

MAD 256 - SURVEYING (CAD Practice)

Maps, Coordinates, Sections, etc.

Cylindrical Projection

UTM Zone Numbers

Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2010 Europa Technologies US Dept of State Geographer © 2010 Tele Atlas

TÜRKİYE UTM Paftaları

		15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	474	48	49	50	51	5253													
D	42°				7°						0°						3°						6°						9°					42°					45°	D												
E		EDIRNE			KIRKLARELI			ISTANBUL			EREGLI			ZONGULDAK			KASTAMONU			SINOP			SAMSUN									ARTVIN								E												
F	41°																								F																											
G		ÇANAKKALE						BANDIRMA						BURSA						ADAPAZARI						BOLU			ÇANKIRI			ÇORUM			TOKAT			GIRESUN			TRABZON			TORTUM			KARS					G
H	40°						H																																													
1		AYVALIK			BALIKESIR			KUTAHYA			ESKIŞEHIR			ANKARA			KIRŞEHIR			YOZGAT			SIVAS			DIVRIGI			ERZINCAN			ERZURUM			KARAKOSE			[DOGUBEYAZI		1												
J	39°					J																																														
K								IZMIR			UŞAK			AFYON			ILGIN			AKSARAY			KAYSERI			ELBISTAN			MALATYA			ELAZIG			MUŞ			VAN			BAŞ̧KLLE		K									
L	38°				L																																															
M					AYDIN			DENIZLI			ISPARTA			KONYA			KARAMAN			KOZAN			GAZIANTEP			URFA			DIYARBAKIR			MARDIN			CIIRE			ÇOLEMERIK		M												
N	37°							N																																												
0					MARMARIS						FETHIYE			ANTALYA			ALANYA			SILIFKE			ADANA			ANTAKYA																	0									
P	36°																														P																					
R																																																	R			

TÜRKIYE : 65 adet $1 / 250000$ 'lik pafta
1/250 000'lik pafta 96 adet $1 / 25000$ 'lik, 24 adet $1 / 50000^{\prime}$ lik ve 6 adet $1 / 100000^{\prime}$ lik pafta içermektedir.

Türkiye'nin tamamında

$96 \times 65=6240$

adet 1:25000
ölçekli harita bulunmaktadır.

3D CONTOUR MAP

Drawing Contour Lines

Contour lines (also isoline, isopleth, or isarithm)
of inclined plane on the horizontal plane.

Horizontal Plane

Vertical Planes

Elevation
(z)

Strike, Dip, Dip Direction

Showing the plane on the map Dip : 25°
Strike : $\mathbf{2 0 5}^{\circ}$
Dip Direction: $\mathbf{2 9 5}^{\circ}$
Dip Direction $=$ Strike $\boldsymbol{+ 9 0}$
Writing a plane (seam, fault, etc.)

1) Dip/Dip Direction : $25^{\circ} / 295^{\circ}$
2) Strike/Dip : N $25^{\circ} \mathrm{E} / 25^{\circ} \mathrm{NW}$ (Strike as Bearing)
3) Strike/Dip : $205^{\circ} \mathrm{E} / 25^{\circ}$ (Strike as Azimuth)

Strike and dip refer to the orientation or attitude of a geologic feature. The strike line of a bed, fault, or other planar feature is a line representing the intersection of that feature with a horizontal plane. On a geologic map, this is represented with a short straight line segment oriented parallel to the strike line. Strike (or strike angle) can be given as either a quadrant compass bearing of the strike line ($\mathrm{N} 25^{\circ} \mathrm{E}$ for example) or in terms of east or west of true north or south, a single three digit number representing the azimuth, where the lower number is usually given (where the example of $\mathrm{N} 25^{\circ} \mathrm{E}$ would simply be 025 , and the other value of 205 is discarded), or the azimuth number followed by the degree sign (example of $\mathrm{N} 25^{\circ} \mathrm{E}$ would be 25° or 205°).
The dip gives the steepest angle of descent of a tilted bed or feature relative to a horizontal plane, and is given by the number $\left(0^{\circ}-90^{\circ}\right)$ as well as a letter $(\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W})$ with rough direction in which the bed is dipping. One technique is to always take the strike so the dip is 90° to the right of the strike, in which case the redundant letter following the dip angle is omitted. The map symbol is a short line attached and at right angles to the strike symbol pointing in the direction which the planar surface is dipping down. The angle of dip is generally included on a geologic map without the degree sign. Beds that are dipping vertically are shown with the dip symbol on both sides of the strike, and beds that are flat are shown like the vertical beds, but with a circle around them. Both vertical and flat beds do not have a number written with them.
Another way of representing strike and dip is by dip and dip direction.
The dip direction is the azimuth of the direction the dip as projected to the horizontal (like the trend of a linear feature in trend and plunge measurements), which is 90° off the strike angle. For example, a bed dipping 30° to the South, would have an East-West strike (and would be written $90^{\circ} / 30^{\circ} \mathrm{S}$ using strike and dip), but would be written as $30 / 180$ using the dip and dip direction method.

