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Heavy tails: right skew 

! Right skew 
! normal distribution (not heavy tailed) 

! e.g. heights of human males: centered around 
180cm (5�11��) 

! Zipf�s or power-law distribution (heavy tailed) 
! e.g. city population sizes: NYC 8 million, but many, 

many small towns 



Normal distribution (human heights) 

average value close to 
most typical 

distribution close to  
symmetric around 
average value  



Heavy tails: max to min ratio 

! High ratio of max to min 
! human heights 

!  tallest man: 272cm (8�11�), shortest man: (1�10�) 
ratio: 4.8 
from the Guinness Book of world records 

!  city sizes 
! NYC: pop. 8 million, Duffield, Virginia pop. 52, ratio: 

150,000 
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Power-law distribution 

!  linear scale !  log-log 
scale 

!  high skew (asymmetry) 
!  straight line on a log-log plot 



Power laws are seemingly everywhere 
note: these are cumulative distributions, more about this in a bit… 

Moby Dick scientific papers 1981-1997 AOL users visiting sites �97 

bestsellers 1895-1965 AT&T customers on 1 day California 1910-1992 

Source:MEJ Newman, �Power laws, Pareto distributions and Zipf�s law�, Contemporary Physics 46, 323–351 (2005) 



Yet more power laws 

Moo
n 

Solar flares wars 
(1816-1980) 

richest individuals 
2003 

US family names 
1990 

US cities 2003 

Source:MEJ Newman, �Power laws, Pareto distributions and Zipf�s law�, Contemporary Physics 46, 323–351 (2005) 



Power law distribution 

! Straight line on a log-log plot 

 

! Exponentiate both sides to get that p(x), the 
probability of observing an item of size �x� is 
given by 

α−=Cxxp )(

)ln())(ln( xcxp α−=

normalization 
constant (probabilities over 
all x must sum to 1) 

power law exponent α"



What does it mean to be scale free? 

! A power law looks the same no mater what scale we 
look at it on (2 to 50 or 200 to 5000) 

! Only true of a power-law distribution! 

! p(bx) = g(b) p(x) – shape of the distribution is 
unchanged except for a multiplicative constant 

! p(bx) = (bx)�α = b�α x�α 

log(x) 

log(p(x)) 
x →b*x 



Fitting power-law distributions 

! Most common and not very accurate method: 
!  Bin the different values of x and create a frequency 

histogram 

ln(x) 

ln(# of times 
x occurred) 

x can represent various quantities, the indegree of a node, the magnitude of 
an earthquake, the frequency of a word in text 

ln(x) is the natural 
logarithm of x, 
but any other base of 
the logarithm will give 
the same exponent of 
α because 
log10(x) = ln(x)/ln(10) 



Example on an artificially generated data set 

! Take 1 million random numbers from a 
distribution with α = 2.5 

! Can be generated using the so-called 
�transformation method� 

! Generate random numbers r on the unit interval 
0≤r<1 

! then x = (1-r)�1/(α�1) is a random power law 
distributed real number in the range 1 ≤ x < ∞ 



Linear scale plot of straight bin of the data 
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!  Number of times 1 or 3843 or 99723 occured 
!  Power-law relationship not as apparent 
!  Only makes sense to look at smallest bins 
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Log-log scale plot of simple binning of the data 

!  Same bins, but plotted on a log-log scale 
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Noise in the tail: 
Here we have 0, 1 or 2 observations 
of values of x when x > 500 

here we have tens of thousands of observations 
when x < 10 

Actually don�t see all the zero 
values because log(0) = ∞ 



Log-log scale plot of straight binning of the data 

!  Fitting a straight line to it via least squares regression 
will give values of the exponent α that are too low  
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What goes wrong with straightforward binning 

! Noise in the tail skews the regression result 
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data
α = 1.6 fit

have many more bins here 

have few bins 
here 



First solution: logarithmic binning 
!  bin data into exponentially wider bins: 

!  1, 2, 4,  8, 16, 32, … 

!  normalize by the width of the bin 
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data
α  = 2.41 fit

evenly 
spaced 
datapoints 

less noise 
in the tail 
of the 
distribution 

!  disadvantage: binning smoothes out data but also loses 
information 



Second solution: cumulative binning  

! No loss of information 
! No need to bin, has value at each observed value 

of x 

! But now have cumulative distribution 
!  i.e. how many of the values of x are at least X 

! The cumulative probability of a power law 
probability distribution is also power law but with 
an exponent α - 1 
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Fitting via regression to the cumulative distribution 

! fitted exponent (2.43) much closer to actual (2.5) 
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data
α-1 = 1.43 fit



Where to start fitting? 

! some data exhibit a power law only in the tail 

! after binning or taking the cumulative distribution 
you can fit to the tail 

! so need to select an xmin the value of x where 
you think the power-law starts 

! certainly xmin needs to be greater than 0, 
because x�α is infinite at x = 0 



Example:  

! Distribution of citations to papers 

! power law is evident only in the tail (xmin > 
100 citations) 

xmin 

Source:MEJ Newman, �Power laws, Pareto distributions and Zipf�s law�, Contemporary Physics 46, 323–351 (2005) 



Maximum likelihood fitting – best 

! You have to be sure you have a power-law 
distribution (this will just give you an exponent 
but not a goodness of fit) 
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!  xi are all your datapoints, and you have n of them 
!  for our data set we get α = 2.503 – pretty close! 



