KMÜ 427-21

TRANSPORT PHENOMENA

HOMEWORK 5 (Due January 27, 2020)

1. Heat is produced within a solid sphere with a radius of 0.20 cm with a heat conductivity of $36 \mathrm{~W} / \mathrm{m} \mathrm{K}$. The amount of heat produced per unit volume and per unit time is given as

$$
\mathrm{Q}\left(\mathrm{~W} / \mathrm{m}^{3} . \mathrm{s}\right)=1.8 \times 10^{-3} \mathrm{~T}^{0.5}
$$

Where T is the temperature (K). The surface temperature of the sphere is $110^{\circ} \mathrm{C}$.
a) Construct an enegy balance within the sphere.
b) Solve the energy balance with MATLAB to obtain the temperature profile within the sphere by appropriate assumptions.
2. A solution containing A at a concentration of $0.5 \mathrm{~mol} / \mathrm{L}$ is fed into a tubular reactor with a volumetric flow rate of $1 \mathrm{~L} / \mathrm{min}$. The reaction rate constant is given as $0.2 \mathrm{~m}^{3} / \mathrm{mol}$. s . The reactor length and diameter are 3 m and 0.15 m , respectively. The reactor is operated under steady state conditions.
a) Perform a mass balance for reactant A.
b) Solve the mass balance with MATLAB to predict the concentration profile with appropriate assumptions.

