On Some Injective Modules In $\sigma[M]$

A.Ç. Özcan, D.K. Tütüncü and M.F. Yousif

Dedicated to Professor Robert Wisbauer on his 65th birthday

Abstract. In this paper, we study the notions (strongly) soc-injective, (strongly) simple-injective and (strongly) mininjective modules in $\sigma[M]$. For any module N in $\sigma[M]$, N is strongly mininjective in $\sigma[M]$ if and only if it is strongly simple-injective in $\sigma[M]$. A module M is locally Noetherian if and only if every strongly simple-injective module in $\sigma[M]$ is strongly soc-injective. We also characterize Noetherian QF-modules.

1. Introduction

Let M be any R-module. Any R-module N is generated by M or M-generated if there exists an epimorphism $M^{(\Lambda)} \longrightarrow N$ for some index set Λ . An R-module N is said to be *subgenerated* by M if N is isomorphic to a submodule of an M-generated module. We denote by $\sigma[M]$ the full subcategory of the right R-modules whose objects are all right R-modules subgenerated by M.

Let M be a module and let N and T be in $\sigma[M]$. N is called *soc-T-injective* if any R-homomorphism $f : \operatorname{Soc}(T) \to N$ extends to T. Equivalently, for any semisimple submodule K of T, any homomorphism $f : K \to N$ extends to T. A module $N \in \sigma[M]$ is called *soc-quasi-injective in* $\sigma[M]$ if N is soc-N-injective. Nis called *soc-injective in* $\sigma[M]$ if N is soc-M-injective. N is called *strongly socinjective in* $\sigma[M]$ if N is soc-T-injective for all $T \in \sigma[M]$.

According to Harada [7], if M and N are modules, M is called simple-N-injective if, for every submodule L of N, every homomorphism $\gamma: L \longrightarrow M$ with $\gamma(L)$ simple extends to N. If N = R, M is called simple-injective, and if M = N, M is called simple-quasi-injective. Dually, M is called min-N-injective if, for every simple submodule L of N, every homomorphism $\gamma: L \to M$ extends to N. If N = R, M is called miniple-quasi-injective, and if M = N, M is called miniple-quasi-injective, and if M = N, M is called miniple-quasi-injective. Let $T \in \sigma[M]$. T is called strongly simple-injective in $\sigma[M]$ if T is simple-N-injective for all $N \in \sigma[M]$, and T is called strongly miniple-injective in $\sigma[M]$, if T is min-N-injective for all $N \in \sigma[M]$ (see [2]).

Throughout this article, all rings are associative and have an identity, and all modules are unitary right *R*-modules. Let *M* be an *R*-module. For a direct summand *N* of *M* we write $N \leq_d M$ and for an essential submodule *N* of *M*, $N \leq_e M$. Let \widehat{N} be the *M*-injective hull of *N* in $\sigma[M]$. A module *N* in $\sigma[M]$ is called *M*-singular (or singular in $\sigma[M]$) if $N \cong L/K$ for an $L \in \sigma[M]$ and $K \leq_e L$ (see [6]). Every module $N \in \sigma[M]$ contains a largest *M*-singular submodule which is denoted by $Z_M(N)$. If $Z_M(N) = 0$, then *N* is called *non-M*-singular. We will use Soc(*K*) to indicate the socle of any module *K*.

In Section 2, we prove that, for any finitely generated module T in $\sigma[M]$, direct sums of soc-T-injective modules in $\sigma[M]$ is soc-T-injective if and only if $\operatorname{Soc}(T)$ is finitely generated. Also it is proven that if $N \in \sigma[M]$ is $\operatorname{soc}(N)$ -lifting, then any module K in $\sigma[M]$ is soc-N-injective if and only if K is N-injective.

In Section 3, we consider the strongly soc-injective modules in $\sigma[M]$. Semiartinian and Noetherian QF-modules are characterized in terms of strongly socinjective modules in $\sigma[M]$. For example, any module M is semiartinian if and only if every strongly soc-injective module in $\sigma[M]$ is injective in $\sigma[M]$ (quasicontinuous). Let M be a finitely generated self-projective module. Then M is a Noetherian QF-module if and only if every strongly soc-injective module in $\sigma[M]$ is projective in $\sigma[M]$ if and only if M is a self-generator, $\operatorname{Soc}(M) \leq_e M$ and every projective module in $\sigma[M]$ is strongly soc-injective in $\sigma[M]$ if and only if $M/\operatorname{Soc}(M)$ has finite length and M is a self-generator strongly soc-injective in $\sigma[M]$. In this section we also characterize GCO-modules and cosemisimple modules in terms of strongly soc-injective modules in $\sigma[M]$.

In Section 4, we consider soc-injective modules. Let S and R be any rings and let M be a left S-, a right R-bimodule. We prove that if M_R is soc-injective, then $l_S(T_1 \cap T_2) = l_S(T_1) + l_S(T_2)$ for all semisimple submodules T_1 and T_2 of M_R while $l_S(A \cap B) = l_S(A) + l_S(B)$ for all semisimple submodules A and all submodules B of M_R in the case where $S = End_R(M)$.

In the last section, it is shown that the notions of strongly miniple-tive and strongly simple-injective coincide. We also prove that any module M is locally Noe-therian if and only if every strongly simple-injective module in $\sigma[M]$ is strongly soc-injective, and that if M is finitely generated self-projective, then M is a Noe-therian QF-module if and only if every strongly simple-injective module in $\sigma[M]$ is projective in $\sigma[M]$.

2. Soc-Injective Modules in $\sigma[M]$

Theorem 2.1. Let M be a module.

- (1) Let $N \in \sigma[M]$ and $\{M_i : i \in I\}$ a family of right *R*-modules in $\sigma[M]$. Then the direct product $\prod_{i \in I} M_i$ is soc-*N*-injective if and only if M_i is soc-*N*-injective for all $i \in I$.
- (2) Let T, N and $K \in \sigma[M]$ with $K \leq N$. If T is soc-N-injective, then T is soc-K-injective.

