Week IV: Higher Order Linear ODEs & Systems of ODEs

Hakan Dogan

Department of Mechanical Engineering Hacettepe University

MMU604(MMU703) Analytical Methods in Engineering (II) March 10, 2025

	kan		

MMU604/MMU703

March 10, 2025

$$y^{(n)} = rac{d^n y}{dx^n}
ightarrow n^{th}$$
order, which is the highest power

	logan

2

2 / 20

(1)

$$y^{(n)} = \frac{d^n y}{dx^n} \to n^{th}$$
 order, which is the highest power (1)

• High order: n > 2 $F(x, y, y', ..., y^{(n)}) = 0$ (2)

Ha	kan	n	0	ran
110	Nan		$-\epsilon$	5411

3

イロト イヨト イヨト

$$y^{(n)} = \frac{d^n y}{dx^n} \to n^{th}$$
 order, which is the highest power (1)

• High order:
$$n > 2$$

 $F(x, y, y', ..., y^{(n)}) = 0$ (2)

Standard form of linear ODE:

$$y^{(n)} + p_{n-1}(x)y^{n-1} + \dots + p_1(x)y' + p_0(x)y = r(x)$$
(3)

イロト イボト イヨト イヨト

э

$$y^{(n)} = \frac{d^n y}{dx^n} \to n^{th}$$
 order, which is the highest power (1)

• High order:
$$n > 2$$

 $F(x, y, y', ..., y^{(n)}) = 0$ (2)

Standard form of linear ODE:

$$y^{(n)} + p_{n-1}(x)y^{n-1} + \dots + p_1(x)y' + p_0(x)y = r(x)$$
(3)

 $r = 0 \rightarrow$ homogeneous $r \neq 0 \rightarrow$ nonhomogeneous

イロト イポト イヨト イヨト

2/20

э

Homogeneous Linear ODEs

• Superposition principle can be extended to higher order homogeneous ODEs

э

イロト イポト イヨト イヨト

Homogeneous Linear ODEs

- Superposition principle can be extended to higher order homogeneous ODEs
- A general solution

$$y(x) = c_1 y_1(x) + ... + c_n y_n(x)$$
 (4)

 $c \rightarrow$ arbitrary constants $y \rightarrow$ basis

< ロ > < 同 > < 回 > < 回 > < 回 > <

Homogeneous Linear ODEs

- Superposition principle can be extended to higher order homogeneous ODEs
- A general solution

$$y(x) = c_1 y_1(x) + ... + c_n y_n(x)$$
 (4)

- $c \rightarrow$ arbitrary constants $v \rightarrow$ basis
- Linear independence (Wronskian)

$$W = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \dots & & & \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix} \neq 0 (\text{ linearly independent}) \quad (5)$$

3/20

Initial Value Problem

- 1^{st} order ightarrow one initial condition
- 2^{nd} order \rightarrow two initial conditions
- n^{th} order \rightarrow n initial conditions

э

4 / 20

< □ > < □ > < □ > < □ > < □ > < □ >

Initial Value Problem

- 1^{st} order \rightarrow one initial condition
- 2^{nd} order \rightarrow two initial conditions
- n^{th} order \rightarrow n initial conditions
- Example (Third order Euler-Cauchy Equation), three roots!

- 4 回 ト 4 三 ト 4 三 ト

$$y^{n} + a_{n-1}y^{n-1} + \dots + a_{1}y' + a_{0}y = 0$$
(6)

	logan

э

5/20

イロト イヨト イヨト

$$y^{n} + a_{n-1}y^{n-1} + \dots + a_{1}y' + a_{0}y = 0$$
(6)

Characteristic equation:

$$\left|\lambda^{n} + a_{n-1}\lambda^{n-1} + \ldots + a_{1}\lambda + a_{0}\lambda = 0\right|$$
(7)

Ha	kan	D.	00	2 12
110	Nalli		υg	an

э

5/20

イロト イポト イヨト イヨト

$$y^{n} + a_{n-1}y^{n-1} + \dots + a_{1}y' + a_{0}y = 0$$
(6)

