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Heavy tails: right skew

O Right skew

O normal distribution (not heavy tailed)

O e.g. heights of human males: centered around
180cm (5" 117 7)

O Zipf' s or power-law distribution (heavy tailed)

O e.g. city population sizes: NYC 8 million, but many,
many small towns



Normal distribution (human heights)
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Heavy fails: max to min ratio

O High ratio of max to min
O human heights

O tallest man: 272cm (8" 117), shortest man: (1" 107)
ratio: 4.8
from the Guinness Book of world records

O city sizes

O NYC: pop. 8 million, Duffield, Virginia pop. 52, ratio:
150,000



Power-law distribution
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Power laws are seemingly everywhere

note: these are cumulative distributions, more about this in a bit...
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Source:MEJ Newman, ‘Power laws, Pareto distributions and Zipf's law’, Confemporary Physics 46, 323-351 (2005)



Yet more power laws
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Power law distribution

O Straight line on a log-log plot
In(p(x)) =c-aln(x)

O Exponentiate both sides to get that p(x), the
probability of observing an item of size ‘x’ is
given by

p(x)=Cx
— Y

normalization power law exponent o

constant (probabilities over
all x must sumto 1)



What does it mean to be scale free?

O A power law looks the same no mater what scale we
look at it on (2 to 50 or 200 to 5000)

O Only true of a power-law distribution!

O p(bx) = g(b) p(x) — shape of the distribution is
unchanged except for a multiplicative constant

O p(bx) = (bx)*=Db™*x« %

X —b*x
log(p(x))

log(x)




Fitting power-law distributions

O Most common and not very accurate method:

O Bin the different values of x and create a frequency

hlstograrm

N\
) In(x) is the natural

In(# of times o logarithm of x,
x occurred) - but any other base of
~ the logarithm will give
QQ the same exponent of
Qq o. because
% log,o(x) = In(x)/In(10)

X can represent various quantities, the indegree of a node, the magnitude of
an earthquake, the frequency of a word in text



Example on an artificially generated data set

O Take 1 million random numbers from a
distribution with o = 2.5

0 Can be generated using the so-called
‘transformation method’

O Generate random numbers r on the unit interval
0<r<1

Dthen x = (1-r)"/(« js a random power law
distributed real number in the range 1 < x < x



Linear scale plot of straight bin of the data

® Number of times 1 or 3843 or 99723 occured
® Power-law relationship not as apparent
® Only makes sense to look at smallest bins
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Log-log scale plot of simple binning of the data

® Same bins, but plotted on a log-log scale
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Log-log scale plot of straight binning of the data

® Fitting a straight line to it via least squares regression
will give values of the exponent a that are 1oo low
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What goes wrong with straightforward binning

O Noise in the tail skews the regression result
L[ — ———

- - . da-ta
: . have few bins
10

a=1.6 fit
here

have many more bins here




First solution: logarithmic binning

O bin data into exponentially wider bins:
O 1,24, 8,16, 32, ...

O normalize by the width of the bin
10° e

DN T
o = 2.41 fit
10°* . y
evenly
spaced = T
datapoints 102 | i
ol _ less noise
in the tail
of the
107} 4 distribution
10-4 r _r r rorrrrf r _r r rrerrrF r _r r rrrerF r _r r rreer
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B disadvantage: binning smoothes out data but also loses
information



Second solution: cumulative binning

O No loss of information

0 No need to bin, has value at each observed value
of X

O But now have cumulative distribution
O i.e. how many of the values of x are at least X

O The cumulative probability of a power law
probability distribution is also power law but with

an exponent o - 1

_ C —(cr—
fcx @ =~ x@
|-«



Fitting via regression to the cumulative distribution

Ofitted exponent (2.43) much closer to actual (2.5)

frequency sample > x

—x

data
-1 = 1.43 fit




Where to start fittinge

O some data exhibit a power law only in the tail

O after binning or taking the cumulative distribution
you can fit to the talil

O so need to select an x,, the value of x where
you think the power-law starts

dcertainly x.,, needs to be greater than 0,
because x™“is infinite at x =0



Example:

O Distribution of citations to papers

O power law is evident paly,in the tail (x
100 citatior 10°

>
min

10

10°

10°
10° 10° 10"

citations

Source:MEJ Newman, '‘Power laws, Pareto distributions and Zipf's law’, Contemporary Physics 46, 323-351 (2005)



Maximum likelihood fitting — best

O You have to be sure you have a power-law
distribution (this will just give you an exponent
but not a goodness of fit)

- i
X.
a=1+n Eln Z
_i=1 xmm_

m x; are all your datapoints, and you have n of them
m for our data set we get a = 2.503 — preftty closel