Some exponents for real world data 
xmin exponent α"

frequency of use of words 1 2.20 
number of citations to papers 100 3.04 
number of hits on web sites 1 2.40 
copies of books sold in the US 2 000 000 3.51 
telephone calls received 10 2.22 
magnitude of earthquakes 3.8 3.04 
diameter of moon craters 0.01 3.14 
intensity of solar flares 200 1.83 
intensity of wars 3 1.80 
net worth of Americans $600m 2.09 
frequency of family names 10 000 1.94 
population of US cities 40 000 2.30 



Many real world networks are power law 
exponent α"
(in/out degree)"

film actors 2.3 
telephone call graph 2.1 
email networks 1.5/2.0 
sexual contacts 3.2 
WWW 2.3/2.7 
internet 2.5 
peer-to-peer 2.1 
metabolic network 2.2 
protein interactions 2.4 



Hey, not everything is a power law 

! number of sightings of 591 bird species in the 
North American Bird survey in 2003. 

cumulative 
distribution 

! another example: 
!  size of wildfires (in acres) 

Source:MEJ Newman, �Power laws, Pareto distributions and Zipf�s law�, Contemporary Physics 46, 323–351 (2005) 



Not every network is power law distributed 

! reciprocal, frequent email communication 

! power grid 

! Roget�s thesaurus 

! company directors… 



Example on a real data set: number of AOL visitors to 
different websites back in 1997 

simple binning on a linear 
scale 

simple binning on a log-log scale 



trying to fit directly… 
! direct fit is too shallow: α = 1.17… 



Binning the data logarithmically helps 

! select exponentially wider bins 
! 1, 2, 4, 8, 16, 32, …. 



Or we can try fitting the cumulative distribution 

! Shows perhaps 2 separate power-law regimes that 
were obscured by the exponential binning 

! Power-law tail may be closer to 2.4 



Another common distribution: power-law 
with an exponential cutoff 

! p(x) ~ x-a e-x/κ"
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starts out as a power law 

ends up as an exponential 

but could also be a lognormal or double exponential… 



Zipf &Pareto:  
what they have to do with power-laws 

! Zipf 
! George Kingsley Zipf, a Harvard linguistics professor, 

sought to determine the 'size' of the 3rd or 8th or 
100th most common word.  

! Size here denotes the frequency of use of the word in 
English text, and not the length of the word itself.  

! Zipf's law states that the size of the r'th largest 
occurrence of the event is inversely proportional to its 
rank:  
 

y ~ r -β , with β close to unity.  



So how do we go from Zipf to Pareto? 

!  The phrase "The r th largest city has n inhabitants" is 
equivalent to saying "r cities have n or more inhabitants".  

!  This is exactly the definition of the Pareto distribution, 
except the x and y axes are flipped. Whereas for Zipf, r is 
on the x-axis and n is on the y-axis, for Pareto, r is on the 
y-axis and n is on the x-axis.  

! Simply inverting the axes, we get that if the rank 
exponent is β, i.e.  
n ~ r�β for Zipf,   (n = income, r = rank of person with 
income n) 
then the Pareto exponent is 1/β so that  
r ~ n-1/β   (n = income, r = number of people whose 
income is n or higher)  



Zipf�s law & AOL site visits 

! Deviation from Zipf�s law 
! slightly too few websites with large numbers of 

visitors: 



Zipf�s Law and city sizes (~1930) [2] 

Rank(k) City Population 
(1990) 

Zips�s Law Modified Zipf�s law: 
(Mandelbrot) 

 

1 Now York 7,322,564 10,000,000 7,334,265 

7 Detroit 1,027,974 1,428,571 1,214,261 

13 Baltimore 736,014 769,231 747,693 

19 Washington DC 606,900 526,316 558,258 

25 New Orleans 496,938 400,000 452,656 

31 Kansas City 434,829 322,581 384,308 

37 Virgina Beach 393,089 270,270 336,015 

49 Toledo 332,943 204,082 271,639 

61 Arlington 261,721 163,932 230,205 

73 Baton Rouge 219,531 136,986 201,033 

85 Hialeah 188,008 117,647 179,243 

97 Bakersfield 174,820 103,270 162,270 

€ 

5,000,000 k − 25( )
3
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10,000,000 k

slide: Luciano Pietronero 



80/20 rule 

! The fraction W of the wealth in the hands of 
the richest P of the the population is given by 
 

  W = P(α�2)/(α�1)"

! Example: US wealth: α = 2.1 
! richest 20% of the population holds 86% of the 

wealth 



What does it mean to be scale free? 

! A power law looks the same no mater what scale we 
look at it on (2 to 50 or 200 to 5000) 

! Only true of a power-law distribution! 

! p(bx) = g(b) p(x) – shape of the distribution is 
unchanged except for a multiplicative constant 

! p(bx) = (bx)�α = b�α x�α 

log(x) 

log(p(x)) 

x →b*x 



Wrap up on power-laws 

!  Power-laws are cool and intriguing 

!  But make sure your data is actually 
power-law before boasting 