A typical drillhole (Sj.128)

Coal seam roof elevation $=745-213=532 \mathrm{~m}$

A typical drillhole

 log

Raw Data (a map is given as follows)

Reading data and calculations

(Dip / Dip Direction)
$10^{\circ} / 122^{\circ}$
The figure is on the horizontal plane (Plan / Top View)

Strike $=122-90=32^{\circ}$

Depth

Find drill-hole coordinates (X, Y and Z), then seam roof and floor elevations (\mathbf{Z} values)

Drawing contour lines of coal seam roof

Contour line intervals is given as 20 m

Roof elevation at the drill $=1684,4 \mathrm{~m}$

Calculate distance of beginning contour from drill point

!!!!!!!!!!
Z values of seam roof decrease in dip direction

How far 1680 m contour will be from drill-hole center?? or How far 1700 m contour will be from drill-hole center? We need to determine one of them to start drawing

For 1680 m contour
$(? ? / 113)=(15,6 / 20)$ then $? ?=113^{\circ}(15,6 / 20)=88,14 \mathrm{~m}$
If we scale it $\quad ? ?=0,79 \mathrm{~cm}^{*}(15,6 / 20)=0,62 \mathrm{~cm}$

Sample outcrops

Drawing outcrop line

Drawing cross-section of line $\mathbf{A A}^{\prime}$

Calculation of some inclinations (seam, surface)

Seam inclination (α)
$\tan \alpha=\Delta z / \Delta E$
ΔE is $4,5 \mathrm{~cm}$; if $7 \mathrm{~cm}=1000 \mathrm{~m}$, then
$\Delta E=(4,5 / 7)^{*} 1000=642,85 \mathrm{~m}$
$\Delta z=1400-1300=100 \mathrm{~m}$
$\alpha=\tan ^{-1}(100 / 642,85)=8,84^{\circ}$
(!!!! this is apparent dip angle of the seam along section line)

Topographic inclination ($\boldsymbol{\theta}$)

$$
\tan \theta=\Delta z / \Delta \mathrm{E}
$$

$$
\Delta z \text { is } 100 \mathrm{~m}(=1600-1500)
$$

$$
\Delta \mathrm{E} \text { is } 1,7 \mathrm{~cm} \text {, then }
$$

$$
\Delta E=(1,7 / 7)^{*} 1000=242,85 \mathrm{~m}
$$

$$
\theta=\tan ^{-1}(100 / 242,85)=22,38^{\circ}
$$

Drawing a four sided polygon and its area

A typical geological map

Reporting the work

* Reports should be submitted due 26 May 2014
* Reports should be not longer than 15 pages
* Reports should content
- Cover page
- Summary
- Introduction
- Procedure
- Drawings and calculations
- Discussion
- Conclusion
- References

Reporting the work

Works should be done in the following order

- Digitization of the map given
- Find the coordinates (X, Y, Z) of drill-hole
(slide no 19)
- Draw seam contours according to given parameters of your map (follow the slides 17-22)
- Draw outcrop line if any exists
(as the slide no 24)
- Draw a section along the line AA'
(as the slide no 25)
- Determine slopes of both seam and surface from your section (as the slide no 26)
- Draw a four sided polygon (not square or rectangle) on your map and determine its area (Slide no. 27)

1) from the software (netcad)
2) by using DMD method after gathering the coordinates of the points
3) Compare the both results and discuss
