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Abstract. In this paper, we study the notions (strongly) soc-injective, (strong-
ly) simple-injective and (strongly) mininjective modules in σ[M ]. For any
module N in σ[M ], N is strongly mininjective in σ[M ] if and only if it is
strongly simple-injective in σ[M ]. A module M is locally Noetherian if and
only if every strongly simple-injective module in σ[M ] is strongly soc-injective.
We also characterize Noetherian QF-modules.

1. Introduction

Let M be any R-module. Any R-module N is generated by M or M -generated if
there exists an epimorphism M (Λ) −→ N for some index set Λ. An R-module N is
said to be subgenerated by M if N is isomorphic to a submodule of an M -generated
module. We denote by σ[M ] the full subcategory of the right R-modules whose
objects are all right R-modules subgenerated by M .

Let M be a module and let N and T be in σ[M ]. N is called soc-T -injective
if any R-homomorphism f : Soc(T ) → N extends to T . Equivalently, for any
semisimple submodule K of T , any homomorphism f : K → N extends to T . A
module N ∈ σ[M ] is called soc-quasi-injective in σ[M ] if N is soc-N -injective. N
is called soc-injective in σ[M ] if N is soc-M -injective. N is called strongly soc-
injective in σ[M ] if N is soc-T -injective for all T ∈ σ[M ].

According to Harada [7], if M and N are modules, M is called simple-N -
injective if, for every submodule L of N , every homomorphism γ : L −→ M with
γ(L) simple extends to N . If N = R, M is called simple-injective, and if M = N ,
M is called simple-quasi-injective. Dually, M is called min-N -injective if, for every
simple submodule L of N , every homomorphism γ : L → M extends to N . If
N = R, M is called mininjective, and if M = N , M is called min-quasi-injective.
Let T ∈ σ[M ]. T is called strongly simple-injective in σ[M ] if T is simple-N -
injective for all N ∈ σ[M ], and T is called strongly mininjective in σ[M ], if T is
min-N -injective for all N ∈ σ[M ] (see [2]).
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Throughout this article, all rings are associative and have an identity, and
all modules are unitary right R-modules. Let M be an R-module. For a direct
summand N of M we write N ≤d M and for an essential submodule N of M ,
N ≤e M . Let N̂ be the M -injective hull of N in σ[M ]. A module N in σ[M ] is
called M -singular (or singular in σ[M ]) if N ∼= L/K for an L ∈ σ[M ] and K ≤e L
(see [6]). Every module N ∈ σ[M ] contains a largest M -singular submodule which
is denoted by ZM (N). If ZM (N) = 0, then N is called non-M -singular. We will
use Soc(K) to indicate the socle of any module K.

In Section 2, we prove that, for any finitely generated module T in σ[M ],
direct sums of soc-T -injective modules in σ[M ] is soc-T -injective if and only if
Soc(T ) is finitely generated. Also it is proven that if N ∈ σ[M ] is soc(N)-lifting,
then any module K in σ[M ] is soc-N -injective if and only if K is N -injective.

In Section 3, we consider the strongly soc-injective modules in σ[M ]. Semi-
artinian and Noetherian QF-modules are characterized in terms of strongly soc-
injective modules in σ[M ]. For example, any module M is semiartinian if and
only if every strongly soc-injective module in σ[M ] is injective in σ[M ] (quasi-
continuous). Let M be a finitely generated self-projective module. Then M is a
Noetherian QF-module if and only if every strongly soc-injective module in σ[M ] is
projective in σ[M ] if and only ifM is a self-generator, Soc(M) ≤e M and every pro-
jective module in σ[M ] is strongly soc-injective in σ[M ] if and only if M/Soc(M)
has finite length and M is a self-generator strongly soc-injective in σ[M ]. In this
section we also characterize GCO-modules and cosemisimple modules in terms of
strongly soc-injective modules in σ[M ].