- (3) Let T, N and $K \in \sigma[M]$ with $T \cong N$. If T is soc-K-injective, then N is soc-K-injective.
- (4) Let $N \in \sigma[M]$ and $\{A_i : i \in I\}$ a family of right *R*-modules in $\sigma[M]$. Then N is soc- $\bigoplus_{i \in I} A_i$ -injective if and only if N is soc- A_i -injective for all $i \in I$.
- (5) Let M be a projective module in $\sigma[M]$. Any module $N \in \sigma[M]$ is soc-injective if and only if N is soc-P-injective for every M-generated projective module P in $\sigma[M]$.
- (6) Let T, N and $K \in \sigma[M]$ with $N \leq_d T$. If T is soc-K-injective, then N is soc-K-injective.
- (7) If A, B and $N \in \sigma[M]$, $A \cong B$ and N is soc-A-injective, then N is soc-B-injective.

Proof. Clear.

The next corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2.

- (1) If $N \in \sigma[M]$, then a finite direct sum of soc-N-injective modules in $\sigma[M]$ is again soc-N-injective. In particular, a finite direct sum of soc-injective (strongly soc-injective) modules in $\sigma[M]$ is again soc-injective (strongly soc-injective).
- (2) A direct summand of soc-quasi-injective (soc-injective, strongly soc-injective) module in σ[M] is again soc-quasi-injective (soc-injective, strongly soc-injective).

Proposition 2.3. Suppose $N \in \sigma[M]$ is a soc-quasi-injective module.

- (1) (Soc-C₂) If K and L are semisimple submodules of N, $K \cong L$ and $K \leq_d N$, then $L \leq_d N$.
- (2) (Soc-C₃) Let K and L be semisimple submodules of N with $K \cap L = 0$. If $K \leq_d N$ and $L \leq_d N$, then $K \oplus L \leq_d N$.

Proof. (1) Since $K \cong L$, and K is soc-N-injective, being a direct summand of the soc-quasi-injective module N, L is soc-N-injective . If $i: L \to N$ is the inclusion map, the identity map $id_L: L \to L$ has an extension $\eta: N \to L$ such that $\eta i = id_L$, and so $L \leq_d N$.

(2) Then both K and L are soc-N-injective. Thus the semisimple module $K \oplus L$ is soc-N-injective, and so a direct summand of N.

Proposition 2.4. For $N \in \sigma[M]$, the following are equivalent:

- (1) Every module in $\sigma[M]$ is soc-N-injective.
- (2) Every semisimple module in $\sigma[M]$ is soc-N-injective.
- (3) $Soc(N) \leq_d N$.

Proof. Straightforward.

Theorem 2.5. For a projective module $N \in \sigma[M]$, the following are equivalent:

- (1) Every quotient of a soc-N-injective module in $\sigma[M]$ is soc-N-injective.
- (2) Every quotient of an injective module in $\sigma[M]$ is soc-N-injective.
- (3) Soc(N) is projective in $\sigma[M]$.

Proof. $(1) \Rightarrow (2)$ Clear.

 $(2) \Rightarrow (3)$ Consider the following diagram

where E and K are in $\sigma[M]$, η is an epimorphism and f any homomorphism. By Cartan and Eilenberg [4], we may assume that E is injective in $\sigma[M]$. Since K is soc-N-injective, f can be extended to $g: N \to K$. Since N is projective in $\sigma[M]$, g can be lifted to $\tilde{g}: N \to E$ such that $\eta \tilde{g} = g$. Now define $\tilde{f}: \operatorname{Soc}(N) \to E$ by $\tilde{f} = \tilde{g}|_{\operatorname{Soc}(N)}$. Clearly, $\eta \tilde{f} = f$. Hence $\operatorname{Soc}(N)$ is projective in $\sigma[M]$.

 $(3) \Rightarrow (1)$ Let $K \in \sigma[M]$ be soc-*N*-injective. Assume $\eta: K \to L$ is an epimorphism. We want to show that *L* is soc-*N*-injective. Consider the following diagram

$$0 \longrightarrow \operatorname{Soc}(N) \xrightarrow{inc.} N$$

$$\downarrow^{f}_{K} \xrightarrow{\eta} L \longrightarrow 0$$

Since $\operatorname{Soc}(N)$ is projective, f can be lifted to $g : \operatorname{Soc}(N) \to K$. Since K is socinjective, g can be extended to $\tilde{g} : N \to K$. Clearly $\eta \tilde{g} : N \to L$ extends f.

Corollary 2.6. The following are equivalent for a projective module M in $\sigma[M]$:

- (1) Every quotient of a soc-injective module in $\sigma[M]$ is soc-injective in $\sigma[M]$.
- (2) Every quotient of an injective module in $\sigma[M]$ is soc-injective in $\sigma[M]$.
- (3) Every semisimple submodule of a projective module in $\sigma[M]$ is projective in $\sigma[M]$.
- (4) Soc(M) is projective in $\sigma[M]$.

Proof. $(1) \Leftrightarrow (2) \Leftrightarrow (4)$ By Theorem 2.5.

(3) \Rightarrow (4) Since M is projective in $\sigma[M]$, Soc(M) is projective in $\sigma[M]$.

4) \Rightarrow (3) If *P* is a projective module in $\sigma[M]$, then it is a direct summand of a direct sum of finitely generated submodules of $M^{(\mathbb{N})}$ by [9, 18.4]. Then Soc(*P*) is a direct summand of a direct sum of socles of finitely generated submodules of $M^{(\mathbb{N})}$. Since Soc(*M*) is projective in $\sigma[M]$, then Soc(*P*) is projective in $\sigma[M]$. Hence (3) follows.

Theorem 2.7. Let $T \in \sigma[M]$ be finitely generated. Then the following are equivalent:

- (1) Direct sums of soc-T-injective modules in $\sigma[M]$ is soc-T-injective.
- (2) Soc(T) is finitely generated.

Proof. (1) \Rightarrow (2) Let Soc $(T) = \bigoplus_{i \in I} S_i$ where each S_i is a simple submodule of T. Let \widehat{S}_i be the injective hull of S_i in $\sigma[M]$, $i \in I$, and $\iota : \bigoplus_{i \in I} S_i \to \bigoplus_{i \in I} \widehat{S}_i$ be the inclusion map. Since $\bigoplus_{i \in I} \widehat{S}_i$ is soc-T-injective, ι can be extended to an Rhomomorphism $\hat{\iota} : T \to \bigoplus_{i \in I} \widehat{S}_i$. Since T is finitely generated, $\hat{\iota}(T) \leq \bigoplus_{i=1}^n \widehat{S}_i$, for some positive integer n. Therefore Soc $(T) \leq \bigoplus_{i=1}^n \widehat{S}_i$ implies that Soc(T) is finitely generated.

