MAD260-MINING I
 PROBLEM SOLUTIONS

Question- Four-legged sield type support units are usec support strata in a longwall mining process. If yielding strength of the support unit is 90 tonnes/leg and shield (contact) area of each unit is $2.25 \mathrm{~m}^{2}$, determine the maximum depth of overburden to achieve supporting with a safety factor of 1.8 (Assume vertical pressure is a function of depth as $\mathrm{P}_{\mathrm{v}}=\mathrm{z} \gamma$ where z is depth and γ is unit weight of strata $=2 \mathrm{~g} / \mathrm{cm}^{3}$).

Answer

For four legged unit, capacity $=90 \mathrm{t} / \mathrm{leg}^{*} 4$ legs $=360$ tonnes
Support density $=360 / 2.25=160 \mathrm{t} / \mathrm{m}^{2}$
For safety factor, max.support density $=160 / 1.8=88.9 \mathrm{t} / \mathrm{m}^{2}$
For equilibrium, $\mathrm{P}_{\mathrm{v}}=$ max. support density $=\mathrm{z} \gamma, \quad$ then max. depth, $\mathrm{z}=88.9 / 2=44.45 \mathrm{~m}$.

Question- A massive ore has a tonnage factor of $0.2 \mathrm{~m}^{3} / \mathrm{t}$. The ore contains 20% Galena, 30% Sphalerite and 50% Pyrite by weight. If the specific gravities of Galena and Sphalerite are 7.5 and 4.2 respectively, determine the specific gravity of Pyrite.

Answer

$$
\begin{aligned}
& \text { Unit weight of ore }=1 / 0.2=5 \mathrm{t} / \mathrm{m}^{3} \rightarrow \text { Specific gravity of ore }=5 \\
& \text { If } \% \text { by weight }(\text { Assume } 100 \text { tonnes of ore }) \\
& \hline 20 / 7.5+30 / 4.2+50 / X=100 / 5 \rightarrow X=50 /(20-2.67-7.14) \rightarrow \\
& \quad X(S G \text { of Pyrite })=50 / 10.19=4.90
\end{aligned}
$$

Question- A material's volume increases 40% when it is loosened. If $1.3 \mathrm{~m}^{3}$ of loose material weights 2200 kg , determine;
a) Swell factor of the material
b) Loose unit weight, in gr/cm ${ }^{3}$
c) Bank unit weight, in $\mathrm{gr} / \mathrm{cm}^{3}$

Answer

a. Swell Factor $=100 /(100+\%$ of swell $)=100 / 140=0.714 \quad$ or Swell Factor $=(100+\%$ of swell $) / 100=140 / 100=1.4$
b. Loose unit weight $=2200 \mathrm{~kg} / 1.3 \mathrm{~m}^{3}=1692 \mathrm{~kg} / \mathrm{m}^{3}=1.692 \mathrm{t} / \mathrm{m}^{3}=1.692 \mathrm{~g} / \mathrm{cm}^{3}$
c. If $\mathrm{SF}<1$ then Bank unit weight $=$ Loose unit weight $/ \mathrm{SF}=1.692 \mathrm{~g} / \mathrm{cm}^{3} / 0.714=2.37 \mathrm{~g} / \mathrm{cm}^{3}$

If $S F>1$ then Bank unit weight $=$ Loose unit weight * $S F=1.692 \mathrm{~g} / \mathrm{cm}^{3}$ * $1.4=\mathbf{2 . 3 7} \mathbf{g} / \mathrm{cm}^{3}$

Question- Bank specific weight of a material is $3.0 \mathrm{~g} / \mathrm{cm}^{3}$. If $0.8 \mathrm{~m}^{3}$ of loose material weights 2000 kg , determine swell factor and percent swell of the material.

Answer

Loose specific weight $=(2000 * 1 / 0.8)=2500 \mathrm{~kg} / \mathrm{m}^{3}=2.5 \mathrm{gr} / \mathrm{cm}^{3}$
Swell Factor (SF) = Bank Sp.W./Loose Sp.W. = 3.0/2.5 = 1.2 or 2.5/3.0=0.83
Swell percentage $=100 *$ SF-100 $=100 * 1 \cdot 2-100=20 \%$

Question- A horizontal adit with a $4 \mathrm{~m}^{2}$ face excavation area is driven as shown. A locomotive is run to carry the broken material to the surface. If the followings are given, determine the amount of advance per cut.