Characteristic equation:

$$\lambda^{n} + a_{n-1}\lambda^{n-1} + \ldots + a_{1}\lambda + a_{0}\lambda = 0$$
(7)

- Distinct real roots
- Simple complex roots
- Multiple roots
- Multiple complex roots

→ ∃ →

$$y^{n} + a_{n-1}y^{n-1} + \dots + a_{1}y' + a_{0}y = 0$$
(6)

Characteristic equation:

$$\lambda^{n} + a_{n-1}\lambda^{n-1} + \ldots + a_{1}\lambda + a_{0}\lambda = 0$$
(7)

- Distinct real roots
- Simple complex roots
- Multiple roots
- Multiple complex roots
- Example for each

Nonhomogeneous Linear ODEs

$$y^{n} + p_{n-1}(x)y^{n-1} + \dots + p_{1}(x)y' + p_{0}(x)y = r(x)$$
(8)

where $r \neq 0$.

kan	

イロン イ理 とく ヨン イ ヨン

2

Nonhomogeneous Linear ODEs

$$y^{n} + p_{n-1}(x)y^{n-1} + \dots + p_{1}(x)y' + p_{0}(x)y = r(x)$$
(8)

where $r \neq 0$. General solution:

$$y(x) = y_h(x) + y_p(x)$$
(9)

 y_h : solution of the homogeneous part y_p : any solution of the nonhomogeneous equation without arbitrary constants

イロト 不得 ト イヨト イヨト

Nonhomogeneous Linear ODEs

$$y^{n} + p_{n-1}(x)y^{n-1} + \dots + p_{1}(x)y' + p_{0}(x)y = r(x)$$
(8)

where $r \neq 0$. General solution:

Hakan Dogan

$$y(x) = y_h(x) + y_p(x)$$
 (9)

 y_h : solution of the homogeneous part

 $y_{\it p}$: any solution of the nonhomogeneous equation without arbitrary constants

Input $r(x)$	Solution $y_p(x)$			
ke ^{ax}	Ce ^{ax}			
<i>kx</i> ⁿ	$K_n x^n + \ldots + K_1 x$	$+K_0$		
kcosωx	$Kcos\omega x + Msin\omega$	Х		
ksinωx	$Kcos\omega x + Msin\omega$	X		
	٠		2	୬୯୯
	MMU604/MMU703	March 10, 2025		6 / 20

Method of variation of parameters

• The method of undetermined coefficients is suitable for linear ODEs with **constant coefficients**.

7/20

< □ > < 同 > < 回 > < 回 > < 回 >

Method of variation of parameters

- The method of undetermined coefficients is suitable for linear ODEs with **constant coefficients**.
- The method of variation of parameters can be applied.

Method of variation of parameters

- The method of undetermined coefficients is suitable for linear ODEs with **constant coefficients**.
- The method of variation of parameters can be applied.

For $2^n d$ order:

$$y_{p}(x) = -y_{1} \int \frac{y_{2}r}{W} dx + y_{2} \int \frac{y_{1}r}{W} dx$$
(10)

For n^t h order:

$$y_p(x) = \sum_{k=1}^n y_k(x) \int \frac{W_k(x)}{W(x)} r(x) dx$$

where W_j is obtained from W by replacing the *jth* column of W by the column $[0, 0, ..., 1]^T$.

Ha	kan	D	ogan
110	Kan	-	ogan

7 / 20

• Systems governed by a series of ODEs

(日)

э

- Systems governed by a series of ODEs
- Higher order ODEs can be reduced to a series of 1st order ODEs and be solved!