(2) \Rightarrow (1) Let $E = \bigoplus_{i \in I} E_i$ be a direct sum of soc-*T*-injective modules in $\sigma[M]$ and $f : \operatorname{Soc}(T) \to E$ be an *R*-homomorphism. Since $\operatorname{Soc}(T)$ is finitely generated, $f(\operatorname{Soc}(T)) \leq \bigoplus_{i=1}^{n} E_i$, for some positive integer *n*. Since $\bigoplus_{i=1}^{n} E_i$ is soc-*T*-injective, *f* can be extended to an *R*-homomorphism $\hat{f} : T \to T$. \Box

Corollary 2.8. Let M be finitely generated. Then the following are equivalent:

- (1) Direct sums of soc-injective modules in $\sigma[M]$ are soc-injective.
- (2) Soc(M) is finitely generated.

Corollary 2.9. The following are equivalent:

- Direct sums of soc-T-injective modules in σ[M] are soc-T-injective for every cyclic R-module T in σ[M].
- (2) Finitely generated R-modules in $\sigma[M]$ are finite dimensional.

Definition 2.10. Let X be a submodule of a module M. We say that Soc(M) respects X if there exists a direct summand A of M contained in X such that $X = A \oplus B$ and $B \leq Soc(M)$. M is called Soc(M)-lifting if Soc(M) respects every submodule of M.

Proposition 2.11. Let $N \in \sigma[M]$. If N is Soc(N)-lifting, then any module K in $\sigma[M]$ is soc-N-injective if and only if K is N-injective.

Proof. Assume that a module $K \in \sigma[M]$ is soc-N-injective. Let L be any submodule of N, $i_2: L \to N$ the inclusion map and $f: L \to K$ any homomorphism. By hypothesis, L has a decomposition $L = A \oplus B$ such that A is a direct summand of N and $B \leq \operatorname{Soc}(N)$. $N = A \oplus A'$ for some submodule A' of N. Then $L = A \oplus (L \cap A')$ and $L \cap A'$ is semisimple. Let $i_1: L \cap A' \to L$ be the inclusion map and $f|_{L \cap A'}: L \cap A' \to K$. Since K is soc-N-injective, there exists a homomorphism $g: N \to K$ such that $gi_2i_1 = f|_{L \cap A'}$. Now define $h: N \to K$ by h(a + a') = f(a) + g(a') $(a \in A, a' \in A')$. Then $hi_2 = f$.

Corollary 2.12. [11, Lemma 2.14] If $R/Soc(R_R)$ is semisimple, then a right *R*-module *M* is soc-injective in Mod-*R* if and only if *M* is injective.

Proof. $R/Soc(R_R)$ is semisimple if and only if $Soc(R_R)$ respects every right ideal of R [11, Theorem 2.3]. Hence by Proposition 2.11, the result holds.

Clearly if Soc(M) respects every submodule of M, then M/Soc(M) is semisimple. We don't know if the converse is true or not.

3. Strongly soc-injective modules in $\sigma[M]$

Theorem 3.1. Let $N \in \sigma[M]$. The following are equivalent:

- (1) N is strongly soc-injective in $\sigma[M]$.
- (2) N is soc- \hat{N} -injective.

(3) $N = E \oplus T$, where E is injective in $\sigma[M]$ and T has zero socle.

Moreover, if N has a nonzero socle, then E can be taken to have essential socle.

Proof. $(1) \Rightarrow (2)$ Clear.

 $(2) \Rightarrow (3)$ If $\mathrm{Soc}(N) = 0,$ we are done. Assume that $\mathrm{Soc}(N) \neq 0,$ and consider the following diagram

$$0 \longrightarrow \operatorname{Soc}(N) \xrightarrow{i} \operatorname{Soc}(N)$$

$$\downarrow^{\iota}_{N}$$

where ι and i are inclusion maps. Since N is $\operatorname{soc-}\widehat{N}$ -injective, N is $\operatorname{soc-}\operatorname{Soc}(N)$ injective. So, there exists an R-homomorphism $\sigma : \widehat{\operatorname{Soc}(N)} \to N$, which extends ι . Since $\operatorname{Soc}(N) \leq_e \widehat{\operatorname{Soc}(N)}$, σ is an embedding of $\widehat{\operatorname{Soc}(N)}$ in N. If we write $E = \sigma(\widehat{\operatorname{Soc}(N)})$, then $N = E \oplus T$ for some submodule T of N. Clearly, E is injective and T has zero socle.

(3) \Rightarrow (1) This is clear, since modules with zero socle are strongly soc-injective in $\sigma[M]$ and finite direct sum of strongly soc-injective modules are strongly socinjective in $\sigma[M]$.

For the last statement of the theorem, then $\sigma(\operatorname{Soc}(N)) \leq_e E$. On the other hand, $\operatorname{Soc}(E) = \operatorname{Soc}(N) = \sigma(\operatorname{Soc}(N)) \leq_e E$ implies that $\operatorname{Soc}(E) \leq_e E$.

Corollary 3.2. Let $N \in \sigma[M]$ be a module with essential socle. Then the following are equivalent:

- (1) N is strongly soc-injective in $\sigma[M]$.
- (2) N is injective in $\sigma[M]$.

A module M is called *locally Noetherian* if every finitely generated submodule of M is Noetherian. It is well known that M is locally Noetherian if and only if every direct sum of M-injective modules is M-injective [9, 27.3], if and only if every (countable) direct sum of M-injective hulls of simple modules (in $\sigma[M]$) is M-injective ([9, 27.3] and [6, 2.5]).

Theorem 3.3. The following are equivalent for a module M:

- (1) *M* is locally Noetherian.
- (2) Every direct sum of strongly soc-injective modules in $\sigma[M]$ is strongly socinjective in $\sigma[M]$.