Intact (bank) rock density $: 2.2 \mathrm{~g} / \mathrm{cm}^{3}$	
Car weight	$: 1000 \mathrm{~kg}$.
Number of cars	$: 4$
Locomotive weight	$: 2500 \mathrm{~kg}$
Locomotive power	$: 20 \mathrm{HP}$
Loaded travel time	$: 10 \mathrm{~min}$
Friction coefficient on rail	$: 0.02$
Motor efficiency	$: 80 \%$

Answer

```
V=1500/10*60=2.5 m/s
N=(\SigmaF.V)/(75.\eta) -> \SigmaF=20*75*0.8/2.5=480 kg.
\SigmaF=( }\mu\pm\textrm{i})[\mp@subsup{\textrm{W}}{\textrm{g}}{}+\textrm{n}(\mp@subsup{\textrm{W}}{\textrm{w}}{}+\mp@subsup{W}{\textrm{f}}{*})]->480=0.02[2500+4(1000+\mp@subsup{W}{\textrm{F}}{*})]
Total material for four cars 4W W
17500 kg/2200 kg/m}\mp@subsup{}{}{3}=7.95\mp@subsup{\textrm{m}}{}{3
4 m}\mp@subsup{}{}{2}*\textrm{L}=7.95\mp@subsup{\textrm{m}}{}{3}->\textrm{L}\mathrm{ (advance per cut) =7.95/4=1.99 m
```

\qquad

Question- A circular pillar is left in underground to protect an area at the surface. The coal seam is horizontally bedded at 250 m below surface. If diameter of the pillar is 320 m and the angle of draw is 22°, determine size of protected area in m^{2} (thickness of seam is ignored).

Answer

$$
\begin{aligned}
& C D=A D x \tan 22^{\circ}=250 \times \tan 22^{\circ}=101 \mathrm{~m}=E F \\
& A B=D E=320-2 \times 110=118 \mathrm{~m}(\text { diameter of protected area at the surface, circular) } \\
& \text { Area of protected shape }=\pi r^{2}=\pi(118 / 2)^{2}=10935 \mathrm{~m}^{2}
\end{aligned}
$$

\qquad
Question- A sump located in underground is used to pump mine water via an inclined drift. For givens, determine the pipe diameter to run the system. (Neglect fitting losses).

Pipe diameter	$: ? \mathrm{~cm}$.
Water speed in pipe	$: 1.8 \mathrm{~m} / \mathrm{s}$
Gravity	$: 9.81 \mathrm{~m} / \mathrm{s}^{2}$
Efficiency	$: 80 \%$
Friction factor of pipe	$: 0.02$
Water flow rate	$: 1.2 \mathrm{l} / \mathrm{s}$
Pump power	$: 3 \mathrm{HP}$

Answer

$\mathrm{N}=(\mathrm{Q} . \Sigma \mathrm{H} . \gamma) /(75 . \eta) \rightarrow \Sigma \mathrm{H}=\left(3^{*} 75^{*} 0.8\right) /\left(0.0012^{*} 1000\right)=150 \mathrm{~m}$
$\Sigma \mathrm{H}=\Delta \mathrm{H}+\mathrm{H}_{\mathrm{s}}$ (fitting loss is neglected) $\rightarrow 150=\left(\mathrm{h}_{\mathrm{y}}-\mathrm{h}_{\mathrm{s}}\right)+\mathrm{H}_{\mathrm{s}} \rightarrow \mathrm{H}_{\mathrm{s}}=150-(456-320)=14 \mathrm{~m}$
$\mathrm{L}=\left[\left(\mathrm{h}_{\mathrm{y}}-\mathrm{h}_{\mathrm{t}}\right) / \mathrm{sin} \alpha\right]+\mathrm{h}_{\mathrm{e}}=[(456-324) / \sin 30]+8=272 \mathrm{~m}$
Friction loss, $\mathrm{H}_{\mathrm{s}}=\left[\left(\lambda . \mathrm{V}^{2} . \mathrm{L}\right) /(2 . \mathrm{g} . \mathrm{D})\right]=\left[\left(0.02^{* 1} .6^{2 *} 272\right) /(2 * 9.81 * \mathrm{D})\right]=14 \mathrm{~m}$
$D=\left[\left(0.02^{* 1} 1.2^{2 *} 272\right) /\left(2^{*} 9.81 * 14\right)\right]=17.62 / 274.68=0.064 \mathrm{~m}=6.4 \mathrm{~cm}$

Question- A vertical ore seam with an uniform thickness of 12 meter is mined. If the figure and parameters are given, determine the stripping cost in TL/m ${ }^{3}$. Consider that 180 m is the critical depth to mine by surface mining method.

