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Abstract. In this paper, we study the notions (strongly) soc-injective, (strong-
ly) simple-injective and (strongly) mininjective modules in o[M]. For any
module N in o[M], N is strongly mininjective in o[M] if and only if it is
strongly simple-injective in o[M]. A module M is locally Noetherian if and
only if every strongly simple-injective module in o[M] is strongly soc-injective.
We also characterize Noetherian QF-modules.

1. Introduction

Let M be any R-module. Any R-module N is generated by M or M-generated if
there exists an epimorphism M) — N for some index set A. An R-module N is
said to be subgenerated by M if N is isomorphic to a submodule of an M-generated
module. We denote by o[M] the full subcategory of the right R-modules whose
objects are all right R-modules subgenerated by M.

Let M be a module and let N and T be in o[M]. N is called soc-T-injective
if any R-homomorphism f : Soc(T) — N extends to T. Equivalently, for any
semisimple submodule K of T', any homomorphism f : K — N extends to T'. A
module N € o[M] is called soc-quasi-injective in o[M] if N is soc-N-injective. N
is called soc-injective in o[M] if N is soc-M-injective. N is called strongly soc-
injective in o[M] if N is soc-T-injective for all T € o[M].

According to Harada [7], if M and N are modules, M is called simple-N -
injective if, for every submodule L of N, every homomorphism ~ : L. — M with
~(L) simple extends to N. If N = R, M is called simple-injective, and if M = N,
M is called simple-quasi-injective. Dually, M is called min-N -injective if, for every
simple submodule L of N, every homomorphism v : L. — M extends to N. If
N = R, M is called mininjective, and if M = N, M is called min-quasi-injective.
Let T € o[M]. T is called strongly simple-injective in o[M] if T is simple-N-
injective for all N € o[M], and T is called strongly mininjective in o[M], if T is
min-N-injective for all N € o[M] (see [2]).
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Throughout this article, all rings are associative and have an identity, and
all modules are unitary right R-modules. Let M be an R-module. For a direct
summand N of M we write N <; M and for an essential submodule N of M,
N <. M. Let N be the M-injective hull of N in ¢[M]. A module N in o[M] is
called M -singular (or singular in c[M]) if N2 L/K for an L € o[M] and K <. L
(see [6]). Every module N € o[M] contains a largest M-singular submodule which
is denoted by Zp(N). If Zps(N) = 0, then N is called non-M -singular. We will
use Soc(K) to indicate the socle of any module K.

In Section 2, we prove that, for any finitely generated module T in o[M],
direct sums of soc-T-injective modules in o[M] is soc-T-injective if and only if
Soc(T) is finitely generated. Also it is proven that if N € o[M] is soc(N)-lifting,
then any module K in o[M] is soc-N-injective if and only if K is N-injective.

In Section 3, we consider the strongly soc-injective modules in o[M]. Semi-
artinian and Noetherian QF-modules are characterized in terms of strongly soc-
injective modules in o[M]. For example, any module M is semiartinian if and
only if every strongly soc-injective module in o[M] is injective in o[M] (quasi-
continuous). Let M be a finitely generated self-projective module. Then M is a
Noetherian QF-module if and only if every strongly soc-injective module in o[M] is
projective in o[M] if and only if M is a self-generator, Soc(M) <. M and every pro-
jective module in o[M] is strongly soc-injective in o[M] if and only if M/Soc(M)
has finite length and M is a self-generator strongly soc-injective in o[M]. In this
section we also characterize GCO-modules and cosemisimple modules in terms of
strongly soc-injective modules in o[M].

In Section 4, we consider soc-injective modules. Let S and R be any rings
and let M be a left S-, a right R-bimodule. We prove that if Mg is soc-injective,
then lg(Th N T2) = ls(T1) + ls(T2) for all semisimple submodules T} and Ts of
Mp while Is(AN B) = lg(A) + ls(B) for all semisimple submodules A and all
submodules B of Mg in the case where S = Endr(M).

In the last section, it is shown that the notions of strongly mininjective and
strongly simple-injective coincide. We also prove that any module M is locally Noe-
therian if and only if every strongly simple-injective module in o[M] is strongly
soc-injective, and that if M is finitely generated self-projective, then M is a Noe-
therian QF-module if and only if every strongly simple-injective module in o[M]
is projective in o[M].

2. Soc-Injective Modules in o[} |

Theorem 2.1. Let M be a module.

(1) Let N € o[M] and {M; : i € I} a family of right R-modules in o[M]. Then the
direct product [ [;.; M; is soc-N-injective if and only if M; is soc-N -injective
forallie 1.

