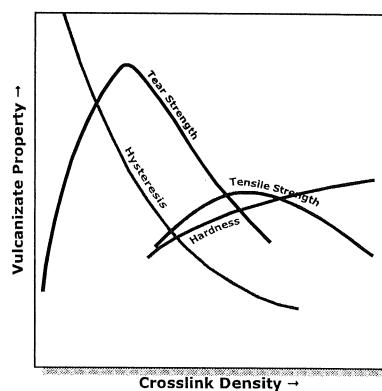



## ELASTOMER TECHNOLOGY

- Understand the functions of the various components of rubber compound recipes.
- Explain the significance of vulcanization parameters, including scorch time, cure time, and cure rate index.
- Understand how crosslink structure (crosslink density and crosslink distribution) affects the mechanical properties of rubber compositions.
- Explain how fillers, particularly reinforcing fillers, affect the mechanical properties of rubber compositions.
- Identify the chemical systems most suitable for vulcanizing common elastomers.

### Rubber Vulcanization

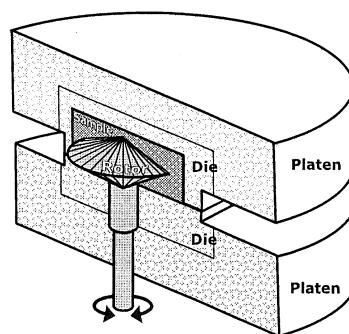
- Vulcanization is the process of forming a molecular network of linked polymer chains.
- Networks are formed by chemical crosslinks between chains:
  - Carbon-carbon bonds
  - Sulfur atoms or chains of sulfur atoms
  - Polyfunctional organic molecules
  - Polyvalent metal cations
- Goal: a thermoset product with desirable physical properties.
- Vulcanizate properties depends on the type and number (density) of crosslinks.



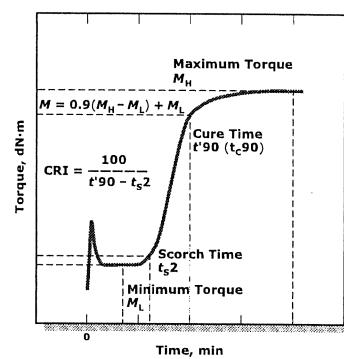

## Rubber Compound Components

- **Elastomer(s)**
- **Cure system**
  - Crosslinking agent
  - Accelerator(s)
  - Cure activators (co-reactants with accelerator)
- **Processing aids (improve post-cure processing properties)**
  - Oils
  - Waxes
  - Tackifying resins
- **Antidegradant(s)**
  - Antioxidants
  - Antiozonants
- **Pigments**
- **Particulate fillers and extenders**
  - Reinforcing (carbon black, silica)
  - Non-reinforcing (clay,  $\text{CaCO}_3$ ,  $\text{TiO}_2$ )

## Crosslink Density: Effects on Polymer Properties


- **Crosslink density (degree of crosslinking) = number (mols) of crosslinks/unit volume.**
- **Crosslink formation affects elastomer properties:**
  - Hardness increases.
  - Elastic behavior favored.
  - Hysteresis losses decrease.
  - Tensile and tear strength increase until crosslink density exceeds optimum levels.

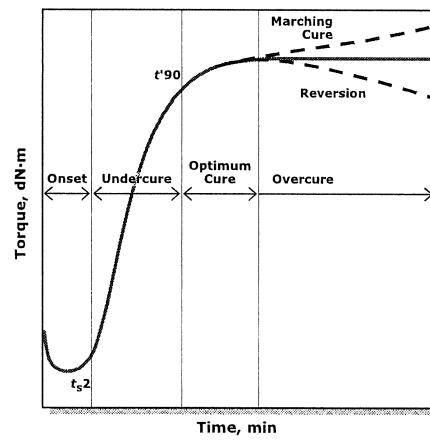



## Effects of Crosslink Type & Distribution

- Crosslink distribution: in sulfur vulcanization, the molar densities of monosulfide (C-S-C), disulfide (C-S-S-C), and polysulfide (C-S<sub>x</sub>-C) crosslinks.
- Thermally stable crosslinks (C-C bonds, C-S-C bonds) contribute to
  - Low reversion (thermal stability)
  - Low compression set
- Thermally labile or flexible crosslinks (ionic bonds: -COO- $M^{2+}$ -OOC-; di- or polysulfide bonds: C-S<sub>x</sub>-C) contribute to
  - Increased thermal reversion (crosslink cleavage)
  - Increased tear resistance
  - Increased fatigue resistance
- Crosslink structure affects the mechanical properties of NR vulcanizates more strongly than it affects those of synthetic elastomer vulcanizates.

