derived for the parallel plate capacitor, it

is true in general.

Note 1: The flux integral now involves x £

Note 2: The charge ¢ thatis used is the plate charge, also known as "free charge."
Using the equation above we can ignore the induced charge 4.

Note 3: The dielectric constant x is kept inside the integral to describe the

most general case in which x 1s not constant over the Gaussian surface.
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A parallel -plate capacitor has a capacitance C, in the
absance of a dielectric . A slab of dielectric material of

dielectric constant K and thickness d/2 1s inserted
between the plates. What 1s the new capacitance when
the dielectric 1s present ?

TR |




The area of the plates in a plane capacitor is 100cm? and the
distance between them 1s Smm. A potential difference of
300V 1s applied to the plates. After capacitor is disconnected
from the source of power, the space between the plates 1s
filled with ebonite. What 1s the surface charge density (in
C/m?) on the plates after filling? (k =2.6)

ebonite



At a distance of 0.6 m, the magnitude of potential of a
solid sphere of radius 0.3 m 1s 1620V. What 1s the surface
charge density (C/m?) of the solid sphere?



An electric field is given by E _=5x? (kN/C). What is the
potential difference (V,—V, ) (in kV ) between the points
on the x axis at x,=3m and x,=5m?




A spherical shell of radius R = 10 ¢cm has a uniform

surface charge density 6 =4 nC/m?. What is the electric
field (in N/C) atr =5 cm?