In Section 4, we consider soc-injective modules. Let S and R be any rings
and let M be a left S-, a right R-bimodule. We prove that if MR is soc-injective,
then lS(T1 ∩ T2) = lS(T1) + lS(T2) for all semisimple submodules T1 and T2 of
MR while lS(A ∩ B) = lS(A) + lS(B) for all semisimple submodules A and all
submodules B of MR in the case where S = EndR(M).

In the last section, it is shown that the notions of strongly mininjective and
strongly simple-injective coincide. We also prove that any moduleM is locally Noe-
therian if and only if every strongly simple-injective module in σ[M ] is strongly
soc-injective, and that if M is finitely generated self-projective, then M is a Noe-
therian QF-module if and only if every strongly simple-injective module in σ[M ]
is projective in σ[M ].

2. Soc-Injective Modules in σ[M ]

Theorem 2.1. Let M be a module.
(1) Let N ∈ σ[M ] and {Mi : i ∈ I} a family of right R-modules in σ[M ]. Then the

direct product
∏

i∈I Mi is soc-N -injective if and only if Mi is soc-N -injective
for all i ∈ I.

(2) Let T , N and K ∈ σ[M ] with K ≤ N . If T is soc-N -injective, then T is
soc-K-injective.
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(3) Let T,N and K ∈ σ[M ] with T ∼= N . If T is soc-K-injective, then N is
soc-K-injective.

(4) Let N ∈ σ[M ] and {Ai : i ∈ I} a family of right R-modules in σ[M ]. Then
N is soc-⊕i∈IAi-injective if and only if N is soc-Ai-injective for all i ∈ I.

(5) Let M be a projective module in σ[M ]. Any module N ∈ σ[M ] is soc-injective
if and only if N is soc-P -injective for every M -generated projective module
P in σ[M ].

(6) Let T,N and K ∈ σ[M ] with N ≤d T . If T is soc-K-injective, then N is
soc-K-injective.

(7) If A,B and N ∈ σ[M ], A ∼= B and N is soc-A-injective, then N is soc-B-
injective.

Proof. Clear. �

The next corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2.

(1) If N ∈ σ[M ], then a finite direct sum of soc-N -injective modules in σ[M ]
is again soc-N -injective. In particular, a finite direct sum of soc-injective
(strongly soc-injective) modules in σ[M ] is again soc-injective (strongly soc-
injective).

(2) A direct summand of soc-quasi-injective (soc-injective, strongly soc-injective)
module in σ[M ] is again soc-quasi-injective (soc-injective, strongly soc-inject-
ive).

Proposition 2.3. Suppose N ∈ σ[M ] is a soc-quasi-injective module.

(1) (Soc-C2) If K and L are semisimple submodules of N , K ∼= L and K ≤d N ,
then L ≤d N .

(2) (Soc-C3) Let K and L be semisimple submodules of N with K ∩ L = 0. If
K ≤d N and L ≤d N , then K ⊕ L ≤d N .

Proof. (1) Since K ∼= L, and K is soc-N -injective, being a direct summand of the
soc-quasi-injective module N , L is soc-N -injective . If i : L → N is the inclusion
map, the identity map idL : L→ L has an extension η : N → L such that ηi = idL,
and so L ≤d N .

(2) Then both K and L are soc-N -injective. Thus the semisimple module K ⊕ L
is soc-N -injective, and so a direct summand of N . �

Proposition 2.4. For N ∈ σ[M ], the following are equivalent:

(1) Every module in σ[M ] is soc-N -injective.
(2) Every semisimple module in σ[M ] is soc-N -injective.
(3) Soc(N) ≤d N .

Proof. Straightforward. �
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Theorem 2.5. For a projective module N ∈ σ[M ], the following are equivalent:

(1) Every quotient of a soc-N -injective module in σ[M ] is soc-N -injective.
(2) Every quotient of an injective module in σ[M ] is soc-N -injective.
(3) Soc(N) is projective in σ[M ].

Proof. (1) ⇒ (2) Clear.