(2) Let T, N and K € o[M] with K < N. If T is soc-N -injective, then T is
soc-K -injective.
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(3) Let TN and K € o[M] with T =2 N. If T is soc-K -injective, then N s
soc-K -injective.

(4) Let N € o[M] and {A; : i € I} a family of right R-modules in o[M]. Then
N is soc-@ie 1 Ai-injective if and only if N is soc-A;-injective for all i € I.

(5) Let M be a projective module in o[M]. Any module N € o[M] is soc-injective
if and only if N is soc-P-injective for every M -generated projective module
P in o[M].

(6) Let T,N and K € o[M] with N <4 T. If T is soc-K -injective, then N is
soc-K -injective.

(7) If A,B and N € o[M], A= B and N s soc-A-injective, then N is soc-B-
injective.

Proof. Clear. O

The next corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2.

(1) If N € o[M], then a finite direct sum of soc-N-injective modules in o[M]
is again soc-N -injective. In particular, a finite direct sum of soc-injective
(strongly soc-injective) modules in o[M] is again soc-injective (strongly soc-
injective).

(2) A direct summand of soc-quasi-injective (soc-injective, strongly soc-injective)
module in o[M] is again soc-quasi-injective (soc-injective, strongly soc-inject-
ive).

Proposition 2.3. Suppose N € o[M] is a soc-quasi-injective module.

(1) (Soc-Cs) If K and L are semisimple submodules of N, K 2 L and K <4 N,
then L <4 N.

(2) (Soc-C3) Let K and L be semisimple submodules of N with K N L = 0. If
K<gNand L <4 N, then K& L <4 N.

Proof. (1) Since K = L, and K is soc-N-injective, being a direct summand of the
soc-quasi-injective module N, L is soc-N-injective . If ¢ : L — N is the inclusion
map, the identity map idy, : L — L has an extension 7 : N — L such that ni = idp,
and so L <4 N.

(2) Then both K and L are soc-N-injective. Thus the semisimple module K & L
is soc-N-injective, and so a direct summand of N. O

Proposition 2.4. For N € o[M], the following are equivalent:

(1) Every module in o[M] is soc-N -injective.
(2) FEvery semisimple module in o[M] is soc-N -injective.

(3) Soc(N) <4 N.

Proof. Straightforward. O
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Theorem 2.5. For a projective module N € o[M], the following are equivalent:
(1) Every quotient of a soc-N -injective module in o[M] is soc-N -injective.
(2) FEvery quotient of an injective module in o[M] is soc-N -injective.

(3) Soc(N) is projective in o[M].
Proof. (1) = (2) Clear.
(2) = (3) Consider the following diagram

Soc(N)

where E and K are in o[M], n is an epimorphism and f any homomorphism. By
Cartan and Eilenberg [4], we may assume that E is injective in o[M]. Since K is
soc-N-injective, f can be extended to g : N — K. Since N is projective in o[M],
g can be lifted to § : N — E such that n§ = g. Now define f : Soc(N) — E by
f= §|Soc(N)' Clearly, nf = f. Hence Soc(N) is projective in o[M].

(3) = (1) Let K € o[M] be soc-N-injective. Assume 7 : K — L is an epimorphism.
We want to show that L is soc- N-injective. Consider the following diagram

O—>Soc(N)ﬂ>N

b

K L 0

Since Soc(N) is projective, f can be lifted to g : Soc(N) — K. Since K is soc-
injective, g can be extended to g: N — K. Clearly ng : N — L extends f. O

Corollary 2.6. The following are equivalent for a projective module M in o[M]:
(1) Ewvery quotient of a soc-injective module in o[M] is soc-injective in o[M].
(2) FEvery quotient of an injective module in o[M] is soc-injective in o[M].

(3) FEvery semisimple submodule of a projective module in o[M] is projective in
o[M].
(4) Soc(M) is projective in o[M].

Proof. (1) < (2) < (4) By Theorem 2.5.

(3) = (4) Since M is projective in o[M], Soc(M) is projective in o[M].

4) = (3) If P is a projective module in o[M], then it is a direct summand of a

direct sum of finitely generated submodules of M ™ by [9, 18.4]. Then Soc(P) is a

direct summand of a direct sum of socles of finitely generated submodules of M ™).

Since Soc(M) is projective in o[M], then Soc(P) is projective in o[M]. Hence (3)

follows. g
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Theorem 2.7. Let T € o[M] be finitely generated. Then the following are equiva-
lent:

(1) Direct sums of soc-T-injective modules in o[M] is soc-T-injective.

(2) Soc(T) is finitely generated.