Open pit mining cost	$: 16 \mathrm{TL} / \mathrm{t}$
Underground mining cost	$: 35 \mathrm{TL} / \mathrm{t}$
Critical depth	$: 180 \mathrm{~m}$
Density of coal	$: 1.3 \mathrm{~g} / \mathrm{cm}^{3}$

Answer

Critical Stripping Ratio $=$ (Underground cost-Open Pit Cost) $/$ Stripping Cost
According to costs, SR will be $\mathrm{m}^{3} / \mathrm{t}\left(=(\mathrm{TL} / \mathrm{t}) /\left(\mathrm{TL} / \mathrm{m}^{3}\right)\right.$. That means m^{3} waste/tonnage of coal
To determine the coal and waste amount, we assume any length in the 3rd direction. Ex. 1 m .
Coal volume $=180 * 12 * 1=2160 \mathrm{~m}^{3}$
Coal weight $=2160 \mathrm{~m}^{3} * 1,3 \mathrm{t} / \mathrm{m}^{3}=2808$ tonnes
Waste volume $=180 * 180 * \tan 32^{\circ} * 1=20245 \mathrm{~m}^{3}$
$\mathrm{SR}=20245 \mathrm{~m}^{3} / 2808 \mathrm{t}=7.21 \mathrm{~m}^{3} / \mathrm{t}$
$7.21 \mathrm{~m}^{3} / \mathrm{t}=(35-16 \mathrm{TL} / \mathrm{t}) /$ Stripping Cost \rightarrow Stripping Cost $=(19 \mathrm{TL} / \mathrm{t}) / 7.21 \mathrm{~m}^{3} / \mathrm{t}=2.64 \mathrm{TL} / \mathrm{m}^{3}$

Question- A car hoisting system is running on an inclined drift as shown in the figure. Determine required motor power (HP) to run the system.

Waste weight in car : 2000 kg .
Car empty weight $: 750 \mathrm{~kg}$.
Slope $: 30^{\circ}$
Road distance : 120 m .
Traction coefficient : $10 \mathrm{~kg} / \mathrm{t}$
Friction on rollers : 0.2
Hoisting speed : $1 \mathrm{~m} / \mathrm{s}$
Motor efficiency : 80\%
Rope weight $: 0.45 \mathrm{~kg} / \mathrm{m}$

Answer

Static weight, $\mathrm{W}=\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{t}}=2000+750=2750 \mathrm{~kg}$
$W_{x}=W \cdot \sin \alpha=2750 * \sin 30=1375 \mathrm{~kg}$
$\mathrm{W}_{\mathrm{y}}=\mathrm{W} \cdot \cos \alpha=2750^{*} \cos 30=2382 \mathrm{~kg}=2.38 \mathrm{t}$
Traction force, $\mathrm{F}_{\mathrm{s}}=\mathrm{T} . \mathrm{W}_{\mathrm{y}}=10 * 2.38=23.8 \mathrm{~kg}$
Forces due to traction and material, $F=W_{x}+F_{s}=1375+23.8=1398.8 \mathrm{~kg}$
Froces due to rope weight and friction on rollers;

$$
F_{r}=q \cdot S \cdot \sin \alpha+q \cdot S \cdot \cos \alpha \cdot \mu=0.45 * 120^{*} \sin 30+0.45^{*} 120^{*} \cos 30 * 0.2=27+9.4=36.4 \mathrm{~kg}
$$

Total force, $\Sigma F=F+F_{r}=1398.8+36.4=1435.2 \mathrm{~kg}$
Motor power, $\mathrm{N}=(\Sigma \mathrm{F} . \mathrm{V}) /(75 . \eta)=\left(1435.2^{*} 1\right) /\left(75^{*} 0.8\right)=23.9 \mathrm{HP} \quad$ or $23.9 * 0.75=18 \mathrm{~kW}$

Question- Rectangular pillars, 4 mx 6 m in dimensions, are left to support and the rest is mined. If the extraction percentage (ratio) is 80%, determine the ifluence area of a singular pillar.