Some exponents for real world dato

X min exponent a
frequency of use of words 1 2.20
number of citations to papers 100 3.04
number of hits on web sites 1 2.40
copies of books sold in the US 2 000 000 3.51
telephone calls received 10 2.22
magnitude of earthquakes 3.8 3.04
diameter of moon craters 0.01 3.14
intensity of solar flares 200 1.83
intensity of wars 3 1.80
net worth of Americans $600m 2.09
frequency of family names 10 000 1.94
population of US cities 40 000 2.30




Many real world networks are power law

exponent o
(in/out degree)
film actors 2.3
telephone call graph 2.1
email networks 1.5/2.0
sexual contacts 3.2
WWW 2.312.7
internet 2.5
peer-to-peer 2.1
metabolic network 2.2
protein interactions 2.4



Hey, not everything is a power law

O number of sightings of 591 bird species in the
North American Bird survey in 2003.
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® another example:
m size of wildfires (in acres)

Source:MEJ Newman, ‘Power laws, Pareto distributions and Zipf's law’, Confemporary Physics 46, 323-351 (2005)



Not every network is power law distributed

O reciprocal, frequent email communication
O power grid
ORoget’ s thesaurus

O company directors...



Example on areal data set: number of AOL visitors 1o

different websites back in 1997
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trying to fit directly...

O direct fit is too shallow: o = 1.17...

AOL users to sites

nuni:‘et of sites
(—)

10 10°
number of users



Binning the data logarithmically helps

O select exponentially wider bins
01, 2,4,8, 16, 32, ....
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Or we can try fitting the cumulative distribution

O Shows perhaps 2 separate power-law regimes that
were obscured by the exponential binning

O Power-law tail may be closer to 2.4

® usage data
- Pareto CDF with k = 1.16 (a = 2.16)
10 ¢ —— Pareto CDF with k = 1.07 (a = 2.07)

cumulative number of sites with >= x visitors

1 1
10’ 10° 10*
% (number of visitors)



Another common distribution: power-law

with an exponential cutoff

starts out as a power law

ends up as an exponential

v

p(Xx)
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but could also be a lognormal or double exponential...



[ipf &Pareto:

what they have to do with power-laws

O Zipf

O George Kingsley Zipf, a Harvard linguistics professor,
sought to determine the 'size' of the 3rd or 8th or
100th most common word.

O Size here denotes the frequency of use of the word in
English text, and not the length of the word itself.

O Zipf's law states that the size of the r'th largest
occurrence of the event is inversely proportional to its
rank:

y~r 'ﬁ, with B close to unity.



So how do we go from Zipf to Paretoe¢

O The phrase "The r th largest city has n inhabitants" is
equivalent to saying "r cities have n or more inhabitants".

O This is exactly the definition of the Pareto distribution,
except the x and y axes are flipped. Whereas for Zipf, ris
on the x-axis and n is on the y-axis, for Pareto, ris on the
y-axis and n is on the x-axis.

O Simply inverting the axes, we get that if the rank
exponentis B, i.e.

n ~ rbfor Zipf, (n =income, r = rank of person with
income n)
then the Pareto exponent is 1/8 so that

r~ntp (n = income, r = number of people whose
income is n or higher)



Zipf’ s law & AOL site visits

O Deviation from Zipf' s law

O slightly too few websites with large numbers of
visitors"

RAHNKED SLOPE = 1




Zipf' s Law and city sizes (~1930) [2]

Rank(k) City Population Zips’ s Law Modified Zipf' s law:
(1990) 10,000,000/ k s 00((|)\/| Oi)%jf,lcb_r?)%
0 5
1.1 Now York 7,322,564 10,000,000 7,334,265
_-7 Detroit 1,027,974 1,428,571 1,214,261
© 13 | Baltimore 736,014 769,231 747,693
19 | Washington DC 606,900 526,316 558,258
25 | New Orleans 496,938 400,000 452,656
31 | Kansas City 434,829 322,581 384,308
37 | Virgina Beach 393,089 270,270 336,015
49 | Toledo 332,943 204,082 271,639
61 | Arlington 261,721 163,932 230,205
73 | Baton Rouge 219,531 136,986 201,033
85 | Hialeah 188,008 117,647 179,243
97 | Bakersfield 174,820 103,270 162,270

slide: Luciano Pietronero



80/20 rule

O The fraction W of the wealth in the hands of
the richest P of the the population is given by

W = Pla=2)/(o-1)

O Example: US wealth: a = 2.1

O richest 20% of the population holds 86% of the
wealth



What does it mean to be scale free?¢

O A power law looks the same no mater what scale we
look at it on (2 to 50 or 200 to 5000)

O Only true of a power-law distribution!

O p(bx) = g(b) p(x) — shape of the distribution is
unchanged except for a multiplicative constant

\x —sb*x

log(x)

O p(bx) = (bx)™ =b™* x™@ N
log(p(x))




Wrap up on power-laws

O Power-laws are cool and intriguing

O But make sure your data is actually
power-law before boasting