Proof. (1) = (2) Let Soc(T) = ®;ec1S; where each S; is a simple submodule of
T. Let S; be the injective hull of S; in o[M], i € I, and ¢ : BierS; — BicsS;
be the inclusion map. Since B¢ [SA’Z- is soc-T-injective, ¢ can be extended to an R-
homomorphism ¢ : T — @ielg’i. Since T is finitely generated, ¢(T") < @?:15’1-, for
some positive integer n. Therefore Soc(T) < @™, S; implies that Soc(T) is finitely
generated.

(2) = (1) Let E = ®;crE; be a direct sum of soc-T-injective modules in o[M]
and f : Soc(T) — E be an R-homomorphism. Since Soc(T) is finitely generated,
f(Soc(T)) < @, E;, for some positive integer n. Since @& ; E; is soc-T-injective,
f can be extended to an R-homomorphism f T —T. (|

Corollary 2.8. Let M be finitely generated. Then the following are equivalent:

(1) Direct sums of soc-injective modules in o[M] are soc-injective.
(2) Soc(M) is finitely generated.

Corollary 2.9. The following are equivalent:
(1) Direct sums of soc-T-injective modules in o[M] are soc-T -injective for every
cyclic R-module T in o[M].
(2) Finitely generated R-modules in o[M] are finite dimensional.

Definition 2.10. Let X be a submodule of a module M. We say that Soc(M)
respects X if there exists a direct summand A of M contained in X such that
X = A® B and B < Soc(M). M is called Soc(M)-lifting if Soc(M) respects every
submodule of M.

Proposition 2.11. Let N € o[M]. If N is Soc(N)-lifting, then any module K in
o[M] is soc-N-injective if and only if K is N -injective.

Proof. Assume that a module K € o[M] is soc-N-injective. Let L be any sub-
module of N, i5 : L — N the inclusion map and f : L — K any homomorphism.
By hypothesis, L has a decomposition L = A & B such that A is a direct sum-
mand of N and B < Soc(N). N = A@ A’ for some submodule A" of N. Then
L=A®(LNA) and LN A’ is semisimple. Let iy : L N A" — L be the inclu-
sion map and f|pna : LN A" — K. Since K is soc-N-injective, there exists a
homomorphism ¢g : N — K such that gisi; = f|pnas. Now define h : N — K by
hMa+a') = f(a)+g(a) (a € A,a’ € A"). Then hi, = f. O

Corollary 2.12. [11, Lemma 2.14] If R/Soc(Rg) is semisimple, then a right R-
module M is soc-injective in Mod-R if and only if M is injective.

Proof. R/Soc(RR) is semisimple if and only if Soc(Rpr) respects every right ideal
of R [11, Theorem 2.3]. Hence by Proposition 2.11, the result holds. O
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Clearly if Soc(M) respects every submodule of M, then M/Soc(M) is semi-
simple. We don’t know if the converse is true or not.

3. Strongly soc-injective modules in o[} |

Theorem 3.1. Let N € o[M]. The following are equivalent:
(1) N is strongly soc-injective in o[M].
(2) N is soc-N-injective.
(3) N=E®&T, where E is injective in o[M] and T has zero socle.
Moreover, if N has a nonzero socle, then E can be taken to have essential socle.

Proof. (1) = (2) Clear.
(2) = (3) If Soc(N) = 0, we are done. Assume that Soc(N) # 0, and consider the
following diagram

0

0 — Soc(N) —~ Soc(N)

]lvb

where ¢ and i are inclusion maps. Since N is soc—]v—injective, N is soc-Soc(N)-
injective. So, there exists an R-homomorphism o : Soc(N) — N, which extends
t. Since Soc(N) <. Soc(N), o is an embedding of Soc(N) in N. If we write

E = o(Soc(N)), then N = E @& T for some submodule T of N. Clearly, E is
injective and T has zero socle.

(3) = (1) This is clear, since modules with zero socle are strongly soc-injective
in o[M] and finite direct sum of strongly soc-injective modules are strongly soc-
injective in o[M].

For the last statement of the theorem, then o(Soc(N)) <. E. On the other
hand, Soc(E) = Soc(N) = o(Soc(N)) <. E implies that Soc(F) <. E. O

Corollary 3.2. Let N € o[M] be a module with essential socle. Then the following
are equivalent:

(1) N is strongly soc-injective in o[M].

(2) N is injective in o[M].