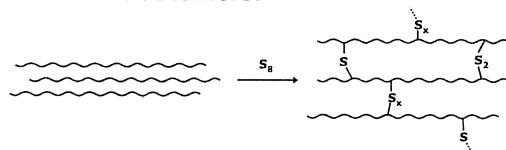
## Monitoring Vulcanization: Oscillating Disk Rheometer



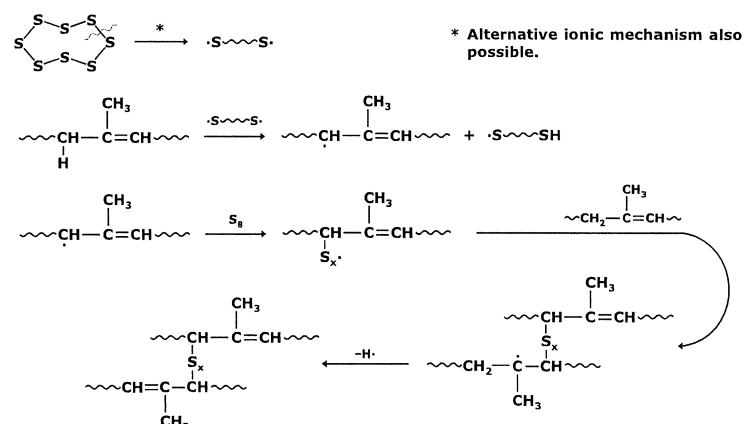

ISO 3417, ASTM D2084



## Vulcanization Parameters


- The time until crosslinking starts
  - Scorch time, scorch resistance, scorch delay ( $t_{s2}$ )
  - Goal: adequate time for mixing, forming, or molding the rubber compound
- The rate of crosslink formation
  - Cure rate index (CRI)  
$$CRI = \frac{100}{t'90 - t_{s2}}$$
  - Goal: rapid, controllable rate
- The extent and type of crosslinking
  - Maximum torque ( $M_H$ ), crosslink density, crosslink distribution (sulfur vulcanization: monosulfide, disulfide, polysulfide)
  - Goal: desired physical properties

## Vulcanization Profiles

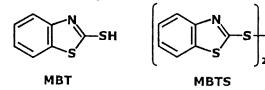



## Sulfur Vulcanization

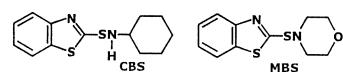
- Suitable for diene-based elastomers:
  - NR, IR
  - BR
  - SBR
  - NBR
  - IIR
  - EPDM
- Low-cost
- Rate easily controlled
  - Accelerators
  - Retarders
- Crosslink distribution easily controlled (accelerators)
  - Monosulfides: heat resistance
  - Di-, polysulfides: tensile strength, elastic properties



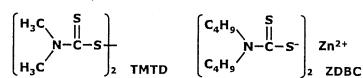
## Sulfur Vulcanization: Basic Rxn



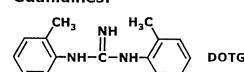

5


## Sulfur Vulcanization: Accelerators

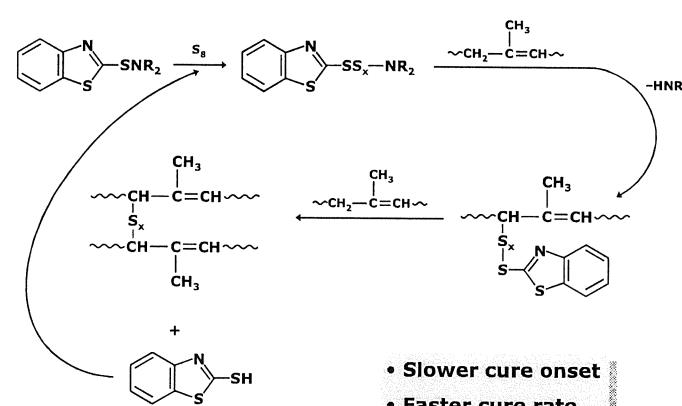
- Sulfur is a sluggish cross-linking agent, especially for synthetic rubber.
- Sulfur/amine-based accelerators allow faster vulcanization (ionic mechanism) at relatively low temperatures.
- Accelerated vulcanizations use lower levels of sulfur.
  - Aging properties improved
  - Overcuring reduced
- Cure onset (scorch) can be controlled.
- Crosslink distributions can be controlled (mono-, di-, or polysulfide).


### Thiazoles:



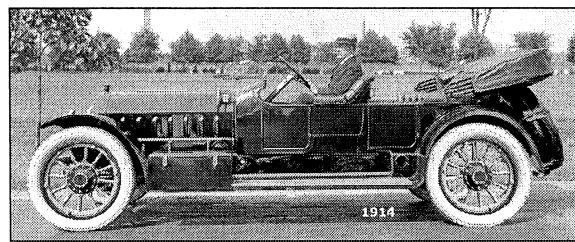

### Sulfenamides:




### Thiurams/Dithiocarbamates:



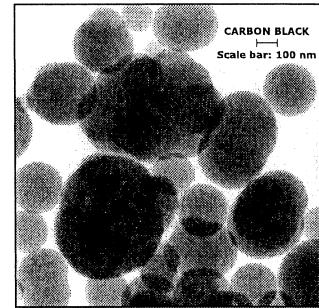
### Guanidines:




## Sulfur Vulcanization: Accelerated Rxn



Adapted from M.H.S. Gradwell & N.R. Stephenson, 2004, *Rubber Chem. Technol.* 77 931-946.


