

SNA 2B: ER graphs: Insights and realism

Lada Adamic

Insights

Previously: degree distribution / absence of hubs

Emergence of giant component

Average shortest path

Emergence of the giant component

http://ccl.northwestern.edu/netlogo/models/GiantComponent

What is the average degree z at which the giant component starts to emerge?
0
1
3/2
3

Percolation on a 2D lattice

http://www.ladamic.com/netlearn/NetLogo501/LatticePercolation.html

What is the percolation threshold of a 2D lattice: fraction of sites that need to be occupied in order for a giant connected component to emerge?

- 0
- $1/_4$
- □ 1/3
- □ 1/2

Percolation threshold

average degree

Percolation threshold: how many edges need to be added before the giant component appears?

As the average degree increases to z = 1, a giant component suddenly appears

Giant component – another angle

- How many other friends besides you does each of your friends have?
- By property of degree distribution
 the average degree of your friends, you excluded, is z
 - so at z = 1, each of your friends is expected to have another friend, who in turn have another friend, etc.
 - the giant component emerges

Giant component illustrated

子一子二子

Why just one giant component?

What if you had 2, how long could they be sustained as the network densifies?

http://www.ladamic.com/netlearn/NetLogo501/ErdosRenyiTwoComponents.html

If you have 2 large-components each occupying roughly 1/2 of the graph, how long does it typically take for the addition of random edges to join them into one giant component

- 1-4 edge additions
- 5-20 edge additions
- over 20 edge additions

Average shortest path

- How many hops on average between each pair of nodes?
- again, each of your friends has z = avg. degree friends besides you
- ignoring loops, the number of people you have at distance I is

z′

Average shortest path

friends at distance I

 $N_i = z'$

scaling: average shortest path ${\rm I}_{\rm av}$

$$l_{av} \sim \frac{\log N}{\log z}$$

What this means in practice

Erdös-Renyi networks can grow to be very large but nodes will be just a few hops apart

Logarithmic axes

powers of a number will be uniformly spaced

■ 2⁰=1, 2¹=2, 2²=4, 2³=8, 2⁴=16, 2⁵=32, 2⁶=64,....

Erdös-Renyi avg. shortest path

If the size of an Erdös-Renyi network increases 100 fold (e.g. from 100 to 10,000 nodes), how will the average shortest path change

- it will be 100 times as long
- it will be 10 times as long
- it will be twice as long
- it will be the same
- it will be 1/2 as long

Realism

- Consider alternative mechanisms of constructing a network that are also fairly "random".
- How do they stack up against Erdös-Renyi?
- <u>http://www.ladamic.com/netlearn/nw/</u> <u>RandomGraphs.html</u>

Introduction model

- Prob-link is the p (probability of any two nodes sharing an edge) that we are used to
- But, with probability prob-intro the other node is selected among one of our friends' friends and not completely at random

Introduction model

- Relative to ER, the introduction model has:
 - more edges
 - more closed triads
 - Ionger average shortest path
 - more uneven degree
 - smaller giant component at low p

Static Geographical model

- Each node connects to num-neighbors of its closest neighbors
- use the num-neighbors slider, and for comparison, switch PROB-OR-NUM to 'off' to have the ER model aim for numneighbors as well
- turn off the layout algorithm while this is running, you can apply it at the end

static geo

- Relative to ER, the static geographical model has :
 - Ionger average shortest path
 - shorter average shortest path
 - narrower degree distribution
 - broader degree distribution
 - smaller giant component at a low number of neighbors
 - Iarger giant component at a low number of neighbors

Random encounter

- People move around randomly and connect to people they bump into
- use the num-neighbors slider, and for comparison, switch PROB-OR-NUM to 'off' to have the ER model aim for numneighbors as well
- turn off the layout algorithm while this is running (you can apply it at the end)

random encounters

- Relative to ER, the random encounters model has :
 - more closed triads
 - fewer closed triads
 - smaller giant component at a low number of neighbors
 - Iarger giant component at a low number of neighbors

Growth model

- Instead of starting out with a fixed number of nodes, nodes are added over time
- use the num-neighbors slider, and for comparison, switch PROB-OR-NUM to 'off' to have the ER model aim for numneighbors as well

growth model

Relative to ER, the growth model has :

- more hubs
- fewer hubs
- smaller giant component at a low number of neighbors
- Iarger giant component at a low number of neighbors

other models

- in some instances the ER model is plausible
- if dynamics are different, ER model may be a poor fit