A module M is called locally Noetherian if every finitely generated submodule
of M is Noetherian. It is well known that M is locally Noetherian if and only if
every direct sum of M-injective modules is M-injective [9, 27.3], if and only if
every (countable) direct sum of M-injective hulls of simple modules (in o[M]) is
M-injective ([9, 27.3] and [6, 2.5]).
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Theorem 3.3. The following are equivalent for a module M :

(1) M is locally Noetherian.
(2) Ewvery direct sum of strongly soc-injective modules in o[M] is strongly soc-
injective in o[ M].

Proof. (1) = (2) Let {M,;};cr be a family of strongly soc-injective modules in
o|M]. By Theorem 3.1, for each i € I, write M; = E; & T; where E; is injective
in O'[M] and SOC(Tl) =0.If E =®ic;FE; and T = ®icT;, then i M; = EST
with Soc(T) = 0. Since M is locally Noetherian, F is M-injective, that is injective
in o[M], and by Theorem 3.1, ®;c;M; is strongly soc-injective in o[M].

(2) = (1) In order to prove that M is locally Noetherian, we only need to show
that if K, Ko, ... are simple modules (in o[M]), then @;’ill/(\i is injective in o[M],
where f(\z is the M-injective hull of K;. Since @;’ilf{\i is strongly soc-injective in
o[M] with essential socle, by Corollary 3.2, @;‘ill/(\i is injective in o[M]. O

Proposition 3.4. If N € o[M] is strongly soc-injective in o[M], then every semisim-
ple submodule K of N is essential in a direct summand of N.

Proof. This is clear if Soc(N) = 0. If Soc(N) # 0, then by Theorem 3.1,

N = So/c-(]\\f) @ T with Soc(T) = 0. Then K <. L <4 Soc(N) for some submodule

M is called CESS if every closure of every semisimple submodule of M is a
direct summand of M. By Theorem 3.1, if N € o[M] is strongly soc-injective in
o|M], then N = E @ T with E = Soc(N) and Soc(T) = 0, and by [5], if T is
E-injective, then N is a CESS-module. In particular, if 7" is non-M-singular, then
T is E-injective and so N is a CESS-module.

L —

Proposition 3.5. Let N € o[M] be N = E & T with E = Soc(N), Soc(T) =0 and
T is E-injective. If S is a semisimple submodule of N, then every closure in N,
of S is ingective in o[M].

Proof. By the above remark, if K is a closure of S in N, then K is a direct
summand of N, and by Corollary 2.2 (2), K is strongly soc-injective in o[M]. Let
K’ be a closure of S in E. Then K’ is a direct summand of FE and so is injective
in o[M]. Now we consider the following diagram

where ¢+ and ¢ are inclusion maps. Since K is strongly soc-injective in o[M], there
exists a homomorphism o : K’ — K which extends ¢. Since S <. K’, o is an
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embedding of K’ in K, and so S <, o(K’) <. K, since o(K") is injective in o[M],
it is a direct summand of K, and so o(K') = K is injective in o[M]. O

A module M is called semiartinian if every nonzero homomorphic image of M
has essential socle. Equivalently, every nonzero homomorphic image of M has non-
zero socle. M is semiartinian if and only if every module in o[M] is semiartinian
(see [6, 3.12]).

Theorem 3.6. The following are equivalent for a module M :
(1) M is semiartinian.
(2) FEwvery strongly soc-injective module in o[M] is injective in o[M].
(3) Ewvery strongly soc-injective module in o[M] is quasi-continuous.

Proof. (1) = (2) Since M is semiartinian, Soc(N) <, N for every module N €
o[M]. By Corollary 3.1, (2) holds.

(2) = (3) Clear.

(3) = (1) Let N be a proper submodule of M. We claim that Soc(M/N) # 0.
If Soc(M/N) = 0, let X/N be an arbitrary nonzero submodule of M/N. By
hypothesis, (X/N) & (M/N) is quasi-continuous. By [8, Corollary 2.14], X/N is
M /N-injective and hence X/N <; M/N. This means that M /N is semisimple, a
contradiction. Hence M is semiartinian. 0

If M is a Noetherian injective cogenerator in o[M], then it is called a Noe-
therian Quasi-Frobenius (QF)-module. For a finitely generated quasi-projective
module M, M is Noetherian QF-module if and only if every injective module in
o|M] is projective in o[M] if and only if M is a self-generator and every projective
module in o[M] is injective in o[M] by [9, 48.14].

Proposition 3.7. Let M be a finitely generated self-projective module. Then the
following are equivalent:

(1) M is a Noetherian QF-module.

(2) FEwvery strongly soc-injective module in o[M] is projective in o[M].

Proof. (1) = (2) If M is a Noetherian QF-module, then M is Artinian by [9,
48.14]. By Theorem 3.6, every strongly soc-injective module in o[M] is injective
in o[M], and hence projective in o[M] by [9, 48.14].