Proof. (1) \Rightarrow (2) Let $\{M_i\}_{i \in I}$ be a family of strongly soc-injective modules in $\sigma[M]$. By Theorem 3.1, for each $i \in I$, write $M_i = E_i \oplus T_i$ where E_i is injective in $\sigma[M]$ and $\operatorname{Soc}(T_i) = 0$. If $E = \bigoplus_{i \in I} E_i$ and $T = \bigoplus_{i \in I} T_i$, then $\bigoplus_{i \in I} M_i = E \oplus T$ with $\operatorname{Soc}(T) = 0$. Since M is locally Noetherian, E is M-injective, that is injective in $\sigma[M]$, and by Theorem 3.1, $\bigoplus_{i \in I} M_i$ is strongly soc-injective in $\sigma[M]$.

(2) \Rightarrow (1) In order to prove that M is locally Noetherian, we only need to show that if K_1, K_2, \ldots are simple modules (in $\sigma[M]$), then $\bigoplus_{i=1}^{\infty} \widehat{K_i}$ is injective in $\sigma[M]$, where $\widehat{K_i}$ is the M-injective hull of K_i . Since $\bigoplus_{i=1}^{\infty} \widehat{K_i}$ is strongly soc-injective in $\sigma[M]$ with essential socle, by Corollary 3.2, $\bigoplus_{i=1}^{\infty} \widehat{K_i}$ is injective in $\sigma[M]$.

Proposition 3.4. If $N \in \sigma[M]$ is strongly soc-injective in $\sigma[M]$, then every semisimple submodule K of N is essential in a direct summand of N.

Proof. This is clear if $\operatorname{Soc}(N) = 0$. If $\operatorname{Soc}(N) \neq 0$, then by Theorem 3.1, $N = \widehat{\operatorname{Soc}(N)} \oplus T$ with $\operatorname{Soc}(T) = 0$. Then $K \leq_e L \leq_d \widehat{\operatorname{Soc}(N)}$ for some submodule L of N.

M is called *CESS* if every closure of every semisimple submodule of *M* is a direct summand of *M*. By Theorem 3.1, if $N \in \sigma[M]$ is strongly soc-injective in $\sigma[M]$, then $N = E \oplus T$ with $E = \widehat{\operatorname{Soc}(N)}$ and $\operatorname{Soc}(T) = 0$, and by [5], if *T* is *E*-injective, then *N* is a CESS-module. In particular, if *T* is non-*M*-singular, then *T* is *E*-injective and so *N* is a CESS-module.

Proposition 3.5. Let $N \in \sigma[M]$ be $N = E \oplus T$ with E = Soc(N), Soc(T) = 0 and T is E-injective. If S is a semisimple submodule of N, then every closure in N, of S is injective in $\sigma[M]$.

Proof. By the above remark, if K is a closure of S in N, then K is a direct summand of N, and by Corollary 2.2 (2), K is strongly soc-injective in $\sigma[M]$. Let K' be a closure of S in E. Then K' is a direct summand of E and so is injective in $\sigma[M]$. Now we consider the following diagram

where ι and i are inclusion maps. Since K is strongly soc-injective in $\sigma[M]$, there exists a homomorphism $\sigma : K' \to K$ which extends ι . Since $S \leq_e K'$, σ is an

embedding of K' in K, and so $S \leq_e \sigma(K') \leq_e K$, since $\sigma(K')$ is injective in $\sigma[M]$, it is a direct summand of K, and so $\sigma(K') = K$ is injective in $\sigma[M]$. \Box

A module M is called *semiartinian* if every nonzero homomorphic image of M has essential socle. Equivalently, every nonzero homomorphic image of M has nonzero socle. M is semiartinian if and only if every module in $\sigma[M]$ is semiartinian (see [6, 3.12]).

Theorem 3.6. The following are equivalent for a module M:

- (1) M is semiartinian.
- (2) Every strongly soc-injective module in $\sigma[M]$ is injective in $\sigma[M]$.
- (3) Every strongly soc-injective module in $\sigma[M]$ is quasi-continuous.

Proof. (1) \Rightarrow (2) Since M is semiartinian, $\operatorname{Soc}(N) \leq_e N$ for every module $N \in \sigma[M]$. By Corollary 3.1, (2) holds.

 $(2) \Rightarrow (3)$ Clear.

 $(3) \Rightarrow (1)$ Let N be a proper submodule of M. We claim that $\operatorname{Soc}(M/N) \neq 0$. If $\operatorname{Soc}(M/N) = 0$, let X/N be an arbitrary nonzero submodule of M/N. By hypothesis, $(X/N) \oplus (M/N)$ is quasi-continuous. By [8, Corollary 2.14], X/N is M/N-injective and hence $X/N \leq_d M/N$. This means that M/N is semisimple, a contradiction. Hence M is semiartinian. \Box

If M is a Noetherian injective cogenerator in $\sigma[M]$, then it is called a *Noetherian Quasi-Frobenius* (QF)-module. For a finitely generated quasi-projective module M, M is Noetherian QF-module if and only if every injective module in $\sigma[M]$ is projective in $\sigma[M]$ if and only if M is a self-generator and every projective module in $\sigma[M]$ is injective in $\sigma[M]$ by [9, 48.14].

Proposition 3.7. Let M be a finitely generated self-projective module. Then the following are equivalent:

- (1) M is a Noetherian QF-module.
- (2) Every strongly soc-injective module in $\sigma[M]$ is projective in $\sigma[M]$.

Proof. (1) \Rightarrow (2) If M is a Noetherian QF-module, then M is Artinian by [9, 48.14]. By Theorem 3.6, every strongly soc-injective module in $\sigma[M]$ is injective in $\sigma[M]$, and hence projective in $\sigma[M]$ by [9, 48.14]. (2) \Rightarrow (1) Clear.

Observe that if Soc(M) = 0, then every projective module in $\sigma[M]$ has zero socle by [9, 18.4(1)], and hence strongly soc-injective in $\sigma[M]$. On the other hand we have the following result by Corollary 3.2 and the above remark.

Proposition 3.8. Let M be a finitely generated self-projective module. Then the following are equivalent:

- (1) M is a Noetherian QF-module.
- (2) *M* is a self-generator, $Soc(M) \leq_e M$ and every projective module in $\sigma[M]$ is strongly soc-injective in $\sigma[M]$.

Proof. $(1) \Rightarrow (2)$ Clear.

