Transitivity, triadic closure, clustering

O Transitivity:
Oif Aisconnected to B and B is connected to C
what is the probability that A is connected to C?¢

O my friends’ friends are likely to be my friends




Clustering

0 Global clustering coefficient
3 x number of triangles in the graph
number of connected triples of vertices

3 x number of friangles in the graph

C =

number of connected triples



Local clustering coefficient (Watts&Strogatz 1998)

OdFor a vertexi

O The fraction pairs of neighbors of the node that
are themselves connected

O Let n, be the number of neighbors of vertexi

C = # of connections between i's neighbors
i max # of possible connections between i's neighbors

o _ # directed connections between i's neighbors
CI directed — N oT)

, , _ # undirected connections between i's neighbors
CI undirected — N o )/i




Local clustering coefficient (Watts&Strogatz 1998)

O Average over all n vertices
1
C=—Y»C

n, = 4

max number of connections:
4*3/2 =6

3 connections present
C.=3/6=0.5

—— |INk present
------- link absent



O The clustering coefficient for vertex A is:



Explanation

On =3

Ddthere are 2 connections present out of
max of 3 possible

Oc =2/3




Are strong ties “local”?

O A strong tie g
O frequent contact —
O aoffinity O
O many mutual contacts

<

“forbidden
triad’":

stfrong ties are
likely to “close”



edge embeddeness

O embeddeness: number of common neighbors
the two endpoints have

O
O

O

® neighborhood overlap:

number of nodes who are neighbors of both A and B

number of nodes who are neighbors of at least one of A or B



school kids and 1¢t through 8™ choices of friends

® snowball sampling:
®  will you reach more different kids by asking each kid to name
their 2 best friends, or their 7" & 8th closest friend?

First Order: I First Order: , I
Direct Contacts / / Direct Contacts / . /
Second Order: * Second Order: *
Indirect Contacts Indirect Conracts

Source: M. van Alstyne, S. Aral. Networks, Information & Social Capital, http://papers.ssrn.com/
sol3/papers.cfim?abstract_id=958158



is it good to be embedded?

OWhat are the advantages of occupying
an embedded position in the network?e

OWhat are the disadvantages of being
embedded?

O Advantages of being a broker
(spanning structural holes)<

O Disadvantages of being a brokere



the sirength of infermediate ties

O study of a large call graph

O strong fies

O frequent communication, but ties are redundant
due to high clustering

O weak ties

O reach far across network, but communication is
infrequent...

O Onnela J. et.al. PNAS 2007:104:7332-7336

O use nafion-wide cellphone call records and simulate
diffusion using actual call fiming

O in simulation, individuals are most likely to obtain
novel information through ties of infermediate
stfrength



Characterizing the large-scale structure and the tie strengths of the mobile call graph
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Edge neighborhood overlap as a
function of tie strength
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The dynamics of spreading on the weighted mobile call graph, assuming that the
probability for a node v, to pass on the information to its neighbor v; in one time step is given

by P; = xw;, with x =2.59 x 10—4
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Resolving local structure: network motifs

M1 M2 M3 M4 M5

motif matches in the target graph

http://mavisto.ipk-gatersleben.de/frequency_concepts.html



All 3 node motifs
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Examples of network motifs (3 nodes)

O Feed forward loop
O Found in neural networks .

O Seems to be used to neutralize
“biological noise”

<

OSingle-Input Module
O e.g. gene control networks




Examples of network motifs (4 nodes)

O Parallel paths

O Found in neural networks /W\
O Food webs X Y
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Compare to “equivalent” random graph

A B

real network randomized networks

Milo et al., Network motifs: Simple building blocks of complex networks, Science 298:824-827, 2002



Network motif detection

O Some motifs will occur more often in real world networks
than random networks

O Technigue:

O construct mony rondomgrophs with the same number of nodes
and edges (same node degree distribution?)

O count the number of motifs in those graphs

O calculate the Z score: the probability that the given number of
motifs in the real world network could have occurred by chance

O Software available:

O htip://www.weizmann.ac.il/mcb/UriAlon/ (the original)

O http://theinfl.informatik.uni-jiena.de/~wernicke/motifs/
index.html

(faster and more user friendly)




What the Z score means

u = mean number of fimes the motif
appeared in the random graph

] o standard deviation N _
I the probability observing a Z

score of 21is 0.02275

: In the context of mofifs:

I Z > 0, motif occurs more often
I than for random graphs

[ Z <0, motif occurs less often
# of fimes motif than in random graphs
appeared in random graph

X = Uy |Z| > 1.65, only a 5% chance of
y random occurence

X
GX




software: FANMOD (also igraph)

O http://theinfl.informatik.uni-jena.de/~wernicke/mofifs/
index.html

FAN MO D a tool for fast network motif detection
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Superfamilies of networks

Triad Significanca Profile
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O Based on their triad census profiles,
which two kinds of networks exhibit
similar structure?¢



Superfamilies of networks

Triad Significanca Profile
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O Which of the following triads is
underrepresented in social networkse

subgraphs



Superfamilies of networks

WWW-1 N=325,729 |

05H :
. o WWW-2 N=277,114
7 ) ww “ “ oo S g ¥ : — WWW-3 N=47 870
) | o= e - /,2__*4_ . SOCIAL-1 N=67
W u\\ ) < Nl /) &~ SOCIAL-2 N=28
05~ : - +— SOCIAL-3 N=32%

1 =2 11 12 13

AU TIARDGOGBHE

subgraphs

source: Milo et al., Superfamilies of Evolved and Designed Networks, Science 303:1538-1542, 2004



Motifs: recap

O Given a partficular structure, search for it
INn the network, e.g. complete triads

O odvantage: motifs can correspond to
particular functions, e.g. in biological
networks

O disadvantage: don't know if motif is part
of a larger cohesive community