(2) = (1) Clear. O

Observe that if Soc(M) = 0, then every projective module in o[M] has zero
socle by [9, 18.4(1)], and hence strongly soc-injective in o[M]. On the other hand
we have the following result by Corollary 3.2 and the above remark.

Proposition 3.8. Let M be a finitely generated self-projective module. Then the
following are equivalent:
(1) M is a Noetherian QF-module.
(2) M is a self-generator, Soc(M) <. M and every projective module in o[M] is
strongly soc-injective in o[M].
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Proof. (1) = (2) Clear.

(2) = (1) Let P be a nonzero projective module in o[M]. Then P is strongly
soc-injective in o[M]. By Theorem 3.1, P = E @& T with F injective in o[M] and
Soc(T) = 0. On the other hand, P is a direct summand of a direct sum of nonzero
finitely generated submodules M; of MM . Since every M; has essential socle,
Soc(P) <. P. Therefore P = E, and hence P is injective in o[M]. Since M is a
self-generator, the proof is completed by [9, 48.14]. O

Any module M is called Y -injective if the direct sum of any number of copies
of M is injective.

Proposition 3.9. Let M be a projective module in o[M]. Then the following are
equivalent:

(1) FEwvery projective M-generated module in o[M] is strongly soc-injective in
o[M].
(2) M =E®T where E is Y _-injective in o[M] and Soc(T) = 0.

Proof. (1) = (2) If Soc(M) = 0, we are done. Assume Soc(M) is nonzero. Since M
is projective, it follows from Theorem 3.1 that M = E & T where FE is injective in
o[M] with essential socle and Soc(T') = 0. Since for any ordinal number o, E(®) is
projective in o[M] and M-generated, E(®) is strongly soc-injective with essential
socle. Therefore by Corollary 3.2, E(®) is injective in o[M]. Hence E is 3 _-injective
in o[M].

(2) = (1) By (2), MW = EM T for any ordinal number A. Since E™ is injec-
tive in o[M], M™) is strongly soc-injective in ¢[M] by Theorem 3.1. Let P be a pro-
jective M-generated module in o[M]. Then P is isomorphic to a direct summand
of M) for some A. Since every direct summand of strongly soc-injective module
in o[M] is strongly soc-injective in o[M], P is strongly soc-injective in o[M]. O

Proposition 3.10. Let N € o[M] be a strongly soc-injective module. If N/Soc(N)
is finite dimensional (Noetherian, Artinian, respectively), then N =T @& S, where
T is finite dimensional (Noetherian, Artinian, respectively) and S is semisimple
injective in o[M].

Proof. By Theorem 3.1, N = E® K with E is injective in o[M] and Soc(K) = 0.
Now, N/Soc(N) = E/Soc(E)® K. So both E/Soc(E) and K are finite dimensional
(Noetherian, Artinian, respectively). By [3, Corollary 3], E = L @ S with L finite
dimensional and S semisimple. If E/Soc(F) is Noetherian (Artinian), then by [3,
Lemma 4 and Proposition 5], E = L @& S where L is Noetherian (Artinian) and S
is semisimple. Consequently, N =T @ S with S semisimple injective in o[M] and
T = K @ L finite dimensional (Noetherian, Artinian, respectively). O

Corollary 3.11. Let M be a finitely generated self-projective module in o[M]. Then
the following are equivalent:

(1) M is a Noetherian QF-module.
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(2) M/Soc(M) has finite length and M is a self-generator strongly soc-injective
in o[M].

Proof. (2) = (1) By Proposition 3.10, Soc(M) <. M. Then by Corollary 3.2, M
is injective in o[M]. Again by Proposition 3.10, M is Noetherian. By [9, 48.14], M
is a Noetherian QF-module.
(1) = (2) By [9, 48.14], M/Soc(M) has finite length and M is a self-generator.
Since M is projective in o[M], by [9, 48.14], M is injective in o[M] and hence M
is strongly soc-injective in o[M]. O
Lemma 3.12. Let N € o[M] be semisimple. The following are equivalent:

(1) N is injective in o[M].

(2) N is strongly soc-injective in o[M].

(3) N is soc-K -injective for every factor module K of M.
Proof. (1) & (2) By Corollary 3.2.
(1) = (3) Clear.
(3) = (1) Consider the following diagram

0—>L—>M

|+
N
where L < M and f: L — N is any homomorphism. Then we have the diagram

O—>L/ke7‘f—;>M/kerf

where « is an isomorphism and ¢ is the inclusion map.