Answer

the influence area of a pillar is equal to whole area as well
e (extraction ratio) $=$ excavated area $/$ whole area $=($ whole area-pillar area) $/$ whole area then, $\quad 0.8=(x-(4 * 6)) / x \rightarrow x=24 /(1-0.8)=120 \mathrm{~m}^{2}$

Question- A sump will be located in underground to pump mine water via an inclined drift. For givens, determine the elevation at discharge point $\left(\mathrm{h}_{\mathrm{y}}\right)$. (Ignore fitting losses).

Pipe diameter	$: 5 \mathrm{~cm}$.
Water speed in pipe	$: 1.6 \mathrm{~m} / \mathrm{s}$
Gravity	$: 9.81 \mathrm{~m} / \mathrm{s}^{2}$
Efficiency	$: 80 \%$
Friction factor of pipe	$: 0.02$
Water flow rate	$: 1.21 / \mathrm{s}$
Pump power	$: 4 \mathrm{HP}$

Answer

$\mathrm{N}=(\mathrm{Q} . \Sigma \mathrm{H} . \gamma) /(75 . \eta) \rightarrow \Sigma \mathrm{H}=\left(4^{*} 75 * 0.8\right) /\left(0.0012^{*} 1000\right)=200 \mathrm{~m}$
Friction loss, $\mathrm{H}_{\mathrm{s}}=\left[\left(\lambda . \mathrm{V}^{2} . \mathrm{L}\right) /(2 . g . \mathrm{D})\right]=\left[\left(0.02^{*} 1.6^{2} \star \mathrm{~L}\right) /\left(2^{*} 9.81^{*} 0.05\right)\right]=0.0522 \mathrm{~L}$
Pipe length, $L=\left[\left(h_{y}-h_{t}\right) / \sin \alpha\right]+h_{e}=\left[\left(h_{y}-324\right) / \sin 30\right]+8=2 h_{y}-648+8=2 h_{y}-640$
$\Sigma \mathrm{H}=\Delta \mathrm{h}+\mathrm{H}_{\mathrm{s}} \quad$ (fitting loss is ignored) $\rightarrow 200=\left(\mathrm{h}_{\mathrm{y}}-\mathrm{h}_{\mathrm{s}}\right)+0.0522 \mathrm{~L} \rightarrow$
$200=\left(\mathrm{h}_{\mathrm{y}}-320\right)+0.0522\left(2 \mathrm{~h}_{\mathrm{y}}-640\right)=\mathrm{h}_{\mathrm{y}}+0.1044 \mathrm{~h}_{\mathrm{y}}-33.41-320 \rightarrow$
$1.1044 h_{y}=200+353.41 \rightarrow h_{y}=553.41 / 1.1044=501.1 \mathrm{~m}$

Question- A mine drift with a cross-sectional face area of $12 \mathrm{~m}^{2}$ is driven upwards with an inclination (grade) of 0.3%. The broken material is hauled by a locomotive. For information given below, determine the amount of advance per round. Assume cars are full with their capacities.

Unit weight of Intact (bank) rock; $2 \mathrm{~g} / \mathrm{cm}^{3}$
Car empty weight; 800 kg .
Locomotive weight; 2500 kg .
Locomotive velocity (loaded); $6 \mathrm{~m} / \mathrm{sec}$
Friction coefficient on rail; 0.01
Number of cars; 6
Locomotive motor power; 30 HP

Motor efficiency; 80\%

Answer

$30 \mathrm{HP}=\left(\Sigma \mathrm{F}^{*} 6 \mathrm{~m} / \mathrm{s}\right) /\left(75^{*} 0.8\right) \rightarrow \Sigma \mathrm{F}=300 \mathrm{~kg}$
$300 \mathrm{~kg}=(0.01-0.003)[2500+6(800+\mathrm{x})] \rightarrow 6 \mathrm{x}=(300 / 0,007)-2500-4800$ then
$6 x=35557 \mathrm{~kg}$ (Total amount of material hauled after per advance in drift)
Volume $=35557 / 2000=17.78 \mathrm{~m}^{3}$ (volume of hauled material)
Advance $=17.78 / 12=1.48 \mathrm{~m}$. advance per round
\qquad
Question- A horizontal (flat) coal seam with a constant thickness of 4 m is situated 200 m below surface. A pillar of coal in square shape (top view) is left to protect the shaft and the surface area around the shaft. The amount of coal left in pillar is $360000 \mathrm{~m}^{3}$. Angle of draw is 20°. Determine the size of the area protected at the surface. (Use analytical solution).

