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Voronoi diagram induced by a set of points (called sites):
Subdivision of the plane where the faces correspond to the
regions where one site is closest
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Question: Why is the Voronoi diagram not really a
subdivision?
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Let AT = A1 +A2 + · · ·+A5

The interpolated value is
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Spatial interpolation

Crater on Mars generated by natural neighbor interpolation
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Some observations

Edges are parts of bisectors

Some edges are half-infinite

Some cells are unbounded

Question: Which ones?
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Properties
Construction

Some observations

Every Voronoi cell is the
intersection of n−1
half-planes, if there are n sites

⇒ all cells are convex and
have up to n−1 edges in the
boundary

p
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Structure

The Voronoi diagram of n sites has the following structure:

If all n sites lie on a line, then the Voronoi cell boundaries
are parallel lines, so the “graph” is disconnected

Otherwise, the Voronoi cell boundaries form a connected
“graph”
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Complexity

Theorem: The Voronoi diagram on f sites in the plane has at
most 2n−5 Voronoi vertices and at most 3n−6 Voronoi
edges (including lines and half-lines)

Proof: If the sites are colinear, then it is trivial

Otherwise, we will use Euler’s formula for planar graphs
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Complexity

Euler’s formula for planar graphs: A connected planar graph
with nv vertices, ne edges, and nf faces satisfies:

nv−ne +nf = 2

However, a Voronoi diagram is not a proper graph
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Complexity

We make it proper by connecting all
half-infinite edges to a new vertex v∞

nv = no. of Voronoi vertices VV +1

ne = no. of Voronoi edges VE

nf = no. of Voronoi cells = n, the
number of sites

v∞
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Substitution in Euler’s formula nv−ne +nf = 2 gives

(VV +1)−VE +n = 2

Every edge is incident to exactly 2 vertices, and every vertex
is incident to at least 3 edges

Sum-of-degree-of-all-vertices = 2 ·VE

Sum-of-degree-of-all-vertices ≥ 3 ·VV

= 2 ·VE ≥ 3 ·VV
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The combination of

(VV +1)−VE +n = 2

and

= 2 ·VE ≥ 3 ·VV

gives the desired bounds VV ≤ 2n−5 and VE ≤ 3n−6
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Empty circle property

Every Voronoi vertex is the
center of an empty circle
through 3 sites

Every point on a Voronoi edge
is the center of an empty circle
through 2 sites
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Degeneracies

All sites lie on a line

More than 3 points lie on a
circle
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Algorithms for Voronoi diagrams

Compute the intersection of n−1 half-planes for each site,
and “merge” the cells into the diagram

Divide-and-conquer (1975, Shamos & Hoey)

Plane sweep (1987, Fortune)

Randomized incremental construction (1992, Guibas, Knuth
& Sharir)
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Plane sweep for Voronoi diagrams

Plane sweep: Note that the Voronoi diagram above the sweep
line may be affected by sites below the sweep line

Maintain and grow the portion of Voronoi diagram above the
sweep line that is known for sure
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Beach line

The beach line separates the known and unknown part of the
Voronoi diagram, it is the minimum of the parabolas defined
by sites above the sweep-line and the sweep-line itself
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Beach line

The beach line changes continuously,
even one parabola does
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Beach line

Question: The beach line has break points, what do they
represent?
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Beach line

The break points move and
trace out the Voronoi diagram
edges

`
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Construction

Status

Status: The ordered sequence of parabolic arcs that define
the beach line; each is defined by a site (and the sweep-line)

Break points are defined by two sites (and the sweep-line)

Since the beach line is x-monotone, we can store the status in
a balanced binary search tree on x-coordinate
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Status

pi

pj

pk
pi pj pk pi

〈pj, pk〉

〈pi, pj〉 〈pk, pi〉

〈pj, pk〉

〈pi, pj〉

〈pk, pi〉
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Other data structures

The sweep algorithm also needs an event list and a data
structure to store the Voronoi diagram computed so far

The Voronoi diagram will be computed inside a large bounding
box so that a doubly-connected edge list can be used
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Events

The events are where the status changes = where the beach
line changes

When the sweep-line reaches a new site

When a break point reaches the end of the edge it traces
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Site events

The sweep-line reaches a new
site, a site event: a new
parabola starts
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Site events

The sweep-line reaches a new
site, a site event: a new
parabola starts

Two new break points
appear on the beach line

A new Voronoi edge is
discovered
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The other events

Parabolic arcs may disappear from the beach line
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The other events

We discover an empty circle and a Voronoi vertex
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Circle events

At a circle event:

A parabolic arc disappears from the beach line

Two adjacent break points come together

A Voronoi vertex is discovered as the vertex incident to
two known Voronoi edges

A new break point starts to be traced

The sweep line reached the bottom of an empty circle
through 3 sites
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Circle events

Circle events can only happen for three sites that have
adjacent parabolic arcs on the beach line
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Site and circle events

The only way for a new parabolic arc to appear on the beach
line is through a site event

The only way for a parabolic arc to disappear from the beach
line is through a circle event

There are no other events
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Site and circle events