(2) ⇒ (3) Consider the following diagram

E
η �� K �� 0

Soc(N)

f

��

where E and K are in σ[M ], η is an epimorphism and f any homomorphism. By
Cartan and Eilenberg [4], we may assume that E is injective in σ[M ]. Since K is
soc-N -injective, f can be extended to g : N → K. Since N is projective in σ[M ],
g can be lifted to g̃ : N → E such that ηg̃ = g. Now define f̃ : Soc(N) → E by
f̃ = g̃|Soc(N). Clearly, ηf̃ = f . Hence Soc(N) is projective in σ[M ].

(3) ⇒ (1) LetK ∈ σ[M ] be soc-N -injective. Assume η : K → L is an epimorphism.
We want to show that L is soc-N -injective. Consider the following diagram

0 �� Soc(N)

f

��

inc. �� N

K
η �� L �� 0

Since Soc(N) is projective, f can be lifted to g : Soc(N) → K. Since K is soc-
injective, g can be extended to g̃ : N → K. Clearly ηg̃ : N → L extends f . �

Corollary 2.6. The following are equivalent for a projective module M in σ[M ]:

(1) Every quotient of a soc-injective module in σ[M ] is soc-injective in σ[M ].
(2) Every quotient of an injective module in σ[M ] is soc-injective in σ[M ].
(3) Every semisimple submodule of a projective module in σ[M ] is projective in

σ[M ].
(4) Soc(M) is projective in σ[M ].

Proof. (1) ⇔ (2) ⇔ (4) By Theorem 2.5.

(3) ⇒ (4) Since M is projective in σ[M ], Soc(M) is projective in σ[M ].

4) ⇒ (3) If P is a projective module in σ[M ], then it is a direct summand of a
direct sum of finitely generated submodules of M (N) by [9, 18.4]. Then Soc(P ) is a
direct summand of a direct sum of socles of finitely generated submodules of M (N).
Since Soc(M) is projective in σ[M ], then Soc(P ) is projective in σ[M ]. Hence (3)
follows. �
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Theorem 2.7. Let T ∈ σ[M ] be finitely generated. Then the following are equiva-
lent:
(1) Direct sums of soc-T -injective modules in σ[M ] is soc-T -injective.
(2) Soc(T ) is finitely generated.

Proof. (1) ⇒ (2) Let Soc(T ) = ⊕i∈ISi where each Si is a simple submodule of
T . Let Ŝi be the injective hull of Si in σ[M ], i ∈ I, and ι : ⊕i∈ISi → ⊕i∈I Ŝi

be the inclusion map. Since ⊕i∈I Ŝi is soc-T -injective, ι can be extended to an R-
homomorphism ι̂ : T → ⊕i∈I Ŝi. Since T is finitely generated, ι̂(T ) ≤ ⊕n

i=1Ŝi, for
some positive integer n. Therefore Soc(T ) ≤ ⊕n

i=1Ŝi implies that Soc(T ) is finitely
generated.
(2) ⇒ (1) Let E = ⊕i∈IEi be a direct sum of soc-T -injective modules in σ[M ]
and f : Soc(T ) → E be an R-homomorphism. Since Soc(T ) is finitely generated,
f(Soc(T )) ≤ ⊕n

i=1Ei, for some positive integer n. Since ⊕n
i=1Ei is soc-T -injective,

f can be extended to an R-homomorphism f̂ : T → T . �
Corollary 2.8. Let M be finitely generated. Then the following are equivalent:
(1) Direct sums of soc-injective modules in σ[M ] are soc-injective.
(2) Soc(M) is finitely generated.

Corollary 2.9. The following are equivalent:
(1) Direct sums of soc-T -injective modules in σ[M ] are soc-T -injective for every

cyclic R-module T in σ[M ].
(2) Finitely generated R-modules in σ[M ] are finite dimensional.