8/20

< □ > < □ > < □ > < □ > < □ > < □ >

Example:

$$y_1' = -0.02y_1 + 0.02y_2$$
$$y_2' = 0.02y_1 - 9.92y_2$$

	Dogan

イロン イ理 とく ヨン イ ヨン

3

Example:

$$y_1' = -0.02y_1 + 0.02y_2$$

$$y_2' = 0.02y_1 - 9.92y_2$$

$$\mathbf{y}' = \mathbf{A}\mathbf{y} \tag{11}$$

where

$$A = \begin{bmatrix} -0.02 & 0.02\\ 0.02 & -0.02 \end{bmatrix}$$
(12)

3

9/20

Example:

$$y_1' = -0.02y_1 + 0.02y_2$$

$$y_2' = 0.02y_1 - 9.92y_2$$

$$\mathbf{y}' = \mathbf{A}\mathbf{y} \tag{11}$$

where

$$A = \begin{bmatrix} -0.02 & 0.02\\ 0.02 & -0.02 \end{bmatrix}$$
(12)

A general solution:

$$\mathbf{y} = \mathbf{x} e^{\lambda t} \tag{13}$$

	•		≡
Hakan Dogan	MMU604/MMU703	March 10, 2025	9 / 20

Example:

$$y_1' = -0.02y_1 + 0.02y_2$$

$$y_2' = 0.02y_1 - 9.92y_2$$

$$\mathbf{y}' = \mathbf{A}\mathbf{y} \tag{11}$$

where

$$A = \begin{bmatrix} -0.02 & 0.02\\ 0.02 & -0.02 \end{bmatrix}$$
(12)

A general solution:

$$\mathbf{y} = \mathbf{x} e^{\lambda t} \tag{13}$$

$$\mathbf{y}' = \lambda \mathbf{x} e^{\lambda t} \tag{14}$$

э

Example:

$$y_1' = -0.02y_1 + 0.02y_2$$

$$y_2' = 0.02y_1 - 9.92y_2$$

$$\mathbf{y}' = \mathbf{A}\mathbf{y} \tag{11}$$

where

$$A = \begin{bmatrix} -0.02 & 0.02\\ 0.02 & -0.02 \end{bmatrix}$$
(12)

A general solution:

$$\mathbf{y} = \mathbf{x} e^{\lambda t} \tag{13}$$

$$\mathbf{y}' = \lambda \mathbf{x} e^{\lambda t} = \mathbf{A} \mathbf{x} e^{\lambda t} \tag{14}$$

MMU604/MMU703

March 10, 2025

9/20

From the superposition principal, the general solution:

$$y = c_1 \mathbf{x}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{x}^{(2)} e^{\lambda_2 t} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-0.04t}$$
(15)

э

10 / 20

イロト イヨト イヨト

From the superposition principal, the general solution:

$$y = c_1 \mathbf{x}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{x}^{(2)} e^{\lambda_2 t} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-0.04t}$$
(15)

The particular solution can be obtained using the initial conditions $(y_1(0) = 0, y_2(0) = 150)$:

$$y_1 = 75 - 75e^{-0.04t}$$

$$y_2 = 75 + 75e^{-0.04t}$$

Hakan Dogan

э

10 / 20

イロト 不得 トイヨト イヨト

More general system can be written

$$y'_1 = f_1(t, y_1, ..., y_n)$$

 $y'_2 = f_2(t, y_1, ..., y_n)$
...

$$y'_n = f_n(t, y_1, ..., y_n)$$

	ka n	n.	ogan
I I d	nd II		Jgan

э

イロト イボト イヨト イヨト

More general system can be written

$$y'_{1} = f_{1}(t, y_{1}, ..., y_{n})$$

$$y'_{2} = f_{2}(t, y_{1}, ..., y_{n})$$

...

$$y'_{n} = f_{n}(t, y_{1}, ..., y_{n})$$

Therefore,

$$\mathbf{y}' = \mathbf{f}(t, \mathbf{y}) \tag{16}$$

н	al	ka	n	D	٥e	gan

March 10, 2025

э

11 / 20

イロト イポト イヨト イヨト

More general system can be written

$$y'_{1} = f_{1}(t, y_{1}, ..., y_{n})$$

$$y'_{2} = f_{2}(t, y_{1}, ..., y_{n})$$

...