Since N is soc-M/Ker f-injective and L/Kerf is semisimple, there exists a
homomorphism g : M/Kerf — N such that gi = ta. Then the homomorphism
h = gm extends f where 7 : M — M/Kerf is the natural epimorphism. O

A module M is called cosemisimple (or a V-module) if every simple module
(in o[M]) is M-injective. Clearly, M is cosemisimple if and only if every simple
module is strongly soc-injective in o[M].
Proposition 3.13. The following are equivalent for a module M :
(1) FEvery semisimple module in o[M] is strongly soc-injective in o[M].
(2) FEvery semisimple module in o[M)] is soc-K -injective for every factor module

K of M.



On Some Injective Modules In o[M] 323

(3) Every module in o[M] is strongly soc-injective in o[M].

(4) FEvery module in o[M] is soc-K -injective for every factor module K of M.
(5) Every semisimple module in o[M)] is injective in o[M].

(6) M s locally Noetherian and cosemisimple.

Proof. (5) < (6) by [6, 15.5].

(1) & (3) By Proposition 2.4.

(1) & (2) & (5) By Lemma 3.12.

(4) = (2) Clear

(2) = (4) By (2) & (3). O

A module M is called generalized cosemisimple (or a GCO-module) if every
simple singular module is M-injective or M-projective. Equivalently, every M-
singular simple module is M-injective by [6, 16.4].

By adopting the above proof we have the following proposition. Note that
(5) < (6) of Proposition 3.14 is well known from [6, 16.16].

Proposition 3.14. The following are equivalent for a module M :
(1) Every semisimple M -singular module is strongly soc-injective in o[M].
(2) Every semisimple M-singular module in o[M] is soc-K -injective for every
factor module K of M.
(3) Every M -singular module in o[M] is strongly soc-injective in o[M].
(4) Fvery M -singular module in o[M] is a direct sum of an injective module in
o[M] and a module with zero socle.
(5) Every M -singular semisimple module in o[M] is injective in o[M].
If M s self-projective, then they are equivalent to
(6) M is a GCO-module and M /Soc(M) is locally Noetherian.

4. When M is soc-injective

Proposition 4.1. Let M be a module. The following are equivalent:
(1) M is soc-injective.
(2) If Soc(M) =X &Y and v : X — M is an R-homomorphism, then there
exists ¢ : M — M such that v(x) = c¢(x) for all x € X and ¢(Y) = 0.
(3) If X C Soc(M) and v : X — M is an R-homomorphism, then there exists
¢: M — M such that v(x) = c¢(x) for all x € X.

If M is finitely generated and self-projective in o[M], then (1)—(3) are equivalent to

(4) If K is semisimple, P is projective M-generated in o[M], Q is a finitely
generated projective M-generated in o[M], . : K — P is a monomorphism
and f : K — @Q is an R-homomorphism, then f can be extended to an
R-homomorphism f: P— Q.
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Proof. (1) = (2) Let Soc(M) = X®Y and v : X — M be an R-homomorphism.
Define the homomorphism 4 : XY — M by z+y — ~(z) (z € X,y € Y). Since
M is soc-M-injective, 4 can be extended to the homomorphism ¢ : M — M. Let
x € X. Then ¢(x) = Y(z) = y(z). Let y € Y. Then ¢(y) = 3(y) = v(0) = 0. Thus
e(Y)=0.

(2) = (3) = (1) and (4) = (1) are clear.

(1) = (4) Since M is soc-injective, M is soc-P-injective. Clearly, @ is isomorphic
to a direct summand of M ()| for some positive integer n. Therefore () is soc-P-
injective by Theorem 2.1. Thus f can be extended to f: P — Q. O

Proposition 4.2. Let M be a soc-injective module. Then the following holds.

(1) M satisfies (Soc-Cs),
(2) M satisfies (Soc-Cs).

Proof. Take N = M in Proposition 2.3. O

Let R and S be rings with identity and M a left S-, a right R-bimodule. For
any X C M and any 7' C S denote Is(X) ={se€ S |sX =0} and rp;(T) = {m €
M | Tm = 0}.

Note that if M is a right R-module then M is a left Endg(M)-module.
If is(ANB) = ls(A) 4+ lg(B) for all submodules A and B of Mp, where S =
Endr(M), M is called an Ikeda-Nakayama module [10]. Note that every quasi-
injective module is an Tkeda-Nakayama module [10, Lemma 1]. For a soc-injective
module we have the following result.