6



- White tires  $\Rightarrow$  ZnO filler
- Starting in 1912, carbon black replaced ZnO and other filler materials in tires.
- Now: ~90% of all carbon black produced is used in the manufacture of tires and other rubber goods.

## Reinforcing Fillers

- Synthetic elastomers have no inherent reinforcing properties
  - Low resistance to abrasion, tear
  - Low compound viscosity
  - Low hardness, toughness
- Non-reinforcing fillers
  - Show little or no physical interaction with polymer phase
  - Serve as extenders or pigments
- Reinforcing fillers
  - Create physical and chemical interactions with polymer phase
  - Affect performance characteristics of vulcanizates
- Reinforcement determined by
  - Particle size (upper limit: <1000 nm)
  - Particle surface area
  - Surface chemistry

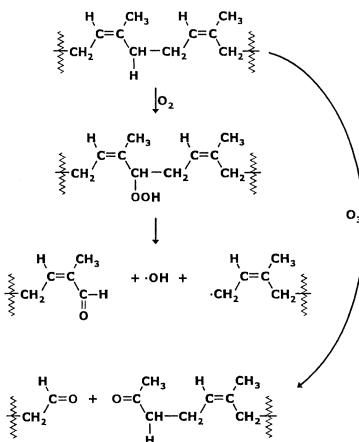


| Non-Reinforcing                                     | Reinforcing                           |
|-----------------------------------------------------|---------------------------------------|
| Clay (kaolin)<br>$\text{CaCO}_3$<br>$\text{BaSO}_4$ | Carbon black<br>Silica (precipitated) |

Image adapted from S.-L. Kim & D.H. Remecker, 1993, *Rubber Chem. Technol.* 66, 559-566.

(7)

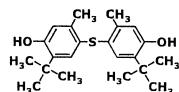
## Rubber Compounds: Carbon Black-filled


| Reinforcing<br>Filler:      | Elastomer              |      |       |      |       |      |       |
|-----------------------------|------------------------|------|-------|------|-------|------|-------|
|                             | SBR                    |      | EPDM  |      | NBR   |      |       |
|                             | Component <sup>a</sup> | gum  | black | gum  | black | gum  | black |
| Elastomer                   | 100                    | 100  | 100   | 100  | 100   | 100  | 100   |
| Carbon black                |                        | 50   |       | 50   |       | 50   |       |
| ZnO                         | 4                      | 4    | 5     | 5    | 5     | 5    | 5     |
| Stearic acid                | 2                      | 2    | 1     | 1    | 1     | 1    | 1     |
| Sulfur                      | 1.8                    | 1.8  | 1.0   | 1.0  | 1.0   | 1.0  | 1.0   |
| Accelerators                | 1.25                   | 1.25 | 1.5   | 1.5  | 0.6   | 0.6? | c     |
| Processing aids             | 10                     | 10   | 25    | 25   | 10    | 10   |       |
| Antioxidant                 | 2                      | 2    |       |      | 1.5   | 1.5  |       |
| Performance                 |                        |      |       |      |       |      |       |
| Cure time, min <sup>b</sup> | 25                     | 20   | 25    | 25   | 25    | 25   | 20    |
| Tensile str., MPa           | 1.3                    | 23.6 | 1.6   | 15.4 | 1.4   | 1.4  | 19.3  |
| Elongation, %               | 310                    | 520  | 310   | 410  | 590   | 610  |       |

<sup>a</sup> Parts per hundred (phr) of rubber. <sup>b</sup> Optimum cure at 153°C. <sup>c</sup> Assumed; no accelerator shown in source table.

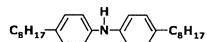
Adapted from J.R. Beatty & M.L. Studebaker, 1975, *Rubber Age* 107(8) 20-35.

## Antidegradants


- Elastomers with many carbon-carbon double bonds (NR, IR, BR, SBR, NBR, CR) are attacked by oxygen and ozone.
- Halogenated elastomers (CR, BIIR, CIIR) are susceptible to thermal decomposition (-HX).
- Outcomes:
  - Hardening or softening
  - Cracking
  - Loss of elastic properties
  - Reduced service life
- Antioxidants are added to rubber compounds to react with oxygen.
- Antiozonants are added to rubber compounds to react with ozone and oxygen.

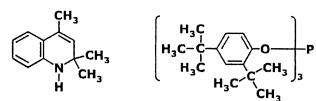


Adapted from G.-Y. Li & J.L. Koenig 2005 *Rubber Chem. Technol.* 78, 355-390; S. Commereuc et al. 1997 *Polym. Degrad. Stabil.* 57, 175-182.


## Antidegradants (cont.)

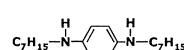
- Contain functional groups (OH, NH, SH) that act as chain terminators.




- Antioxidants

- Peroxy scavengers react with peroxy radicals ( $RO_2\cdot$ )
- Hydroperoxide scavengers react with  $ROOH$ .




- Types:

- Hindered phenols
- Alkyldiphenylamines
- Dihydroquinolines
- Organophosphites



- Antiozonants

- Function depends on ability to migrate to rubber surface



- Types:

- Dialkyl- or diaryl-p-phenylenediamines
- Dihydroquinolines

9