$$y'_{n} = f_{n}(t, y_{1}, ..., y_{n})$$

Therefore,

$$\mathbf{y}' = \mathbf{f}(t, \mathbf{y}) \tag{16}$$

For instance, if n=1:

$$y_1' = f_1(t, y_1)$$
 (17)

and the solution will be

$$y_1 = h_1(t) \tag{18}$$

	4	ㅁ 돈 옷 데 돈 옷 든 돈 옷 든 돈	≣ *) Q (*
Hakan Dogan	MMU604/MMU703	March 10, 2025	11 / 20

More general system can be written

$$y'_{1} = f_{1}(t, y_{1}, ..., y_{n})$$

$$y'_{2} = f_{2}(t, y_{1}, ..., y_{n})$$

...

$$y'_{n} = f_{n}(t, y_{1}, ..., y_{n})$$

Therefore,

$$\mathbf{y}' = \mathbf{f}(t, \mathbf{y}) \tag{16}$$

The solution for the system of ODE can be expressed:

$$\mathbf{y} = \mathbf{h}(t) \tag{17}$$

	4	▲ □ ▶ ▲	≣ ▶	< ≣ >	-2	500
Hakan Dogan	MMU604/MMU703	Ma	rch 10	, 2025		11 / 20

Linear system

Linear system (consisting of linear ODEs):

$$y'_{1} = a_{11}(t)y_{1} + \dots + a_{1n}(t)y_{n} + g_{1}(t)$$

...
$$y'_{n} = a_{n1}(t)y_{1} + \dots + a_{nn}(t)y_{n} + g_{n}(t)$$

3

イロン イ理 とく ヨン イ ヨン

Linear system

Linear system (consisting of linear ODEs):

$$y'_{1} = a_{11}(t)y_{1} + \dots + a_{1n}(t)y_{n} + g_{1}(t)$$

...
$$y'_{n} = a_{n1}(t)y_{1} + \dots + a_{nn}(t)y_{n} + g_{n}(t)$$

$$\mathbf{y}' = \mathbf{A}\mathbf{y} + \mathbf{g} \tag{18}$$

If $g = 0 \rightarrow$ homogeneous If $g \neq 0 \rightarrow$ nonhomogeneous

3

(日)

Linear system

General solution

$$\mathbf{y} = c_1 \mathbf{y}^{(1)} + \dots + c_n \mathbf{y}^{(n)}$$
(19)

where **y** is basis.

kan	

3

イロン イ理 とく ヨン イ ヨン

Linear system

General solution

$$\mathbf{y} = c_1 \mathbf{y}^{(1)} + \ldots + c_n \mathbf{y}^{(n)} \tag{19}$$

where **y** is basis.

$$\mathbf{Y} = \begin{bmatrix} \mathbf{y}^{(1)} \dots \mathbf{y}^{(n)} \end{bmatrix}$$
(20)

The determinant of $\textbf{Y} \rightarrow \text{Wronskian}:$

$$W(y^{(1)},...,y^{(n)}) = \begin{vmatrix} y_1^{(1)} & y_1^{(2)} & \dots & y_1^{(n)} \\ \dots & & & \\ y_n^{(1)} & y_n^{(2)} & \dots & y_n^{(n)} \end{vmatrix}$$
(21)

イロト イポト イヨト イヨト

э

Linear system

General solution

$$\mathbf{y} = c_1 \mathbf{y}^{(1)} + \dots + c_n \mathbf{y}^{(n)}$$
(19)

where **y** is basis.

$$\mathbf{Y} = \begin{bmatrix} \mathbf{y}^{(1)} \dots \mathbf{y}^{(n)} \end{bmatrix}$$
(20)

The determinant of $\textbf{Y} \rightarrow \text{Wronskian}:$

$$W(y^{(1)},...,y^{(n)}) = \begin{vmatrix} y_1^{(1)} & y_1^{(2)} & \dots & y_1^{(n)} \\ \dots & & & \\ y_n^{(1)} & y_n^{(2)} & \dots & y_n^{(n)} \end{vmatrix}$$
(21)

