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First-order ODEs Introduction

First-order ODEs

• The simplest ODEs

• Only the first derivative of the unknown function and no higher
derivatives

• Can also contain unknown function y , any given function of x –
(f (x)), and constants

• Solution: a function or a class of function

y = h(x) (1)
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First-order ODEs Solution

Example

ODE : y ′ = cosx , y(x) =?

Solution: y = sinx+ c → General solution, c : arbitrary constant
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First-order ODEs Solution

Initial Values
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First-order ODEs Exponentials

Example

ODE : y ′ = 0.2y

Solution: y = ce0.2x

0.2→ k y = cekx

if k > 0 exponential growth and if k < 0 exponential decay
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First-order ODEs Separable equations

Analytical methods for first-order ODEs

Analytical techniques can only be applied into certain types of DEs.

• Separable equations and the method of separable variables

• Exact equations

• Integrating factors

• Solution of linear ODEs
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First-order ODEs Method of Separable Variables

Separable equations

Many practically useful ODEs can be reduced to this form by purely
algebraic manipulations

g(y)y ′ = f (x) (2)

This is the standard form a separable equation!

Solution can be written: ∫
g(y)dy =

∫
f (x)dx+ c (3)
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First-order ODEs Method of Separable Variables

Examples!
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First-order ODEs Exact Equations

Exact equations

1 Check if it is a separable equation.

2 If not, check if it is an exact equation.

The pattern of an exact equation:

M(x ,y)+N(x ,y)
dy

dx
= 0 (4)

!!!Having this pattern doesn’t mean that it is an exact equation!!!

What is the benefit of having an exact equation?
If it is an exact equation, we can say that

dΨ(x ,y)

dx
= 0 (5)

and the solution will be

Ψ(x ,y) = c → constant (6)
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First-order ODEs Exact Equations

Exact equations

Ψ(x ,y) = c → constant (7)

What is Ψ(x ,y)?

• It is a function of x and y .

• ∂Ψ
∂x =Ψx =M(x ,y)

• ∂Ψ
∂y =Ψy = N(x ,y)

Confused?
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First-order ODEs Exact Equations

Exact equations

What is the derivative of Ψ(x ,y(x)) w.r.t. x? d
dxΨ(x ,y(x)) =?

Note: y is a function of x!

Applying the chain rule in partial differentiation :

d

dx
Ψ(x ,y) =

∂Ψ

∂x
+

∂Ψ

∂y

dy

dx
(8)

If ∂Ψ
∂x in Eq. 8 →M(x ,y) in Eq. 4 and

∂Ψ
∂y in Eq. 8 → N(x ,y) in Eq. 4
we know that

dΨ

dx
= 0 (9)

and the solution
Ψ(x ,y) = c (10)
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First-order ODEs Exact Equations

A nice property

If both Ψx and Ψy are continuous, then

Ψxy =Ψyx (11)

This property can be used to check whether it is an exact equation.

My = Nx → Exact Equation (12)

Note that Ψx =M and Ψy = N.
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First-order ODEs Exact Equations

Examples!
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First-order ODEs Integrating factors

Integrating factors

What if it is not an exact equation?
(3xy + y2)+(x2+ xy)y ′ = 0
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First-order ODEs Integrating factors

Integrating factors

What if it is not an exact equation?
What if there is a factor that makes it exact equation?
µ(x),µ(y) or µ(x ,y)
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First-order ODEs Integrating factors

Integrating factors

P(x ,y)+Q(x ,y)dydx = 0 → Pdx+Qdy = 0 (NOT Exact Eq.)
Assuming that the integrating factor is function of only x → (µ(x))

My = µPy and Nx = µ
′Q+µQx (13)

µPy = µ
′Q+µQx (14)

Dividing both sides by µQ

Py

Q
=

dµ

dx

1

µ
+

Qx

Q
(15)

1

µ

dµ

dx
=

1

Q

(
∂P

∂y
− ∂Q

∂x

)
= R(x) (16)

The integration factor becomes

µ(x) = e
∫
R(x)dx (17)
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First-order ODEs Integrating factors
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First-order ODEs Integrating factors

Examples!
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First-order ODEs Linear ODE

Linear ODEs

Standard form for a linear ODE:

y ′+p(x)y = r(x) (23)

p(x) and r(x) may be any given function of x .
r(x): force (input)
y(x): output (e.g., displacement)
If r(x) = 0, homogeneous:

y ′+p(x)y = 0 (24)

The solution is

y(x) = ce−
∫
p(x)dx (25)
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First-order ODEs Linear ODE

Nonhomogenous linear ODEs

y ′+p(x)y = r(x) (26)

If r(x) ̸= 0, it is a nonhomogenous linear ODE.
Taking the integrating factor → µ(x), Eq.29 can be written as:

µy ′+µPy = µR (27)

For the left hand side
(µy)′ = µ

′y +µy ′ (28)

if µPy = µ ′y → µ ′ = µP and therefore, µ = e
∫
Pdx = eh and h′ = P.

Rewriting Eq.30:

ehy ′+ ehh′y = ehy ′+(eh)′y = (ehy)′ = reh (29)
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First-order ODEs Linear ODE

Nonhomogenous linear ODEs

yeh =
∫

ehrdx+ c (30)

y = e−h

(∫
ehrdx+ c

)
(31)

y = e−h
∫

ehrdx+ ce−h (32)

Total output = Response to the input + Response to the initial data
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First-order ODEs Linear ODE

Examples!
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First-order ODEs Population Dynamics

Population dynamics

Malthus
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Exponential growth:

dP

dt
= rP



First-order ODEs Population Dynamics

Population dynamics

Malthus Verhulst
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Exponential growth:

dP

dt
= rP

Logistic equation:

dP

dt
= r(1− P

k
)P→



First-order ODEs Bernoulli equation

Bernoulli Equation (For PhD Students)

y ′+p(x)y = g(x)ya

It’s linear for a= 0 and a= 1, otherwise nonlinear.
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First-order ODEs Bernoulli equation

Bernoulli Equation (For PhD Students)

y ′+p(x)y = g(x)ya

It’s linear for a= 0 and a= 1, otherwise nonlinear.
It can be transformed to linear ODEs:

u(x) = (y(x))1−a

It becomes:
u′+(1−a)pu = (1−a)g

With this, the solution of the logistic equation is possible:

Logistic equation:y ′ = Ay −By2
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First-order ODEs Bernoulli equation

Logistic Equation (For PhD Students)

Logistic equation:y ′ = Ay −By2

The solution:

y =
1

u
=

1

ce−At +B/A
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First-order ODEs Next Lecture

End of this week!
Next week: Second-order ODEs
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