Definition 2.10. Let X be a submodule of a module M . We say that Soc(M)
respects X if there exists a direct summand A of M contained in X such that
X = A⊕B and B ≤ Soc(M). M is called Soc(M)-lifting if Soc(M) respects every
submodule of M .

Proposition 2.11. Let N ∈ σ[M ]. If N is Soc(N)-lifting, then any module K in
σ[M ] is soc-N -injective if and only if K is N -injective.

Proof. Assume that a module K ∈ σ[M ] is soc-N -injective. Let L be any sub-
module of N , i2 : L → N the inclusion map and f : L → K any homomorphism.
By hypothesis, L has a decomposition L = A ⊕ B such that A is a direct sum-
mand of N and B ≤ Soc(N). N = A ⊕ A′ for some submodule A′ of N . Then
L = A ⊕ (L ∩ A′) and L ∩ A′ is semisimple. Let i1 : L ∩ A′ → L be the inclu-
sion map and f |L∩A′ : L ∩ A′ → K. Since K is soc-N -injective, there exists a
homomorphism g : N → K such that gi2i1 = f |L∩A′. Now define h : N → K by
h(a+ a′) = f(a) + g(a′) (a ∈ A, a′ ∈ A′). Then hi2 = f . �
Corollary 2.12. [11, Lemma 2.14] If R/Soc(RR) is semisimple, then a right R-
module M is soc-injective in Mod-R if and only if M is injective.

Proof. R/Soc(RR) is semisimple if and only if Soc(RR) respects every right ideal
of R [11, Theorem 2.3]. Hence by Proposition 2.11, the result holds. �
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Clearly if Soc(M) respects every submodule of M , then M/Soc(M) is semi-
simple. We don’t know if the converse is true or not.

3. Strongly soc-injective modules in σ[M ]

Theorem 3.1. Let N ∈ σ[M ]. The following are equivalent:
(1) N is strongly soc-injective in σ[M ].
(2) N is soc-N̂-injective.
(3) N = E ⊕ T , where E is injective in σ[M ] and T has zero socle.

Moreover, if N has a nonzero socle, then E can be taken to have essential socle.

Proof. (1) ⇒ (2) Clear.
(2) ⇒ (3) If Soc(N) = 0, we are done. Assume that Soc(N) 	= 0, and consider the
following diagram

0

��
0 �� Soc(N)

ι

��

i �� Ŝoc(N)

N

where ι and i are inclusion maps. Since N is soc-N̂ -injective, N is soc-Ŝoc(N)-
injective. So, there exists an R-homomorphism σ : Ŝoc(N) → N , which extends
ι. Since Soc(N) ≤e Ŝoc(N), σ is an embedding of Ŝoc(N) in N . If we write
E = σ(Ŝoc(N)), then N = E ⊕ T for some submodule T of N . Clearly, E is
injective and T has zero socle.
(3) ⇒ (1) This is clear, since modules with zero socle are strongly soc-injective
in σ[M ] and finite direct sum of strongly soc-injective modules are strongly soc-
injective in σ[M ].

For the last statement of the theorem, then σ(Soc(N)) ≤e E. On the other
hand, Soc(E) = Soc(N) = σ(Soc(N)) ≤e E implies that Soc(E) ≤e E. �
Corollary 3.2. Let N ∈ σ[M ] be a module with essential socle. Then the following
are equivalent:
(1) N is strongly soc-injective in σ[M ].
(2) N is injective in σ[M ].

A module M is called locally Noetherian if every finitely generated submodule
of M is Noetherian. It is well known that M is locally Noetherian if and only if
every direct sum of M -injective modules is M -injective [9, 27.3], if and only if
every (countable) direct sum of M -injective hulls of simple modules (in σ[M ]) is
M -injective ([9, 27.3] and [6, 2.5]).
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Theorem 3.3. The following are equivalent for a module M :
(1) M is locally Noetherian.
(2) Every direct sum of strongly soc-injective modules in σ[M ] is strongly soc-

injective in σ[M ].

