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Differential Equations Higher order linear ODEs

Higher order linear ODEs

y (n) =
dny

dxn
→ nthorder, which is the highest power (1)

• High order: n > 2
F (x ,y ,y ′, ...,y (n)) = 0 (2)

Standard form of linear ODE:

y (n)+pn−1(x)y
n−1+ ...+p1(x)y

′+p0(x)y = r(x) (3)

r = 0→ homogeneous
r ̸= 0→ nonhomogeneous
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Differential Equations Higher order linear ODEs

Homogeneous Linear ODEs

• Superposition principle can be extended to higher order homogeneous
ODEs

• A general solution

y(x) = c1y1(x)+ ...+ cnyn(x) (4)

c → arbitrary constants
y → basis

• Linear independence (Wronskian)

W =

∣∣∣∣∣∣∣∣
y1 y2 ... yn
y ′1 y ′2 ... y ′n
...

y
(n−1)
1 y

(n−1)
2 ... y

(n−1)
n

∣∣∣∣∣∣∣∣ ̸= 0( linearly independent) (5)
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Differential Equations Higher order linear ODEs

Initial Value Problem

• 1st order → one initial condition

• 2nd order → two initial conditions

• nth order → n initial conditions

• Example (Third order Euler-Cauchy Equation), three roots!
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Differential Equations Higher order linear ODEs

Homogeneous Linear ODEs with Constant Coefficients

yn+an−1y
n−1+ ...+a1y

′+a0y = 0 (6)

Characteristic equation:

λ
n+an−1λ

n−1+ ...+a1λ +a0λ = 0 (7)

• Distinct real roots

• Simple complex roots

• Multiple roots

• Multiple complex roots

• Example for each
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Differential Equations Higher order linear ODEs

Nonhomogeneous Linear ODEs

yn+pn−1(x)y
n−1+ ...+p1(x)y

′+p0(x)y = r(x) (8)

where r ̸= 0.

General solution:
y(x) = yh(x)+ yp(x) (9)

yh : solution of the homogeneous part
yp : any solution of the nonhomogeneous equation without arbitrary
constants

Input r(x) Solution yp(x)

keax Ceax

kxn Knx
n+ ...+K1x+K0

kcosωx Kcosωx+Msinωx
ksinωx Kcosωx+Msinωx
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Differential Equations Higher order linear ODEs

Method of variation of parameters

• The method of undetermined coefficients is suitable for linear ODEs
with constant coefficients.

• The method of variation of parameters can be applied.

For 2nd order:

yp(x) =−y1

∫
y2r

W
dx+ y2

∫
y1r

W
dx (10)

For nth order:

yp(x) =
n

∑
k=1

yk(x)
∫

Wk(x)

W (x)
r(x)dx

where Wj is obtained from W by replacing the jth column of W by the
column [0,0, ...,1]T .
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Differential Equations Systems of ODEs

Systems of ODEs

• Systems governed by a series of ODEs

• Higher order ODEs can be reduced to a series of 1st order ODEs and
be solved!
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Differential Equations Systems of ODEs

Systems of ODEs

Example:

y ′1 =−0.02y1+0.02y2

y ′2 = 0.02y1−9.92y2

y′ = Ay (11)

where

A=

[
−0.02 0.02
0.02 −0.02

]
(12)

A general solution:
y = xeλ t (13)

y′ = λxeλ t = Axeλ t (14)
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Differential Equations Systems of ODEs

Systems of ODEs

From the superposition principal, the general solution:

y = c1x
(1)eλ1t + c2x

(2)eλ2t = c1

[
1
1

]
+ c2

[
1
−1

]
e−0.04t (15)

The particular solution can be obtained using the initial conditions
(y1(0) = 0,y2(0) = 150) :

y1 = 75−75e−0.04t

y2 = 75+75e−0.04t
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Differential Equations Systems of ODEs

General system of ODEs

More general system can be written

y ′1 = f1(t,y1, ...,yn)

y ′2 = f2(t,y1, ...,yn)

...

y ′n = fn(t,y1, ...,yn)

Therefore,
y′ = f(t,y) (16)

The solution for the system of ODE can be expressed:

y = h(t) (17)
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Differential Equations Systems of ODEs

Linear system

Linear system (consisting of linear ODEs):

y ′1 = a11(t)y1+ ...+a1n(t)yn+g1(t)

...

y ′n = an1(t)y1+ ...+ann(t)yn+gn(t)

y′ = Ay+g (18)

If g = 0→ homogeneous
If g ̸= 0→ nonhomogeneous
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Differential Equations Systems of ODEs

Linear system

General solution
y = c1y

(1)+ ...+ cny
(n) (19)

where y is basis.

Y =
[
y(1)...y(n)

]
(20)

The determinant of Y→ Wronskian:

W (y (1), ...,y (n)) =

∣∣∣∣∣∣∣
y
(1)
1 y

(2)
1 ... y

(n)
1

...

y
(1)
n y

(2)
n ... y

(n)
n

∣∣∣∣∣∣∣ (21)

If W ̸= 0
y = YC (22)
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Differential Equations Systems of ODEs

Constant coefficient systems

y′ = Ay (23)

where A does not depends on t.

y ′ = ky → y = Cekt

y = xeλ t (24)

y′ = λxeλ t = Axeλ t (25)

Eigenvalue problem

Ax= λx (26)

The basis:
y(1) = x(1)eλ1t , ..., y(n) = x(n)eλnt (27)
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Differential Equations Systems of ODEs

Nonhomogeneous linear system of ODEs

y′ = Ay+g (28)

where g ̸= 0.

The solution
y = yh+yp (29)
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Differential Equations Systems of ODEs

Method of undetermined coefficients

y′ = Ay+g (30)

A particular solution y (p) is assumed in a form similar to g .

�Example
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Differential Equations Systems of ODEs

Method of variation of parameters (For PhD Students)

y′ = A(t)y+g(t) (31)

To apply the method, the particular solution is assumed as:

y(p) = Y(t)u(t) (32)

Take the derivative and substitute into above solution to obtain u(t).
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Differential Equations Systems of ODEs

End of this week.
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