(2) \Rightarrow (1) Let *P* be a nonzero projective module in $\sigma[M]$. Then *P* is strongly soc-injective in $\sigma[M]$. By Theorem 3.1, $P = E \oplus T$ with *E* injective in $\sigma[M]$ and $\operatorname{Soc}(T) = 0$. On the other hand, *P* is a direct summand of a direct sum of nonzero finitely generated submodules M_i of $M^{(\mathbb{N})}$. Since every M_i has essential socle, $\operatorname{Soc}(P) \leq_e P$. Therefore P = E, and hence *P* is injective in $\sigma[M]$. Since *M* is a self-generator, the proof is completed by [9, 48.14].

Any module M is called \sum -*injective* if the direct sum of any number of copies of M is injective.

Proposition 3.9. Let M be a projective module in $\sigma[M]$. Then the following are equivalent:

- (1) Every projective M-generated module in $\sigma[M]$ is strongly soc-injective in $\sigma[M]$.
- (2) $M = E \oplus T$ where E is \sum -injective in $\sigma[M]$ and $\operatorname{Soc}(T) = 0$.

Proof. (1) \Rightarrow (2) If Soc(M) = 0, we are done. Assume Soc(M) is nonzero. Since M is projective, it follows from Theorem 3.1 that $M = E \oplus T$ where E is injective in $\sigma[M]$ with essential socle and Soc(T) = 0. Since for any ordinal number α , $E^{(\alpha)}$ is projective in $\sigma[M]$ and M-generated, $E^{(\alpha)}$ is strongly soc-injective with essential socle. Therefore by Corollary 3.2, $E^{(\alpha)}$ is injective in $\sigma[M]$. Hence E is Σ -injective in $\sigma[M]$.

 $(2) \Rightarrow (1)$ By (2), $M^{(\Lambda)} = E^{(\Lambda)} \oplus T^{(\Lambda)}$ for any ordinal number Λ . Since $E^{(\Lambda)}$ is injective in $\sigma[M]$, $M^{(\Lambda)}$ is strongly soc-injective in $\sigma[M]$ by Theorem 3.1. Let P be a projective M-generated module in $\sigma[M]$. Then P is isomorphic to a direct summand of $M^{(\Lambda)}$ for some Λ . Since every direct summand of strongly soc-injective module in $\sigma[M]$ is strongly soc-injective in $\sigma[M]$, P is strongly soc-injective in $\sigma[M]$. \Box

Proposition 3.10. Let $N \in \sigma[M]$ be a strongly soc-injective module. If N/Soc(N) is finite dimensional (Noetherian, Artinian, respectively), then $N = T \oplus S$, where T is finite dimensional (Noetherian, Artinian, respectively) and S is semisimple injective in $\sigma[M]$.

Proof. By Theorem 3.1, $N = E \oplus K$ with E is injective in $\sigma[M]$ and $\operatorname{Soc}(K) = 0$. Now, $N/\operatorname{Soc}(N) \cong E/\operatorname{Soc}(E) \oplus K$. So both $E/\operatorname{Soc}(E)$ and K are finite dimensional (Noetherian, Artinian, respectively). By [3, Corollary 3], $E = L \oplus S$ with L finite dimensional and S semisimple. If $E/\operatorname{Soc}(E)$ is Noetherian (Artinian), then by [3, Lemma 4 and Proposition 5], $E = L \oplus S$ where L is Noetherian (Artinian) and Sis semisimple. Consequently, $N = T \oplus S$ with S semisimple injective in $\sigma[M]$ and $T = K \oplus L$ finite dimensional (Noetherian, Artinian, respectively).

Corollary 3.11. Let M be a finitely generated self-projective module in $\sigma[M]$. Then the following are equivalent:

(1) M is a Noetherian QF-module.

(2) M/Soc(M) has finite length and M is a self-generator strongly soc-injective in $\sigma[M]$.

Proof. (2) \Rightarrow (1) By Proposition 3.10, Soc $(M) \leq_e M$. Then by Corollary 3.2, M is injective in $\sigma[M]$. Again by Proposition 3.10, M is Noetherian. By [9, 48.14], M is a Noetherian QF-module.

(1) \Rightarrow (2) By [9, 48.14], M/Soc(M) has finite length and M is a self-generator. Since M is projective in $\sigma[M]$, by [9, 48.14], M is injective in $\sigma[M]$ and hence M is strongly soc-injective in $\sigma[M]$.

Lemma 3.12. Let $N \in \sigma[M]$ be semisimple. The following are equivalent:

- (1) N is injective in $\sigma[M]$.
- (2) N is strongly soc-injective in $\sigma[M]$.
- (3) N is soc-K-injective for every factor module K of M.

Proof. (1) \Leftrightarrow (2) By Corollary 3.2.

 $(1) \Rightarrow (3)$ Clear.

 $(3) \Rightarrow (1)$ Consider the following diagram

$$0 \xrightarrow{i} L \xrightarrow{i} M$$

$$\downarrow^{f}$$

$$N$$

where $L \leq M$ and $f: L \longrightarrow N$ is any homomorphism. Then we have the diagram

$$0 \longrightarrow L/kerf \xrightarrow{\overline{i}} M/kerf$$

$$\downarrow^{\alpha}_{f(L)}$$

$$\downarrow^{\iota}_{N}$$

where α is an isomorphism and ι is the inclusion map.

Since N is soc-M/Kerf-injective and L/Kerf is semisimple, there exists a homomorphism $g: M/Kerf \longrightarrow N$ such that $g\overline{i} = \iota \alpha$. Then the homomorphism $h = g\pi$ extends f where $\pi: M \longrightarrow M/Kerf$ is the natural epimorphism. \Box

A module M is called *cosemisimple* (or a V-module) if every simple module (in $\sigma[M]$) is M-injective. Clearly, M is cosemisimple if and only if every simple module is strongly soc-injective in $\sigma[M]$.

Proposition 3.13. The following are equivalent for a module M:

- (1) Every semisimple module in $\sigma[M]$ is strongly soc-injective in $\sigma[M]$.
- (2) Every semisimple module in $\sigma[M]$ is soc-K-injective for every factor module K of M.

- (3) Every module in $\sigma[M]$ is strongly soc-injective in $\sigma[M]$.
- (4) Every module in $\sigma[M]$ is soc-K-injective for every factor module K of M.
- (5) Every semisimple module in $\sigma[M]$ is injective in $\sigma[M]$.
- (6) M is locally Noetherian and cosemisimple.

Proof. $(5) \Leftrightarrow (6)$ by [6, 15.5].