Proof. (1) ⇒ (2) Let {Mi}i∈I be a family of strongly soc-injective modules in
σ[M ]. By Theorem 3.1, for each i ∈ I, write Mi = Ei ⊕ Ti where Ei is injective
in σ[M ] and Soc(Ti) = 0. If E = ⊕i∈IEi and T = ⊕i∈ITi, then ⊕i∈IMi = E ⊕ T
with Soc(T ) = 0. Since M is locally Noetherian, E is M -injective, that is injective
in σ[M ], and by Theorem 3.1, ⊕i∈IMi is strongly soc-injective in σ[M ].
(2) ⇒ (1) In order to prove that M is locally Noetherian, we only need to show
that if K1,K2, . . . are simple modules (in σ[M ]), then ⊕∞

i=1K̂i is injective in σ[M ],
where K̂i is the M -injective hull of Ki. Since ⊕∞

i=1K̂i is strongly soc-injective in
σ[M ] with essential socle, by Corollary 3.2, ⊕∞

i=1K̂i is injective in σ[M ]. �
Proposition 3.4. If N ∈ σ[M ] is strongly soc-injective in σ[M ], then every semisim-
ple submodule K of N is essential in a direct summand of N .

Proof. This is clear if Soc(N) = 0. If Soc(N) 	= 0, then by Theorem 3.1,
N = Ŝoc(N) ⊕ T with Soc(T ) = 0. Then K ≤e L ≤d Ŝoc(N) for some submodule
L of N . �

M is called CESS if every closure of every semisimple submodule of M is a
direct summand of M . By Theorem 3.1, if N ∈ σ[M ] is strongly soc-injective in
σ[M ], then N = E ⊕ T with E = Ŝoc(N) and Soc(T ) = 0, and by [5], if T is
E-injective, then N is a CESS-module. In particular, if T is non-M -singular, then
T is E-injective and so N is a CESS-module.

Proposition 3.5. Let N ∈ σ[M ] be N = E ⊕ T with E = Ŝoc(N), Soc(T ) = 0 and
T is E-injective. If S is a semisimple submodule of N , then every closure in N ,
of S is injective in σ[M ].

Proof. By the above remark, if K is a closure of S in N , then K is a direct
summand of N , and by Corollary 2.2 (2), K is strongly soc-injective in σ[M ]. Let
K ′ be a closure of S in E. Then K ′ is a direct summand of E and so is injective
in σ[M ]. Now we consider the following diagram

0

��
0 �� S

ι

��

i �� K ′

K

where ι and i are inclusion maps. Since K is strongly soc-injective in σ[M ], there
exists a homomorphism σ : K ′ → K which extends ι. Since S ≤e K

′, σ is an
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embedding of K ′ in K, and so S ≤e σ(K ′) ≤e K, since σ(K ′) is injective in σ[M ],
it is a direct summand of K, and so σ(K ′) = K is injective in σ[M ]. �

A module M is called semiartinian if every nonzero homomorphic image ofM
has essential socle. Equivalently, every nonzero homomorphic image of M has non-
zero socle. M is semiartinian if and only if every module in σ[M ] is semiartinian
(see [6, 3.12]).

Theorem 3.6. The following are equivalent for a module M :
(1) M is semiartinian.
(2) Every strongly soc-injective module in σ[M ] is injective in σ[M ].
(3) Every strongly soc-injective module in σ[M ] is quasi-continuous.

Proof. (1) ⇒ (2) Since M is semiartinian, Soc(N) ≤e N for every module N ∈
σ[M ]. By Corollary 3.1, (2) holds.
(2) ⇒ (3) Clear.
(3) ⇒ (1) Let N be a proper submodule of M . We claim that Soc(M/N) 	= 0.
If Soc(M/N) = 0, let X/N be an arbitrary nonzero submodule of M/N . By
hypothesis, (X/N) ⊕ (M/N) is quasi-continuous. By [8, Corollary 2.14], X/N is
M/N -injective and hence X/N ≤d M/N . This means that M/N is semisimple, a
contradiction. Hence M is semiartinian. �

If M is a Noetherian injective cogenerator in σ[M ], then it is called a Noe-
therian Quasi-Frobenius (QF)-module. For a finitely generated quasi-projective
module M , M is Noetherian QF-module if and only if every injective module in
σ[M ] is projective in σ[M ] if and only if M is a self-generator and every projective
module in σ[M ] is injective in σ[M ] by [9, 48.14].

