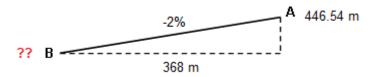
MAD 256 – SURVEYING 1st MIDTERM EXAM (ANSWERS)


(10 p) 1. A horizontal distance was recorded as 242.84 m with a 20-m tape that was 20.003 m under standard conditions. Calculate the true horizontal distance.

SOLUTION :

Correction per tape length = -error = -(20-20.003) = +0.003 m Tape correction = (242.84/20)*0.003 = 0.036 m Corrected horizontal distance = 242.84+0.036 = 242.876 m

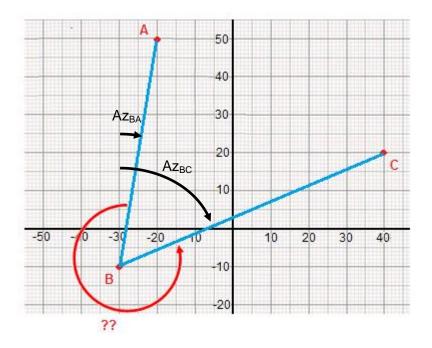
(10 p) 2. Elevation of point A is 446.54 m and slope of line from point A to B is -2%. If the horizontal distance between the points A and B is 368 m, calculate the elevation of the point B.

SOLUTION :

Vertical distance = $368^{*}(-0.02) = -7.36$ m (since point B is lower) Elevation of Point B = 446.54 - 7.36 = 439.18 m

(10 p) 3. Make the necessary conversions for the followings.

a) $24^{\circ} = ? \%$ (slope) **b)** $3\pi/7 = ?$ degree **c)** $130^{\circ} = ?$ radian **d)** $260 \text{ cm}^3 = ?$ dl (deciliter)


SOLUTION :

a) $24^{\circ} = ?\%$ (slope) tan $24^{\circ} = 0.445$ then slope = 44.5% b) $3\pi/7 = ?$ degree $(3\pi/7)^*360/2\pi = 77.1$ degree c) $130^{\circ} = ?$ radian $130^*2\pi/360=0.72\pi$ or 2.27 radian d) $260 \text{ cm}^3 = ?$ dl (deciliter) 260/1000=0.26 liter = 2.6 deciliter

(20 p) 4. The coordinates of the points ABC (a broken line) are given. Calculate the angle to the left at point B in degree unit. Use the azimuths of lines.

	Coordinates (m)	
Point	Easting	Northing
A	-20	50
В	-30	-10
С	40	20

SOLUTION :

Angle to the right at point B = $Az_{BC}-Az_{BA}+360^{\circ}$ $\alpha = atan [(E_A-E_B)/(N_A-N_B)] = atan [(-20-(-30))/(50-(-10))] = atan (10/60) = 9.46^{\circ}$ If both ΔE and ΔN are positive, then $Az_{BA} = 9.46^{\circ}$ $\alpha = atan [(E_C-E_B)/(N_C-N_B)] = atan [(40-(-30))/(20-(-10))] = atan (70/30) = 66.80^{\circ}$ If both ΔE and ΔN are positive, then $Az_{BC} = 66.80^{\circ}$

Angle to the left at point B = 360° -(66.80°-9.46°) = **302.66°**

(15 p) 5. Coordinates of points A and B are given as follows. Calculate the Azimuth and Bearing angles of the line AB in degree.

 $E_A = 160$ $N_A = 210$ $E_B = 80$ $N_B = 40$

SOLUTION :

 $\begin{array}{l} \alpha = {atan} \left[{({{\sf{E}}_{{\sf{B}}}} {\rm{ - }} {{\sf{E}}_{{\sf{A}}}})/({{\sf{N}}_{{\sf{B}}}} {\rm{ - }} {{\sf{N}}_{{\sf{A}}}}} \right] = {atan} \left[{(80 {\rm{ - }} {\rm{ 160}})/(40 {\rm{ - }} {\rm{ 210}})} \right] = {atan} \left({\rm{ - }} {\rm{ 80/-170}} \right) = 25.20^\circ \\ \text{If both } \Delta \text{E and } \Delta \text{N are negative, then } {{\sf{Az}}_{{\sf{BA}}}} = 180 {\rm{ + }} \alpha = 205.20^\circ \\ \text{Bearing of } {{\sf{AB}}} = {{\sf{Az}}_{{\sf{BA}}} {\rm{ - 180}} = {{\sf{S25}}.20^\circ W} \\ \end{array}$

(25 p) 6. If the following records are given for a path on the horizontal plane, calculate the horizontal distance between the points A and D.

Azimuth of AB is 136°
Angle to the right at point B is 108°
Deflection angle at point C 52°R

Length of line AB = 120 mLength of line BC = 80 mLength of line CD = 150 m

Ν 136⁰ Α ?? С 52⁰ 120 m 108⁰ 80 m 150 m в D $Azimuth_{BC} = Az_{AB} + 108 - 180 = 136 + 108 - 180 = 64^{\circ}$ $Azimuth_{CD} = Az_{BC}+52 = 64+52 = 116^{\circ}$ ΔE of line AB = 120.sin 136 = 83.36 m ΔN of line AB = 120.cos 136 = -86.32 m ΔE of line BC = 80.sin 64 = 71.90 m ΔN of line BC = 80.cos 64 = 35.07 m ΔE of line CD = 150.sin 116 = 134.82 m ΔN of line CD = 150.cos 116 = -65.76 m Departure of Line AD = $\Delta E_{AB} + \Delta E_{BC} + \Delta E_{CD} = 83.36 + 71.90 + 134.82 = 290.08 \text{ m}$ Ltitude of Line AD = $\Delta N_{AB} + \Delta N_{BC} + \Delta N_{CD}$ = -86.32+35.07-65.76 = -117.01 m Distance AD = $(\Delta E^2 + \Delta N^2)^{1/2}$ = (290.08²+117.01²)^{1/2} = **312.79 m**

(10 p) 7. Convert the following bearings to azimuths. a) S 3°38' W **b)** N 64°24' W **c)** S 82°19' E d) N 45°27' E

SOLUTION :

SOLUTION :

a) Azimuth = $180+3^{\circ}38' = 183^{\circ}38'$ $= 183.63^{\circ}$ **b)** Azimuth = 360-64°24' = 295°36' = 295.60° **c)** Azimuth = $180-82^{\circ}19' = 97^{\circ}41'$ = 97.68° **d)** Azimuth = $45^{\circ}27' = 45.45^{\circ}$