- (1) \Leftrightarrow (3) By Proposition 2.4.
- $(1) \Leftrightarrow (2) \Leftrightarrow (5)$ By Lemma 3.12.

$$(4) \Rightarrow (2)$$
 Clear.

 $(2) \Rightarrow (4)$ By $(2) \Leftrightarrow (3)$.

A module M is called *generalized cosemisimple* (or a *GCO-module*) if every simple singular module is M-injective or M-projective. Equivalently, every Msingular simple module is M-injective by [6, 16.4].

By adopting the above proof we have the following proposition. Note that $(5) \Leftrightarrow (6)$ of Proposition 3.14 is well known from [6, 16.16].

Proposition 3.14. The following are equivalent for a module M:

- (1) Every semisimple M-singular module is strongly soc-injective in $\sigma[M]$.
- (2) Every semisimple M-singular module in $\sigma[M]$ is soc-K-injective for every factor module K of M.
- (3) Every M-singular module in $\sigma[M]$ is strongly soc-injective in $\sigma[M]$.
- (4) Every M-singular module in σ[M] is a direct sum of an injective module in σ[M] and a module with zero socle.
- (5) Every M-singular semisimple module in $\sigma[M]$ is injective in $\sigma[M]$.
- If M is self-projective, then they are equivalent to
- (6) M is a GCO-module and M/Soc(M) is locally Noetherian.

4. When *M* is soc-injective

Proposition 4.1. Let M be a module. The following are equivalent:

- (1) M is soc-injective.
- (2) If $\operatorname{Soc}(M) = X \oplus Y$ and $\gamma : X \longrightarrow M$ is an *R*-homomorphism, then there exists $c : M \longrightarrow M$ such that $\gamma(x) = c(x)$ for all $x \in X$ and c(Y) = 0.
- (3) If $X \subseteq \text{Soc}(M)$ and $\gamma : X \longrightarrow M$ is an R-homomorphism, then there exists $c: M \longrightarrow M$ such that $\gamma(x) = c(x)$ for all $x \in X$.

If M is finitely generated and self-projective in $\sigma[M]$, then (1)–(3) are equivalent to

(4) If K is semisimple, P is projective M-generated in σ[M], Q is a finitely generated projective M-generated in σ[M], ι : K → P is a monomorphism and f : K → Q is an R-homomorphism, then f can be extended to an R-homomorphism f̃ : P → Q.

Proof. (1) \Rightarrow (2) Let Soc $(M) = X \oplus Y$ and $\gamma : X \longrightarrow M$ be an *R*-homomorphism. Define the homomorphism $\tilde{\gamma} : X \oplus Y \longrightarrow M$ by $x + y \mapsto \gamma(x)$ ($x \in X, y \in Y$). Since *M* is soc-*M*-injective, $\tilde{\gamma}$ can be extended to the homomorphism $c : M \longrightarrow M$. Let $x \in X$. Then $c(x) = \tilde{\gamma}(x) = \gamma(x)$. Let $y \in Y$. Then $c(y) = \tilde{\gamma}(y) = \gamma(0) = 0$. Thus c(Y) = 0.

 $(2) \Rightarrow (3) \Rightarrow (1)$ and $(4) \Rightarrow (1)$ are clear.

 $(1) \Rightarrow (4)$ Since M is soc-injective, M is soc-P-injective. Clearly, Q is isomorphic to a direct summand of $M^{(n)}$, for some positive integer n. Therefore Q is soc-P-injective by Theorem 2.1. Thus f can be extended to $\tilde{f}: P \longrightarrow Q$.

Proposition 4.2. Let M be a soc-injective module. Then the following holds.

- (1) M satisfies (Soc- C_2),
- (2) M satisfies (Soc-C₃).

Proof. Take N = M in Proposition 2.3.

Let R and S be rings with identity and M a left S-, a right R-bimodule. For any $X \subseteq M$ and any $T \subseteq S$ denote $l_S(X) = \{s \in S \mid sX = 0\}$ and $r_M(T) = \{m \in M \mid Tm = 0\}$.

Note that if M is a right R-module then M is a left $End_R(M)$ -module. If $l_S(A \cap B) = l_S(A) + l_S(B)$ for all submodules A and B of M_R , where $S = End_R(M)$, M is called an *Ikeda-Nakayama* module [10]. Note that every quasiinjective module is an Ikeda-Nakayama module [10, Lemma 1]. For a soc-injective module we have the following result.

Proposition 4.3. Let S and R be any rings and M a left S-, a right R-bimodule. If M_R is soc-injective, then

- (1) $l_S(T_1 \cap T_2) = l_S(T_1) + l_S(T_2)$ for all semisimple submodules T_1, T_2 of M_R .
- (2) If Sk is a simple left S-module $(k \in M)$, then Soc(kR) is zero or simple.
- (3) $r_M l_S(\operatorname{Soc}(M)) = \operatorname{Soc}(M) \Leftrightarrow r_M l_S(K) = K$ for all semisimple submodule K of M_R .

Proof. (1) By [10, Lemma 1].

(2) Assume $Sk \ (k \in M)$ is a simple left S-module and Soc(kR) is nonzero. Let y_1R and y_2R be simple submodules of M_R with $y_i \in kR$, $1 \le i \le 2$. If $y_1R \cap y_2R = 0$, then by (1), $l_S(y_1) + l_S(y_2) = S$ and so $l_S(y_1) = l_S(y_2) = l_S(k)$, since $y_i \in kR$ and $l_S(k)$ is a maximal left ideal of S. Thus $l_S(k) = S$, a contradiction, hence Soc(kR) is simple.

(3) Assume that $r_M l_S(\operatorname{Soc}(M)) = \operatorname{Soc}(M)$ and let K be a semisimple submodule of M_R . We claim that K is essential in $r_M l_S(K)$. If $K \cap xR = 0$ for some $x \in r_M l_S(K)$, then by (1), $l_S(K \cap xR) = l_S(K) + l_S(xR) = S = l_S(xR)$ since $x \in r_M l_S(K) \leq r_M l_S(\operatorname{Soc}(M)) = \operatorname{Soc}(M)$ and $l_S(K) \leq l_S(xR)$. Then x = 0. Hence $K \leq_e r_M l_S(K) \leq r_M l_S(\operatorname{Soc}(M)) = \operatorname{Soc}(M)$. It follows that $K = r_M l_S(K)$. The converse is clear.