Proposition 3.7. Let M be a finitely generated self-projective module. Then the
following are equivalent:
(1) M is a Noetherian QF-module.
(2) Every strongly soc-injective module in σ[M ] is projective in σ[M ].

Proof. (1) ⇒ (2) If M is a Noetherian QF-module, then M is Artinian by [9,
48.14]. By Theorem 3.6, every strongly soc-injective module in σ[M ] is injective
in σ[M ], and hence projective in σ[M ] by [9, 48.14].
(2) ⇒ (1) Clear. �

Observe that if Soc(M) = 0, then every projective module in σ[M ] has zero
socle by [9, 18.4(1)], and hence strongly soc-injective in σ[M ]. On the other hand
we have the following result by Corollary 3.2 and the above remark.

Proposition 3.8. Let M be a finitely generated self-projective module. Then the
following are equivalent:
(1) M is a Noetherian QF-module.
(2) M is a self-generator, Soc(M) ≤e M and every projective module in σ[M ] is

strongly soc-injective in σ[M ].
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Proof. (1) ⇒ (2) Clear.
(2) ⇒ (1) Let P be a nonzero projective module in σ[M ]. Then P is strongly
soc-injective in σ[M ]. By Theorem 3.1, P = E ⊕ T with E injective in σ[M ] and
Soc(T ) = 0. On the other hand, P is a direct summand of a direct sum of nonzero
finitely generated submodules Mi of M (N). Since every Mi has essential socle,
Soc(P ) ≤e P . Therefore P = E, and hence P is injective in σ[M ]. Since M is a
self-generator, the proof is completed by [9, 48.14]. �

Any module M is called
∑

-injective if the direct sum of any number of copies
of M is injective.

Proposition 3.9. Let M be a projective module in σ[M ]. Then the following are
equivalent:
(1) Every projective M -generated module in σ[M ] is strongly soc-injective in

σ[M ].
(2) M = E ⊕ T where E is

∑
-injective in σ[M ] and Soc(T ) = 0.

Proof. (1) ⇒ (2) If Soc(M) = 0, we are done. Assume Soc(M) is nonzero. Since M
is projective, it follows from Theorem 3.1 that M = E ⊕ T where E is injective in
σ[M ] with essential socle and Soc(T ) = 0. Since for any ordinal number α, E(α) is
projective in σ[M ] and M -generated, E(α) is strongly soc-injective with essential
socle. Therefore by Corollary 3.2, E(α) is injective in σ[M ]. Hence E is

∑
-injective

in σ[M ].

(2) ⇒ (1) By (2),M (Λ) = E(Λ)⊕T (Λ) for any ordinal number Λ. Since E(Λ) is injec-
tive in σ[M ],M (Λ) is strongly soc-injective in σ[M ] by Theorem 3.1. Let P be a pro-
jective M -generated module in σ[M ]. Then P is isomorphic to a direct summand
of M (Λ) for some Λ. Since every direct summand of strongly soc-injective module
in σ[M ] is strongly soc-injective in σ[M ], P is strongly soc-injective in σ[M ]. �

Proposition 3.10. Let N ∈ σ[M ] be a strongly soc-injective module. If N/Soc(N)
is finite dimensional (Noetherian, Artinian, respectively), then N = T ⊕ S, where
T is finite dimensional (Noetherian, Artinian, respectively) and S is semisimple
injective in σ[M ].

