
The area of the plates in a plane capacitor is 100cm2 and the 

distance between them is 5mm. A potential difference of 

300V is applied to the plates. After capacitor is disconnected 

from the source of power, the space between the plates is 

filled with ebonite. What is the surface charge density (in 

C/m2) on the plates after filling? (κebonite=2.6)
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At a distance of 0.6 m, the magnitude of potential of a 

solid sphere of radius 0.3 m is 1620V. What is the surface 

charge density (C/m2) of the solid sphere?
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An electric field is given by  Ex=5x2 (kN/C).  What is the 

potential difference (V1 – V2 ) ( in kV ) between the points 

on the x axis at  x1=3m and x2=5m?
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A spherical shell of radius R = 10 cm has a uniform 

surface charge density σ =4 nC/m2. What is the electric 

field (in N/C) at r = 5 cm?
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Chapter 26

Current, Resistance, and Electromotive Force

Electric Current

Electric Charges

Electromotive Force

Moving Charges Response to the Charge Motion

Resistance



Current

Flow rate of charges  is the same.

Flow rate of charges is time 

dependent.

		
Average	Current , 	I =

DQ

Dt

Instantaneous	Current , 	I =
dQ

dt

A current is any motion of charge from one region to another 



Direction of Electric Current



i

- q

conductor

A

(Current Density) Vector

Scalar

  
 J =

i

A
Magnitude

Direction: Flow direction of current  is the direction of current 

density vector.

The current per unit cross sectional area 

is called the current density



An external electric field gives rise to current

Drift (Sürüklenme) Speed (Vd)

How fast is the charges move due to the E field is called as DRIFT SPEED.

Why DRIFT? 

Because thermal energy of moving charges causes them to randomly move around 

while 

E field forces them to move in a certain direction. That’s why they are drifted.

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐ℎ𝑎𝑟𝑔𝑒𝑠 𝑖𝑛 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒

The relationship between the current density and drift velocity

J = nqVd



Conductivity↔Resistivity
(A measure of the current that can be generated by applying E Field)

Inverse Conductivity

Consider the conductor shown in the figure above.  The electric field inside the 

conductor is  .  The current density is  .    We substitute  and  into 

/  
equation     and get:  

/

V i
E J E J

L A

E V L V

J i A
 

 

   .
A A L

R R
i L L A

   RESISTANCE

For metals, current density is proportional with the E field. Proportionality constant is known 

as CONDUCTIVITY. Inverse conductivity gives us the RESISTIVITY of the material. 

Conductivity

s =
J

E

Resistivity

r =
1

s
=

E

J



+ -

i

V

If we apply a voltage  across a conductor (see figure)

a current  will flow through the conductor.  

We define the conductor resistance as the ratio

   the ohm (symbo

  .
V

R
i

V

V

i

A



SI Unit for

Resistan

:

ce 

 R

A conductor across which we apply a voltage  = 1 volt

and results in a current  = 1 ampere is defined as 

having resistance of 1 .

Why not use the symbol  "O" instead of " "?   

Suppose we ha 

l )

V

i







Q :

A :

 

d a 1000  resistor.  

We would then write:   1000 O,  which can easily 

be mistakenly read as 10000 .

A conductor whose function is to provide a 

specified resistance is known as a "resistor." 

The symbo





l is given to the left.   

  
V

R
i



R



 A resistor was defined as a conductor whose resistance does not change 

with the voltage  applied across it.  In fig.   we plot the current  through a resistor 

as a function of . The pl

 

V b i

V

Ohm's Law.

ot (known as the " -  curve" ) is a straight line that passes 

through the origin.  Such a conductor is said to be " " and it obeys Ohm's law, 

whic The current  through ah   st conductor is proates: 

i

i

V

Ohmic

Not all conductors obey Ohm's law (these are known as " "). An 

example is given in fig. 

portional to the 

 where we plot  versus   for a semiconductor diod

voltage  applied 

across it.  

e.  Tc i V

V

non - Ohmic

he ratio

/   (and thus the resistance  ) is not constant.  As a matter of fact, the diode does 

not conduct for negative voltage values. 

  Ohm's "law" is in reality a definition of Ohmic conducto

V i R

Note : rs

(defined as the conductors  that obey Ohm's law).  

READING



In the figure we plot the resistivity  of

copper as a function of temperature .  

The dependence of   on     is almost 

linear.  Similar dependence is observe

T

T





Variation of Resistivity with Temperature

d

in many conductors.  

 0

0

0 0

The following empirical equation is used for many practical applications:

  The constant  is known as the

"temperature coefficient of resistivity."  The constant  is a reference tempera

.

t

T

T

T     

 

0 0

8 

0 o

0

ure

usually taken to be room temperature ( 293 K ),   and   is the resistivity

at  .  For copper,  1.69 10 m.

 Temperature enters the equation above as a difference .

Thus either the 

T

T

T T



 



  

Note :

Celsius or the Kelvin temperature scale can be used.

 0 0 0T T     

GOOD TO KNOWREADING



Power in Electric Circuits

Consider the circuit shown in the figure.  A battery of voltage 

V  is connected across the terminals a and b of a device.  This 

can be a resistor, a motor, etc.  The battery maintains a

potential difference V  between the terminals a and b and 

thus a current i   flows in the circuit as shown in the

figure. During the time interval dt  a charge dq = idt   moves

between the terminals. We note that V
a
>V

b
.  

The potential energy of the charge decreases by an amount dU =Vdq =Vidt.

Using energy conservation we conclude that the lost energy has been transferred 

by the battery to the device and has been converted into some other form of energy.

The rate at which energy is transferred to the device is known as "power" and it is

 equal to  P =
dU

dt
=

Vidt

dt
=Vi.