Proposition 4.4. Let M be a right R-module and $S = End_R(M)$. Then the following are equivalent:

- (1) $r_M l_S(K) = K$ for all semisimple submodules K of M_R .
- (2) $r_M[l_S(K) \cap Sa] = K + r_M(a)$ for all semisimple submodules K of M_R and all $a \in S$.

Proof. (1) \Rightarrow (2) Clearly, $K + r_M(a) \leq r_M[l_S(K) \cap Sa]$. Let $x \in r_M[l_S(K) \cap Sa]$ and $y \in l_S(aK)$. Then yaK = 0 and $ya \in Sa \cap l_S(K)$, so yax = 0 and $y \in l_S(ax)$. Thus $l_S(aK) \leq l_S(ax)$, and so $ax \in r_M l_S(ax) \leq r_M l_S(aK)$. Since Soc(M) is fully invariant, aK is a semisimple submodule of M_R . By (1), $ax \in aK$. Hence ax = akfor some $k \in K$ and so $x - k \in r_M(a)$. This means that $x \in r_M(a) + K$.

 $(2) \Rightarrow (1)$ The case when $a = 1_S$.

Proposition 4.5. Let M be a right R-module and $S = End_R(M)$. If M_R is strongly soc-injective in $\sigma[M]$, then $l_S(A \cap B) = l_S(A) + l_S(B)$ for all semisimple submodules A and all submodules B of M_R .

Proof. Let $x \in l_S(A \cap B)$ and define $\psi : A + B \longrightarrow M_R$ by $\psi(a + b) = xa$ for all $a \in A$ and $b \in B$. This induces an *R*-homomorphism $\tilde{\psi} : (A + B)/B \longrightarrow M_R$ in the obvious way. Since (A+B)/B is semisimple and M_R is strongly soc-injective in $\sigma[M], \tilde{\psi}$ can be extended to an *R*-homomorphism $\varphi : M/B \longrightarrow M$. Now let $\pi : M \longrightarrow M/B$ be the natural epimorphism. Let denote $s = \varphi \pi \in S$. Let $b \in B$. Then $sb = \varphi \pi(b) = \varphi(b+B) = 0$. For any $a \in A, (x-s)a = xa - sa = xa - \varphi \pi(a) = 0$. It follows that $x = (x - s) + s \in l_S(A) + l_S(B)$.

5. Strongly simple-injective modules in $\sigma[M]$

Theorem 5.1. The following are equivalent for $N \in \sigma[M]$:

- (1) N is strongly mininjective in $\sigma[M]$.
- (2) N is strongly simple-injective in $\sigma[M]$.
- (3) Every homomorphism from a finitely generated semisimple submodule K of any module $T \in \sigma[M]$ into N extends to T.
- (4) Every homomorphism γ from a submodule K of any module $T \in \sigma[M]$ into N, with $\gamma(K)$ finitely generated semisimple, extends to T.

Proof. $(4) \Rightarrow (3) \Rightarrow (1)$ Clear.

(1) \Rightarrow (2) Let *L* be a submodule of *N* and $\gamma : L \longrightarrow K$ a homomorphism with $\gamma(L)$ simple. If $T = Ker\gamma$, then γ induces an embedding $\tilde{\gamma} : L/T \longrightarrow K$ defined by $\tilde{\gamma}(x+T) = \gamma(x)$ for all $x \in L$. Since *K* is strongly miniplective and L/T is simple, $\tilde{\gamma}$ extends to a homomorphism $\overline{\gamma} : N/T \longrightarrow K$. If $\eta : N \longrightarrow N/T$ is the natural epimorphism, the homomorphism $\overline{\gamma}\eta : N \longrightarrow K$ is an extension of γ , for if $x \in L$, $(\overline{\gamma}\eta)(x) = \overline{\gamma}(x+T) = \tilde{\gamma}(x+T) = \gamma(x)$, as required.

 $(2) \Rightarrow (4)$ Let T be any module in $\sigma[M]$, K a submodule of T, $\gamma : K \to N$ a homomorphism with $\gamma(K)$ finitely generated semisimple and consider the following diagram

$$0 \xrightarrow{\quad K \xrightarrow{\quad i \quad T}} T$$

Write $\gamma(K) = \bigoplus_{i=1}^{n} S_i$ where each S_i is simple. Let $\pi_i \bigoplus_{i=1}^{n} S_i \to S_i$ be the canonical projection, $1 \leq i \leq n$, and consider the following diagram

$$0 \xrightarrow{K} K \xrightarrow{i} T$$

$$\pi_i \gamma \bigvee_{N} N$$

Since N is strongly simple-injective in $\sigma[M]$, for each $i, 1 \leq i \leq n$, there exists a homomorphism $\gamma_i: T \to N$ such that $\gamma_i(x) = \pi_i \gamma(x)$, for all $x \in K$. Now, define the map $\hat{\gamma}: T \to N$ by $\hat{\gamma}(x) = \sum_{i=1}^n \gamma_i(x)$. Then $\hat{\gamma}(x) = \gamma(x)$ for all $x \in K$. \Box

Hence we have the following implications:

 $soc-N-injective \implies min-N-injective$ simple-N-injective $\implies min-N-injective$ strongly mininjective \iff strongly simple-injective

Min-N-injective modules need not be soc-N-injective (see [1, Example 4.5] and [1, Example 4.15]), and strongly simple-injective modules need not be strongly soc-injective (see [2, Remark 2.4] and [1]).

- **Proposition 5.2.** (1) Let $N \in \sigma[M]$ and $\{M_i : i \in I\}$ be a family of modules in $\sigma[M]$. Then the direct product $\prod_{i \in I} M_i$ is min-N-injective if and only if each M_i is min-N-injective, $i \in I$. In particular, $\prod_{i \in I} M_i$ is strongly simpleinjective if and only if each M_i is strongly simple-injective, $i \in I$.
- (2) If $\{M_i : i \in I\}$ is a family of modules in $\sigma[M]$, then the direct sum $\bigoplus_{i \in I} M_i$ is strongly simple-injective if and only if each M_i is strongly simple-injective, $i \in I$.
- (3) A direct summand of a strongly simple-injective module is strongly simpleinjective.
- (4) Let M be projective. M is strongly simple-injective if and only if every Mgenerated projective module $N \in \sigma[M]$ is strongly simple-injective.