Proof. By Theorem 3.1, N = E ⊕K with E is injective in σ[M ] and Soc(K) = 0.
Now,N/Soc(N) ∼= E/Soc(E)⊕K. So both E/Soc(E) and K are finite dimensional
(Noetherian, Artinian, respectively). By [3, Corollary 3], E = L⊕ S with L finite
dimensional and S semisimple. If E/Soc(E) is Noetherian (Artinian), then by [3,
Lemma 4 and Proposition 5], E = L⊕ S where L is Noetherian (Artinian) and S
is semisimple. Consequently, N = T ⊕ S with S semisimple injective in σ[M ] and
T = K ⊕ L finite dimensional (Noetherian, Artinian, respectively). �

Corollary 3.11. Let M be a finitely generated self-projective module in σ[M ]. Then
the following are equivalent:
(1) M is a Noetherian QF-module.
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(2) M/Soc(M) has finite length and M is a self-generator strongly soc-injective
in σ[M ].

Proof. (2) ⇒ (1) By Proposition 3.10, Soc(M) ≤e M . Then by Corollary 3.2, M
is injective in σ[M ]. Again by Proposition 3.10, M is Noetherian. By [9, 48.14], M
is a Noetherian QF-module.
(1) ⇒ (2) By [9, 48.14], M/Soc(M) has finite length and M is a self-generator.
Since M is projective in σ[M ], by [9, 48.14], M is injective in σ[M ] and hence M
is strongly soc-injective in σ[M ]. �
Lemma 3.12. Let N ∈ σ[M ] be semisimple. The following are equivalent:
(1) N is injective in σ[M ].
(2) N is strongly soc-injective in σ[M ].
(3) N is soc-K-injective for every factor module K of M .

Proof. (1) ⇔ (2) By Corollary 3.2.
(1) ⇒ (3) Clear.
(3) ⇒ (1) Consider the following diagram

0 �� L

f

��

i �� M

N

where L ≤M and f : L −→ N is any homomorphism. Then we have the diagram

0 �� L/kerf

α

��

i �� M/kerf

f(L)

ι

��
N

where α is an isomorphism and ι is the inclusion map.
Since N is soc-M/Kerf -injective and L/Kerf is semisimple, there exists a

homomorphism g : M/Kerf −→ N such that gi = ια. Then the homomorphism
h = gπ extends f where π : M −→M/Kerf is the natural epimorphism. �

A module M is called cosemisimple (or a V-module) if every simple module
(in σ[M ]) is M -injective. Clearly, M is cosemisimple if and only if every simple
module is strongly soc-injective in σ[M ].

Proposition 3.13. The following are equivalent for a module M :
(1) Every semisimple module in σ[M ] is strongly soc-injective in σ[M ].
(2) Every semisimple module in σ[M ] is soc-K-injective for every factor module

K of M .
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(3) Every module in σ[M ] is strongly soc-injective in σ[M ].
(4) Every module in σ[M ] is soc-K-injective for every factor module K of M .
(5) Every semisimple module in σ[M ] is injective in σ[M ].
(6) M is locally Noetherian and cosemisimple.

Proof. (5) ⇔ (6) by [6, 15.5].

(1) ⇔ (3) By Proposition 2.4.

(1) ⇔ (2) ⇔ (5) By Lemma 3.12.

(4) ⇒ (2) Clear.

(2) ⇒ (4) By (2) ⇔ (3). �

A module M is called generalized cosemisimple (or a GCO-module) if every
simple singular module is M -injective or M -projective. Equivalently, every M -
singular simple module is M -injective by [6, 16.4].

By adopting the above proof we have the following proposition. Note that
(5) ⇔ (6) of Proposition 3.14 is well known from [6, 16.16].

Proposition 3.14. The following are equivalent for a module M :

(1) Every semisimple M -singular module is strongly soc-injective in σ[M ].
(2) Every semisimple M -singular module in σ[M ] is soc-K-injective for every

factor module K of M .
(3) Every M -singular module in σ[M ] is strongly soc-injective in σ[M ].
(4) Every M -singular module in σ[M ] is a direct sum of an injective module in

σ[M ] and a module with zero socle.
(5) Every M -singular semisimple module in σ[M ] is injective in σ[M ].