If $W \neq 0$

$$\mathbf{y} = \mathbf{Y}\mathbf{C} \tag{22}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

				_	2.15
Hakan Dogan	MMU604/MMU703	March 10	, 2025		13 / 20

Constant coefficient systems

$$\mathbf{y}' = \mathbf{A}\mathbf{y} \tag{23}$$

where A does not depends on t.

kan	

э

・ロト ・四ト ・ヨト ・ヨト

Constant coefficient systems

$$\mathbf{y}' = \mathbf{A}\mathbf{y} \tag{23}$$

where A does not depends on t. $y' = ky \rightarrow y = Ce^{kt}$

kan	

э

イロン 不聞 とくほとう ほとう

Constant coefficient systems

$$\mathbf{y}' = \mathbf{A}\mathbf{y} \tag{23}$$

where A does not depends on t. $y' = ky \rightarrow y = Ce^{kt}$

$$\mathbf{y} = \mathbf{x} e^{\lambda t} \tag{24}$$

MMU604/MMU703

March 10, 2025

イロト イヨト イヨト イヨト

э

Constant coefficient systems

$$\mathbf{y}' = \mathbf{A}\mathbf{y} \tag{23}$$

where A does not depends on t. $y' = ky \rightarrow y = Ce^{kt}$

Hakan Dogan

$$\mathbf{y} = \mathbf{x} e^{\lambda t} \tag{24}$$

イロト イヨト イヨト

$$\mathbf{y}' = \lambda \mathbf{x} e^{\lambda t} = \mathbf{A} \mathbf{x} e^{\lambda t} \tag{25}$$

	MMU604	/MMU703
--	--------	---------

3

Constant coefficient systems

$$\mathbf{y}' = \mathbf{A}\mathbf{y} \tag{23}$$

where A does not depends on t. $y' = ky \rightarrow y = Ce^{kt}$

$$\mathbf{y} = \mathbf{x} e^{\lambda t} \tag{24}$$

$$\mathbf{y}' = \lambda \mathbf{x} e^{\lambda t} = \mathbf{A} \mathbf{x} e^{\lambda t}$$
(25)

Eigenvalue problem

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{26}$$

The basis:

$$\mathbf{y}^{(1)} = \mathbf{x}^{(1)} e^{\lambda_1 t}, \quad ..., \quad \mathbf{y}^{(n)} = \mathbf{x}^{(n)} e^{\lambda_n t}$$
 (27)

		loga	

MMU604/MMU703

イロト イボト イヨト イヨト March 10, 2025

14 / 20

э

Nonhomogeneous linear system of ODEs

$$\mathbf{y}' = \mathbf{A}\mathbf{y} + \mathbf{g} \tag{28}$$

where $g \neq 0$.

L ~	kan	D ~	~ n
I I a	Nalli		gan

3

イロン イヨン イヨン

Nonhomogeneous linear system of ODEs

$$\mathbf{y}' = \mathbf{A}\mathbf{y} + \mathbf{g} \tag{28}$$

where $g \neq 0$. The solution

$$\mathbf{y} = \mathbf{y}_{\mathbf{h}} + \mathbf{y}_{\mathbf{p}} \tag{29}$$

э

15 / 20

イロト イボト イヨト イヨト

(--->

Method of undetermined coefficients

$$\mathbf{y}' = \mathbf{A}\mathbf{y} + \mathbf{g} \tag{30}$$

A particular solution $y^{(p)}$ is assumed in a form similar to g.

•Example

э

16 / 20

イロト 不得 トイヨト イヨト

Method of variation of parameters (For PhD Students)

$$\mathbf{y}' = \mathbf{A}(t)\mathbf{y} + \mathbf{g}(t) \tag{31}$$

To apply the method, the particular solution is assumed as:

$$\mathbf{y}^{(\mathbf{p})} = \mathbf{Y}(t)\mathbf{u}(t) \tag{32}$$

Take the derivative and substitute into above solution to obtain $\mathbf{u}(t)$.

an l	

End of this week.

Ξ.