There are n site events and they are known in advance

Question: How can we know circle events before they occur?
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Detecting circle events

p1

p2
p3

p4 p5

p6

α1

α2 α3 α4 α5

α6
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Detecting circle events

p1

p2
p3

p4 p5

p6

α1

α2 α3 α4 α5

α6

C(p1, p2, p3)

C(p2, p3, p4)
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Detecting circle events

A circle event occurs if the sweep line reaches the bottom of
an empty circle defined by three sites that have consecutive
parabolic arcs on the beach line

We will make sure that any three sites that have consecutive
arcs on the beach line and whose circle has its lowest point
below the sweep line have this lowest point as circle event in
the event list
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Detecting circle events

In the status structure we can see all triples of consecutive
parabolic arcs that can give circle events

p5 p6

〈p4, p5〉

〈p5, p6〉

p1 p2 p3 p4

〈p2, p3〉

〈p1, p2〉 〈p3, p4〉
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False alarms

We may have stored a circle event in the event list, but it may
be that it never happens . . .

This is called a false alarm

There are two reasons for false alarms: site events and other
circle events
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False alarms

p1

p2
p3

p4 p5

p6

α1

α2 α3 α4 α5

α6

C(p1, p2, p3)

C(p2, p3, p4)

α3 will disappear

An arc that was involved in a circle event may disappear
earlier
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False alarms

p1

p2
p3

p4 p5

p6

α1

α2 α3 α4 α5

α6

C(p2, p3, p4)
p7

The circle of a circle event may turn out not to be empty
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Detecting false alarms

A site event that disrupts three consecutive parabolic arcs

p5 p6

〈p4, p5〉

〈p5, p6〉

p1 p2 p3 p4

〈p2, p3〉

〈p1, p2〉 〈p3, p4〉

circle event C(p2, p3, p4)
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Detecting false alarms

A site event that disrupts three consecutive parabolic arcs

p3 p7

p5 p6

〈p4, p5〉

〈p5, p6〉

p1 p2 p3 p4

〈p2, p3〉

〈p1, p2〉
〈p3, p4〉

circle event C(p2, p3, p4) gone

〈p3, p7〉

〈p7, p3〉
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Detecting false alarms

A circle event that disrupts three consecutive parabolic arcs

p5 p6

〈p4, p5〉

〈p5, p6〉

p1 p2 p3 p4

〈p2, p3〉

〈p1, p2〉 〈p3, p4〉

circle event C(p2, p3, p4)

circle event C(p1, p2, p3)

Computational Geometry Lecture 10: Voronoi diagrams68



Motivation
Voronoi diagrams

Properties
Construction

Detecting false alarms

p1

p2
p3

p4 p5

p6

α1

α2 α3 α4 α5

α6

C(p1, p2, p3)

C(p2, p3, p4)
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Detecting false alarms

A circle event that disrupts three consecutive parabolic arcs

p5 p6

〈p4, p5〉

〈p5, p6〉

p1 p2 p4

〈p2, p4〉

〈p1, p2〉

circle event C(p1, p2, p3) gone
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The data structures

Recall we have a status structure T , an event list, and a
DCEL

We need pointers from T into the DCEL to be able to update
it efficiently

We need pointers from the leaves of T into the event list to
be able to remove circle events if they are false alarms
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The data structures

A leaf of T has a pointer to all events in which the parabolic
arc participates

Easy question: How many can there be, at most?
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Global algorithm

Algorithm VoronoiDiagram(P)
1. Initialize the event queue Q with all site events, initialize

an empty status structure T and an empty
doubly-connected edge list D

2. while Q is not empty
3. do remove the event with largest y-coordinate from Q

4. if the event is a site event, occurring at site pi

5. then HandleSiteEvent(pi)
6. else HandleCircleEvent(γ), where γ is the

leaf of T representing the arc that will
disappear

7. When all events are handled, we must still fix the
doubly-connected edge list with respect to the bounding
box, and to add face information
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Site event actions

At a site event, at a site pi on the sweep line `:

Find the parabolic arc α vertically above pi in T

Remove the false alarm with α in the middle from the
event list (if it exists)

Update T: one arc is split and a new one for pi appears
in between, and break points are updated

Make two new half-edges for the detected Voronoi edge
in the DCEL

Add new circle events for the new consecutive triples
(if the circle has its lowest point below `)
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Circle event actions

At a circle event, for circle C(pi,pj,pk) whose bottom is on
the sweep line `, and γ is the leaf of T whose arc disappears:

Remove the false alarms that involve the parabolic arc
corresponding to γ

Update T: remove the leaf γ and update break points

Make a new vertex object for the Voronoi vertex, two
new half-edge objects, and connect six half-edges and the
vertex in the DCEL

Add new circle events for the new consecutive triples
(if the circle has its lowest point below `)
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Analysis

Any event removes at most two false alarms and generates at
most two new circle events

Any event is handled in O(logn) time

There are n site events and at most 2n−5 circle events
(because a new Voronoi vertex is detected)
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Result

Theorem: The Voronoi diagram of a set of n point sites in
the plane can be computed in O(n logn) time
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Unknown
P düzlemde verilmiş n adet noktanın kümesi olsun. P kümesi içindeki en yakın 2 noktayı O(n log n) zamanda bulan bir algoritma tasarlayınız.
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