Proposition 4.3. Let S and R be any rings and M a left S-, a right R-bimodule.
If M is soc-injective, then
(1) Is(Ty NT2) =1s(Th) + 1s(T2) for all semisimple submodules Ty, T> of Mg.
(2) If Sk is a simple left S-module (k € M), then Soc(kR) is zero or simple.
(3) rmls(Soc(M)) = Soc(M) < ryls(K) = K for all semisimple submodule K
Of MR.

Proof. (1) By [10, Lemma 1].

(2) Assume Sk (k € M) is a simple left S-module and Soc(kR) is nonzero. Let y; R
and ys R be simple submodules of Mg with y; € kR, 1 <: <2 . If yy RNy R =0,
then by (1), ls(y1) +Is(y2) = S and so ls(y1) = ls(y2) = ls(k), since y; € kR and
ls(k) is a maximal left ideal of S. Thus lg(k) = S, a contradiction, hence Soc(kR)
is simple.

(3) Assume that rpsls(Soc(M)) = Soc(M) and let K be a semisimple submodule
of Mp. We claim that K is essential in rplg(K). If KNaR = 0 for some x €
rals(K) , then by (1), ls(K NaR) = ls(K) +ls(zR) = S = lg(zR) since = €
rals(K) < raylg(Soc(M)) = Soc(M) and lg(K) < lg(zR). Then = 0. Hence
K <. ryls(K) < rals(Soc(M)) = Soc(M). It follows that K = rplg(K). The
converse is clear. g
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Proposition 4.4. Let M be a right R-module and S = Endr(M). Then the follow-
ing are equivalent:

(1) rmls(K) = K for all semisimple submodules K of Mpg.
(2) rmlls(K) N Sal = K + ry(a) for all semisimple submodules K of Mg and
alla € S.

Proof. (1) = (2) Clearly, K +ry(a) < ra[ls(K) N Sa). Let « € ry[ls(K) N Sa)
and y € lg(aK). Then yaK =0 and ya € SaNls(K), so yax =0 and y € lg(ax).
Thus Is(aK) < lg(az), and so ax € ryls(az) < ryls(aK). Since Soc(M) is fully
invariant, aK is a semisimple submodule of Mg. By (1), ax € aK. Hence ax = ak
for some k € K and so x — k € rpr(a). This means that = € rps(a) + K.

(2) = (1) The case when a = 1g. O

Proposition 4.5. Let M be a right R-module and S = Endr(M). If My is strongly
soc-ingective in o[M], then ls(ANB) = lg(A)+1s(B) for all semisimple submodules
A and all submodules B of Mg.

Proof. Let x € ls(AN B) and define ¢ : A+ B — Mg by ¥(a + b) = za for all
a € A and b € B. This induces an R-homomorphism ¢ : (A 4+ B)/B — Mg in
the obvious way. Since (A+B)/B is semisimple and My is strongly soc-injective
in o[M], ¢ can be extended to an R-homomorphism ¢ : M/B — M. Now let
m: M — M/B be the natural epimorphism. Let denote s = om € S. Let b € B.
Then sb = pn(b) = p(b+B) =0. Forany a € A, (x—s)a = za—sa = za—pn(a) =
0. It follows that x = (z — s) + s € Is(A) + Is(B). O

5. Strongly simple-injective modules in o[} |
Theorem 5.1. The following are equivalent for N € o[M]:

(1) N is strongly mininjective in o[M].

(2) N is strongly simple-injective in o[M].

(3) FEvery homomorphism from a finitely generated semisimple submodule K of
any module T € o[M] into N extends to T.

(4) Fvery homomorphism ~ from a submodule K of any module T € o[M] into
N, with v(K) finitely generated semisimple, extends to T .

Proof. (4) = (3) = (1) Clear.

(1) = (2) Let L be a submodule of N and v : L — K a homomorphism with
~(L) simple. If T = Ker~, then v induces an embedding 4 : L/T — K defined
by ¥(x + T) = ~v(z) for all z € L. Since K is strongly mininjective and L/T is
simple, ¥4 extends to a homomorphism 7 : N/T — K. If n: N — N/T is the
natural epimorphism, the homomorphism 77 : N — K is an extension of ~, for
iteeL, (n)(z) =7« +T)=9(x+T)=(z), as required.
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(2) = (4) Let T be any module in ¢[M], K a submodule of T, v : K — N a
homomorphism with «v(K) finitely generated semisimple and consider the following
diagram

0—=K—>T

!