Answer

Pillar area $=360000 / 4=90000 \mathrm{~m}^{2} \quad$ Pillar size $($ square $)=(90000)^{1 / 2}=300 \mathrm{~m}$.
Size at surface $=300-2^{*} 200^{*} \tan 20^{\circ}=154.4 \mathrm{~m}$ (side of square arae protected at the surface)
Protected area $=154.4^{*} 154.4=23843 \mathrm{~m}^{2}$

Question- A horizontal mine drift with a cross-sectional face area of $10 \mathrm{~m}^{2}$ is driven and the broken material is hauled by a locomotive. For information given below, determine the maximum amount of material (in kg or tonnes) can be carried by each of the cars.

Unit weight of Intact (bank) rock; $2 \mathrm{~g} / \mathrm{cm}^{3}$
Car empty weight; 700 kg .
Locomotive weight; 2500 kg .
Locomotive velocity (loaded/unloaded); $3 \mathrm{~m} / \mathrm{sec}$
Friction coefficient on rail; 0.01
Number of cars; 6
Locomotive motor power; 10 HP
Motor efficiency; 80\%

Answer

$10 \mathrm{HP}=\left(\Sigma \mathrm{F}^{*} 3 \mathrm{~m} / \mathrm{s}\right) /\left(75^{*} 0.8\right) \rightarrow \Sigma \mathrm{F}=\left(10^{*} 75^{*} 0.8\right) / 3=200 \mathrm{~kg}$
$200 \mathrm{~kg}=(0.01)[2500+6(700+\mathrm{x})] \rightarrow \quad 6 \mathrm{x}=(200 / 0.01)-2500-4200 \quad$ then
$6 \mathrm{x}=13300 \mathrm{~kg}($ Total amount of material carried at once $)$
Capacity of per car $=13300 / 6=2216 \mathrm{~kg}$

Question- A sump will be located in underground to pump mine water via an inclined drift. For given parameters, determine the pump power. (Ignore fitting losses).

Pipe diameter	$: 5 \mathrm{~cm}$.
Water speed in pipe	$: 1.2 \mathrm{~m} / \mathrm{s}$
Gravitational acc.	$: 9.81 \mathrm{~m} / \mathrm{s}^{2}$
Efficiency	$: 75 \%$
Friction factor of pipe	$: 0.02$
Water flow rate	$: 3.41 / \mathrm{s}$

Answer

$$
\Delta h=\left[\left(h_{y}-h_{s}\right)=480-320=160 \mathrm{~m} \quad \mathrm{~L}=\left(\mathrm{h}_{y}-\mathrm{h}_{\mathrm{t}}\right) / \sin 28^{\circ}+8=156 / \sin 28^{\circ}+8=340 \mathrm{~m}\right.
$$

If we ignore fitting losses,

$$
\text { Pump Power, } \mathrm{N}=(\mathrm{Q} . \Sigma \mathrm{H} . \gamma) /(75 . \eta)=170^{*} 3.4 * 10^{-3 *} 1000 /\left(75^{*} 0.75\right)=10.3 \mathrm{HP}
$$

Question- 760 kg of a loose material occupies a volume of $0.8 \mathrm{~m}^{3}$. Determine bank unit weight of this material if its swell percentage is 40 percent by volume.

Answer

Loose unit weight $=760 / 0.8=950 \mathrm{~kg}$
Swell factor $=1.4=$ Bank U.W./Loose U.W. then
Bank Unit Weight $=950 * 1.4=1330 \mathrm{~kg} / \mathrm{m}^{3}=1.33 \mathrm{~g} / \mathrm{cm}^{3}$
000
Question- In a room-and-pillar mininng, rectangular pillars of 4 mx 6 m in dimensions are left to support and the rest of the seam is mined. If the influence area of a single pillar is $96 \mathrm{~m}^{2}$ determine extraction percentage (ratio).

Answer

the influence area of a pillar is equal to whole area as well
e (extraction ratio) = excavated area / whole area
then, $\quad e=(96-24) / 96=75 \%$