Proof. Routine.

Note 5.3. As in Corollary 2.6, for a projective module M, every quotient of a simple-injective module in $\sigma[M]$ is simple-injective if and only if Soc(M) is projective in $\sigma[M]$.

Corollary 5.4. Let $N \in \sigma[M]$ such that Soc(N) is finitely generated (in particular, if M is finite dimensional), then the following are equivalent:

- (1) N is strongly mininjective in $\sigma[M]$.
- (2) N is strongly simple-injective in $\sigma[M]$.
- (3) N is strongly soc-injective in $\sigma[M]$.

Moreover, if in addition $Soc(N) \leq_e N$, then each of the above conditions is equivalent to

(4) M is injective.

Proof. By Theorem 5.1 and Corollary 3.2.

Theorem 5.5. The following are equivalent for $N \in \sigma[M]$:

- (1) N is strongly simple-injective in $\sigma[M]$.
- (2) N is min- \widehat{M} -injective.
- (3) N is min- \widehat{S} -injective for every simple module $S \in \sigma[M]$.
- (4) N is min- \widehat{S} -injective for every simple submodule S of N.

Proof. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ Clear.

(4) \Rightarrow (1) Let $T \in \sigma[M]$, $\gamma : K \to N$ a non-zero homomorphism with $\gamma(K)$ simple, and consider the following diagram

$$\begin{array}{ccc} 0 & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$$

where *i* is the inclusion map. Since *N* is $\min(\gamma(K))$ -injective, there exists an embedding $\sigma: \widehat{\gamma(K)} \to N$ such that $\sigma\gamma(x) = \gamma(x)$ for every $x \in K$. Now, the map γ may be viewed as a map from *K* into an *M*-injective submodule of *N*, and hence has an extension $\widehat{\gamma}: T \to N$.

Corollary 5.6. If $N \in \sigma[M]$ is strongly simple-injective, then every simple submodule of N is essential in an M-injective direct summand of N.

Proof. Let S be a simple submodule of N and consider the following diagram

$$0 \xrightarrow{} S \xrightarrow{i} \widehat{S}$$

$$\downarrow \\ N$$

$$N$$

where *i* is the inclusion map. Since *N* is min- \widehat{S} -injective and $S \leq_e \widehat{S}$, there exists an embedding σ of \widehat{S} in *N* such that $\sigma(x) = x$ for all $x \in S$. If $E = \sigma(\widehat{S}) \cong \widehat{S}$, then $S \leq_e E \leq_d N$.

Proposition 5.7. The following are equivalent for M:

- (1) M is locally Noetherian.
- (2) Every strongly simple-injective module in $\sigma[M]$ is strongly soc-injective.

Proof. (1) \Rightarrow (2) Suppose M is locally Noetherian, and N is strongly simpleinjective in $\sigma[M]$. Write $Soc(N) = \bigoplus_{i \in I} S_i$, where each S_i is simple, $i \in I$. By Corollary 5.6, each $S_i \leq_e E_i \leq_d N$, where E_i is M-injective, $i \in I$. Since M is locally Noetherian, $E = \bigoplus_{i \in I} E_i$ is M-injective and hence E is a direct summand of N, and so $N = E \oplus T$, with Soc(T) = 0. By Theorem 3.1, N is strongly soc-injective in $\sigma[M]$.

(2) \Rightarrow (1) Let $\{K_i\}_{i \in I}$ be a family of simple modules in $\sigma[M]$. Consider $\widehat{K_i}$ for each $i \in I$. Therefore every $\widehat{K_i}$ is strongly simple-injective in $\sigma[M]$. Then by Proposition 5.2(2), $E = \bigoplus_{i=1}^{\infty} \widehat{K_i}$ is strongly simple-injective in $\sigma[M]$, and hence strongly soc-injective in $\sigma[M]$. Since E has essential socle, by Corollary 3.2, E is injective in $\sigma[M]$. Therefore M is locally Noetherian by [9, 27.3].

Proposition 5.8. Let M be a finitely generated self-projective module. Then the following are equivalent:

- (1) M is a Noetherian QF-module.
- (2) Every strongly simple-injective module in $\sigma[M]$ is projective in $\sigma[M]$.
- *Proof.* $(1) \Rightarrow (2)$ By Proposition 5.7 and Proposition 3.7.

 $(2) \Rightarrow (1)$ By Proposition 3.7.

References

- Amin I., Yousif M.F., Zeyada N. (2005) Soc-injective rings and modules, Comm. Alg. 33, 4229–4250.
- [2] Amin I., Fathi Y., Yousif M.F. Strongly simple-injective rings and modules, Alg. Coll., to appear.
- [3] Camillo V., Yousif M.F. (1991) CS-modules with acc or dcc, Comm. Algebra, 19(2): 655–662.
- [4] Cartan H., Eilenberg S. (1956) Homological Algebra, Princeton:Princeton University Press.
- [5] Çelik C., Harmancı A. and Smith P.F. (1995) A generalization of CS-modules, Comm. Alg. 23: 5445–5460.
- [6] Dung N.V., Huynh D.V., Smith P.F., Wisbauer R. (1994), *Extending Modules* Pitman RN Mathematics 313, Longman, Harlow.
- [7] Harada M. (1982) On Modules with Extending Properties, Osaka J. Math., 19: 203– 215.
- [8] Mohamed S.H., Müller B.J. (1990) Continuous and Discrete Modules, London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge.
- [9] Wisbauer R. (1991) Foundations of Module and Ring Theory. Gordon and Breach, Reading.

- [10] Wisbauer R., Yousif M.F.; Zhou Y. (2002) Ikeda-Nakayama Modules, Contributions to Algebra and Geometry, 43(1): 111–119.
- [11] Yousif M.F., Zhou Y. (2002) Semiregular, semiperfect and perfect rings relative to an ideal, Rocky Mountain J. Math., 32(4):1651–1671

A.Ç. Özcan and D. Keskin Tütüncü Hacettepe University Department of Mathematics 06800 Beytepe Ankara, Turkey e-mail: ozcan@hacettepe.edu.tr e-mail: keskin@hacettepe.edu.tr

M.F. Yousif Ohio State University Department of Mathematics Lima, Ohio, USA e-mail: yousif.1@osu.edu