Write y(K) = @', S; where each S; is simple. Let m; &, S; — S; be the canonical
projection, 1 <4 < n, and consider the following diagram

0—=K—->T

7"1"Yl

N

Since N is strongly simple-injective in o[M], for each i, 1 < i < n, there exists a
homomorphism v; : T — N such that v;(z) = m;y(z), for all x € K. Now, define
the map 4 : T — N by 4(z) = Y., vi(z). Then 4(z) = y(z) forallz € K. O

Hence we have the following implications:
soc-N-injective =— min-N-injective
simple- N-injective == min-N-injective
strongly mininjective <= strongly simple-injective

Min- N-injective modules need not be soc-N-injective (see [1, Example 4.5]
and [1, Example 4.15]), and strongly simple-injective modules need not be strongly
soc-injective (see [2, Remark 2.4] and [1]).

Proposition 5.2. (1) Let N € o[M] and {M; : i € I} be a family of modules
in o[M]. Then the direct product [];.; M; is min-N-injective if and only if
each M; is min-N -injective, i € I. In particular, [],.; M; is strongly simple-
injective if and only if each M; is strongly simple-injective, i € I.

(2) If {M; : i € I} is a family of modules in o[M], then the direct sum ®;crM;
is strongly simple-injective if and only if each M; is strongly simple-injective,
1el.

(3) A direct summand of a strongly simple-injective module is strongly simple-
injective.

(4) Let M be projective. M is strongly simple-injective if and only if every M-
generated projective module N € o[M] is strongly simple-injective.

Proof. Routine. O

Note 5.3. As in Corollary 2.6, for a projective module M, every quotient of a
simple-injective module in o[M] is simple-injective if and only if Soc(M) is pro-
jective in o[M].
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Corollary 5.4. Let N € o[M] such that Soc(N) is finitely generated (in particular,
if M is finite dimensional), then the following are equivalent:

(1) N is strongly mininjective in o[M].

(2) N is strongly simple-injective in o[M].

(3) N is strongly soc-injective in o[M].
Moreover, if in addition Soc(N) <. N, then each of the above conditions is equiv-
alent to

(4) M is injective.
Proof. By Theorem 5.1 and Corollary 3.2. O

Theorem 5.5. The following are equivalent for N € o[M]:
(1) N is strongly simple-injective in o[M].
(2) N is min-M -injective.
(3) N is min-S-injective for every simple module S € o[M].
(4) N is min-g—mjective for every simple submodule S of N.

Proof. (1) = (2) = (3) = (4) Clear.
(4) = (1) Let T € o[M], v : K — N anon-zero homomorphism with (K) simple,
and consider the following diagram

%

0 —7(K) —— ~(K)

|

N

—_—
where 7 is the inclusion map. Since N is min-y(K )-injective, there exists an em-

—

bedding o : y(K) — N such that oy(z) = v(x) for every z € K. Now, the map ~
may be viewed as a map from K into an M-injective submodule of N, and hence
has an extension 5 : T'— N. O

Corollary 5.6. If N € o[M] is strongly simple-injective, then every simple submod-
ule of N is essential in an M -injective direct summand of N.

Proof. Let S be a simple submodule of N and consider the following diagram
0—=5—+3
N

where ¢ is the inclusion map. Since N is min—g—injective and S <, S , there exists
an embedding o of S in N such that o(z) =z forallz € S. If E = o(S) = 5,
then S <., E <4 N. O
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Proposition 5.7. The following are equivalent for M :

(1) M is locally Noetherian.
(2) Ewvery strongly simple-injective module in o[M] is strongly soc-injective.

Proof. (1) = (2) Suppose M is locally Noetherian, and N is strongly simple-
injective in o[M]. Write Soc(N) = @;c1S;, where each S; is simple, i € I. By
Corollary 5.6, each S; <. F; <4 N, where E; is M-injective, ¢ € I. Since M is
locally Noetherian, £ = &, E; is M-injective and hence F is a direct summand
of N, and so N = E® T, with Soc(T) = 0. By Theorem 3.1, N is strongly
soc-injective in o[M].

(2) = (1) Let {K,}ier be a family of simple modules in o[M]. Consider K; for
each i € I. Therefore every I/(: is strongly simple-injective in o[M]. Then by
Proposition 5.2(2), F = @Z‘?il[/(\i is strongly simple-injective in o[M], and hence
strongly soc-injective in o[M]. Since E has essential socle, by Corollary 3.2, E' is
injective in o[M]. Therefore M is locally Noetherian by [9, 27.3]. O

Proposition 5.8. Let M be a finitely generated self-projective module. Then the
following are equivalent:

(1) M is a Noetherian QF-module.

(2) Every strongly simple-injective module in o[M] is projective in o[M].

Proof. (1) = (2) By Proposition 5.7 and Proposition 3.7.
(2) = (1) By Proposition 3.7. O
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