(10 p) 1. A horizontal distance was recorded as 242.84 m with a $20-\mathrm{m}$ tape that was 20.003 m under standard conditions. Calculate the true horizontal distance.

SOLUTION:

Correction per tape length $=-$ error $=-(20-20.003)=+0.003 \mathrm{~m}$
Tape correction $=(242.84 / 20)^{*} 0.003=0.036 \mathrm{~m}$
Corrected horizontal distance $=242.84+0.036=242.876 \mathbf{~ m}$
(10 p) 2. Elevation of point A is 446.54 m and slope of line from point A to B is -2%. If the horizontal distance between the points A and B is 368 m , calculate the elevation of the point B.

SOLUTION:

??

Vertical distance $=368^{*}(-0.02)=-7.36 \mathrm{~m}$ (since point B is lower)
Elevation of Point $\mathrm{B}=446.54-7.36=439.18 \mathrm{~m}$
(10 p) 3. Make the necessary conversions for the followings.
a) $24^{\circ}=? \%$ (slope)
b) $3 \pi / 7=$? degree
c) $130^{\circ}=$? radian
d) $260 \mathrm{~cm}^{3}=$? dl (deciliter)

SOLUTION:

a) $24^{\circ}=? \%$ (slope) $\tan 24^{\circ}=0.445 \quad$ then slope $=44.5 \%$
b) $3 \pi / 7=$? degree $\quad(3 \pi / 7)^{*} 360 / 2 \pi=77.1$ degree
c) $130^{\circ}=$? radian $130 * 2 \pi / 360=0.72 \pi$ or 2.27 radian
d) $260 \mathrm{~cm}^{3}=? \mathrm{dl}$ (deciliter) $260 / 1000=0.26$ liter $=2.6$ deciliter
(20 p) 4. The coordinates of the points $A B C$ (a broken line) are given. Calculate the angle to the left at point B in degree unit. Use the azimuths of lines.

		Coordinates (m)		
Point		Easting	Northing A	-20
		50		
B		-30		-10
C		40		20

SOLUTION:

Angle to the right at point $\mathrm{B}=\mathrm{Az}_{\mathrm{BC}}-\mathrm{Az}_{\mathrm{BA}}+360^{\circ}$

$$
\begin{aligned}
& \alpha=\operatorname{atan}\left[\left(\mathrm{E}_{A}-\mathrm{E}_{\mathrm{B}}\right) /\left(\mathrm{N}_{A}-\mathrm{N}_{\mathrm{B}}\right)\right]=\operatorname{atan}[(-20-(-30)) /(50-(-10))]=\operatorname{atan}(10 / 60)=9.46^{\circ} \\
& \quad \text { If both } \Delta \mathrm{E} \text { and } \Delta N \text { are positive, then } \mathrm{Az}_{\mathrm{BA}}=9.46^{\circ} \\
& \alpha=\operatorname{atan}\left[\left(\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{B}}\right) /\left(\mathrm{N}_{\mathrm{C}}-\mathrm{N}_{\mathrm{B}}\right)\right]=\operatorname{atan}[(40-(-30)) /(20-(-10))]=\operatorname{atan}(70 / 30)=66.80^{\circ} \\
& \text { If both } \Delta \mathrm{E} \text { and } \Delta \mathrm{N} \text { are positive, then } \mathrm{Az}_{B C}=66.80^{\circ}
\end{aligned}
$$

Angle to the left at point $B=360^{\circ}-\left(66.80^{\circ}-9.46^{\circ}\right)=302.66^{\circ}$
(15 p) 5. Coordinates of points A and B are given as follows. Calculate the Azimuth and Bearing angles of the line $A B$ in degree.
$\mathrm{E}_{\mathrm{A}}=160$
$N_{A}=210$
$E_{B}=80$
$\mathrm{N}_{\mathrm{B}}=40$

SOLUTION:

$$
\alpha=\operatorname{atan}\left[\left(E_{B}-E_{A}\right) /\left(N_{B}-N_{A}\right)\right]=\operatorname{atan}[(80-160) /(40-210)]=\operatorname{atan}(-80 /-170)=25.20^{\circ}
$$

If both ΔE and ΔN are negative, then $A z_{B A}=180+\alpha=205.20^{\circ}$
Bearing of $\mathrm{AB}=\mathrm{Az}_{\mathrm{BA}}-180=\mathrm{S} 25.20^{\circ} \mathrm{W}$
(25 p) 6. If the following records are given for a path on the horizontal plane, calculate the horizontal distance between the points A and D.

Azimuth of $A B$ is 136°
Angle to the right at point B is 108°
Deflection angle at point $\mathrm{C} 52^{\circ} \mathrm{R}$

Length of line $A B=120 \mathrm{~m}$
Length of line $B C=80 \mathrm{~m}$
Length of line CD $=150 \mathrm{~m}$

SOLUTION:

Azimuth $_{B C}=A z_{A B}+108-180=136+108-180=64^{\circ}$
Azimuth $_{C D}=A z_{B C}+52=64+52=116^{\circ}$
ΔE of line $A B=120 . \sin 136=83.36 \mathrm{~m}$
ΔN of line $A B=120 . \cos 136=-86.32 \mathrm{~m}$
ΔE of line $B C=80 . \sin 64=71.90 \mathrm{~m}$
ΔN of line $B C=80 . \cos 64=35.07 \mathrm{~m}$
ΔE of line $C D=150 . \sin 116=134.82 \mathrm{~m}$
$\Delta \mathrm{N}$ of line CD $=150 . \cos 116=-65.76 \mathrm{~m}$
Departure of Line $\mathrm{AD}=\Delta \mathrm{E}_{\mathrm{AB}}+\Delta \mathrm{E}_{\mathrm{BC}}+\Delta \mathrm{E}_{\mathrm{CD}}=83.36+71.90+134.82=290.08 \mathrm{~m}$ Ltitude of Line $A D=\Delta N_{A B}+\Delta N_{B C}+\Delta N_{C D}=-86.32+35.07-65.76=-117.01 \mathrm{~m}$
Distance $A D=\left(\Delta E^{2}+\Delta N^{2}\right)^{1 / 2}=\left(290.08^{2}+117.01^{2}\right)^{1 / 2}=312.79 \mathrm{~m}$
(10 p) 7. Convert the following bearings to azimuths.
a) $S 3^{\circ} 38^{\prime} \mathrm{W}$
b) $\mathrm{N} 64^{\circ} 24^{\prime} \mathrm{W}$
c) $S 82^{\circ} 19^{\prime} \mathrm{E}$
d) $N 45^{\circ} 27^{\prime} E$

SOLUTION :

a) Azimuth $=180+3^{\circ} 38^{\prime}=183^{\circ} 38^{\prime}=183.63^{\circ}$
b) Azimuth $=360-64^{\circ} 24^{\prime}=295^{\circ} 36^{\prime}=295.60^{\circ}$
c) Azimuth $=180-82^{\circ} 19^{\prime}=97^{\circ} 41^{\prime}=97.68^{\circ}$
d) Azimuth $=45^{\circ} 27^{\prime}=45.45^{\circ}$