SI unit for P:   V × A    It is known as the "watt"   (symbol W). 

 P= iV



If the device connected to the battery is a resistor  then the energy transferred by the 

battery is converted as  that appears on .   If we combine the equation    

with Ohm's law ,    we 

R

R P iV

V
i

R





heat

2
2

get the following two equivalent expressions for 

the rate at which heat is dissipated on :

       and      

 

R

V
P i R P

R
 

V
2  P i R

2

 
V

P
R
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Current Density ?
Conductivity ?
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Power ?
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Resistors in series and parallel

• The equivalent resistance of a series combination is the sum of 

the individual resistances: Req = R1 + R2 + R3 + …

• The equivalent resistance of a parallel combination is given by          

1/Req = 1/R1 + 1/R2 + 1/R3 + …



Series and parallel 
combinations

Resistors can also be connected in combinations of series and 
parallel.



Series vs. Parallel Connections
Example : Current, potential difference and power across each bulb for 
connecting in series and parallel.



V

i

Ideal  emf device

V

i

Real   emf device



Consider the circuit shown in the figure. We assume

that the emf device is ideal and that the connecting

wires have negligible resistance.  A current  flows

through the c

i

Current in a Single - Loop Circuit

ircuit in the clockwise direction.

  

In a time interval dt  a charge dq = idt  passes through the circuit. The battery is 

doing work dW = edq = e idt.   Using energy conservation we can set this amount 

of work equal to the rate at which heat is generated on R:  

e idt = Ri 2dt ®  e i = Ri ® e i - iR= 0.

Kirchhoff  put the equation above in the form of a rule known as Kirchhoff's loop rule

(KLR for short).

The algebraic sum of the changes in potential encountered in a complete

traversal of  any loop in a circuit is equal to zero.   

KLR :  

The rules that give us the algebraic sign of the charges in potential through a resistor

and a battery are given on the next page.



  

Consider the circuit shown in the figure.  There 

are three branches in it: , , and .

We assign currents for each branch and define the 

current directions arbitrarily.  The m

bad bcd bd

Multiloop Circuits

ethod is self-

correcting. If we have made a mistake in the direction

of a particular current, the calculation will yield 

a negative value and thus provide us with a warning.  

1 2 3

1 3 2

We assign current  for branch , current  for branch , and current  

for branch .  Consider junction .  Currents   and   arrive, while  leaves.

Charge is conserved, thus we have:   

i bad i bcd i

bd d i i i

i1 3 2.  This equation can be formulated 

as a more general principle known as Kirchhoff's junction rule (KJR).

i i 

 The sum of the currents entering any junction is equal to the sum of the currents

leaving the junction.

KJR : 



R
i

motion

DV = -iR

R
i

motion

DV = +iR

motion

+ -

motion

+-

Resistance Rule:  

For a move through a resistance

in the direction of the current, the change in the 

potential is  DV = -iR.

For a move through a resistance in the direction

opposite to that of the current, the change in the 

potential is DV = +iR. 



Example



Example

Applying Kirchhoff’s junction rule to junction 

c gives

Solution

Applying Kirchhoff’s loop rule to loops abcda 

and befcb and transferring these 

loops clockwise We optain the expressions





+

-

i
Consider the circuit shown in the figure.  We assume 

that the capacitor is initially uncharged and that at 

0 we throw the switch S from the middle position

to posi

t 

RC Circuits : Charging of a Capacitor

tion .  The battery will charge the capacitor 

through the resistor .

a C

R

Our objective is to examine the charging process as a function of time.

We will write KLR starting at point  and going in the counterclockwise direction:

0.   The current  0. 

b

q dq dq q
iR i R

C dt dt C
       E E  If we rearrange the terms

we have:  This is an inhomogeneous, first order, linear differential

equation  with initial condition  (0) 0.    This condition expresses the fac

.

t that

at 0 th

   
dq q

R
d

q

t C

t







 E

e capacitor is uncharged.   



 /

 Differential equation:     

Intitial condition:  (0) 0

Solution:  1         Here:    

The constant  is known as the "time constant" of the circuit.

If we plot  versus  we see t

t

dq q
R

dt C

q

q C e RC

q t

 





 



  

E

E

hat  does not reach its terminal 

value  but instead increases from its initial value and  

reaches the terminal value at .  Do we have to wait for

an eternity to charge the capacitor?  In practice

q

C

t  

E

 

 

 

/

, no.

( ) 0.632

( 3 ) 0.950

( 5 ) 0.993

If we wait only a few time constants the charge, for all

practical purposes, has reached its terminal value .

The current  .  If wt

q t C

q t C

q t C

C

dq
i e

dt R











 

 

 

 
   

 

E

E

E

E.

E
e plot  versus 

we get a decaying exponential (see fig. ).

i t

b

RC 



+

-

i

q

t

qo

O

0

Consider the circuit shown in the figure.  We assume 

that the capacitor at 0 has charge  and that at 

0 we throw the switch S from the middle position

to pos

t q

t





RC Circuits : Discharging of a Capacitor

ition .  The capacitor is disconnected from the

battery and loses its charge through  resistor .

We will write KLR starting at point  and going in 

the counterclockwise direction:  0.

Taking int

b

R

b

q
iR

C
  

o account that  we get: 0 .
dq dq q

i R
dt dt C

  

- /

0 0

This is a homogeneous, first order, linear differential equation  with initial condition

  (0)    The solution is:   , where  .  If we plot  versus  we

get a decaying exponential.   Th

tq q q q e RC q t   

     0 0 0

e charge becomes zero at .  In practical terms we

only have to wait a few time constants:    

( ) 0.368 ,    (3 ) 0.049 ,    (5 ) 0.007 .

   

t

q q q q q q  

 

  

RC 
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