If M is self-projective, then they are equivalent to

(6) M is a GCO-module and M/Soc(M) is locally Noetherian.

4. When M is soc-injective

Proposition 4.1. Let M be a module. The following are equivalent:

(1) M is soc-injective.
(2) If Soc(M) = X ⊕ Y and γ : X −→ M is an R-homomorphism, then there

exists c : M −→M such that γ(x) = c(x) for all x ∈ X and c(Y ) = 0.
(3) If X ⊆ Soc(M) and γ : X −→ M is an R-homomorphism, then there exists

c : M −→ M such that γ(x) = c(x) for all x ∈ X.

If M is finitely generated and self-projective in σ[M ], then (1)–(3) are equivalent to

(4) If K is semisimple, P is projective M -generated in σ[M ], Q is a finitely
generated projective M -generated in σ[M ], ι : K −→ P is a monomorphism
and f : K −→ Q is an R-homomorphism, then f can be extended to an
R-homomorphism f̃ : P −→ Q.
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Proof. (1) ⇒ (2) Let Soc(M) = X⊕Y and γ : X −→M be an R-homomorphism.
Define the homomorphism γ̃ : X⊕Y −→M by x+y �→ γ(x) (x ∈ X, y ∈ Y ). Since
M is soc-M -injective, γ̃ can be extended to the homomorphism c : M −→M . Let
x ∈ X . Then c(x) = γ̃(x) = γ(x). Let y ∈ Y . Then c(y) = γ̃(y) = γ(0) = 0. Thus
c(Y ) = 0.
(2) ⇒ (3) ⇒ (1) and (4) ⇒ (1) are clear.

(1) ⇒ (4) Since M is soc-injective, M is soc-P -injective. Clearly, Q is isomorphic
to a direct summand of M (n), for some positive integer n. Therefore Q is soc-P -
injective by Theorem 2.1. Thus f can be extended to f̃ : P −→ Q. �

Proposition 4.2. Let M be a soc-injective module. Then the following holds.

(1) M satisfies (Soc-C2),
(2) M satisfies (Soc-C3).

Proof. Take N = M in Proposition 2.3. �

Let R and S be rings with identity and M a left S-, a right R-bimodule. For
any X ⊆M and any T ⊆ S denote lS(X) = {s ∈ S | sX = 0} and rM (T ) = {m ∈
M | Tm = 0}.

Note that if M is a right R-module then M is a left EndR(M)-module.
If lS(A ∩ B) = lS(A) + lS(B) for all submodules A and B of MR, where S =
EndR(M), M is called an Ikeda-Nakayama module [10]. Note that every quasi-
injective module is an Ikeda-Nakayama module [10, Lemma 1]. For a soc-injective
module we have the following result.

Proposition 4.3. Let S and R be any rings and M a left S-, a right R-bimodule.
If MR is soc-injective, then
(1) lS(T1 ∩ T2) = lS(T1) + lS(T2) for all semisimple submodules T1, T2 of MR.
(2) If Sk is a simple left S-module (k ∈M), then Soc(kR) is zero or simple.
(3) rM lS(Soc(M)) = Soc(M) ⇔ rM lS(K) = K for all semisimple submodule K

of MR.

Proof. (1) By [10, Lemma 1].
(2) Assume Sk (k ∈M) is a simple left S-module and Soc(kR) is nonzero. Let y1R
and y2R be simple submodules of MR with yi ∈ kR, 1 ≤ i ≤ 2. If y1R ∩ y2R = 0,
then by (1), lS(y1)+ lS(y2) = S and so lS(y1) = lS(y2) = lS(k), since yi ∈ kR and
lS(k) is a maximal left ideal of S. Thus lS(k) = S, a contradiction, hence Soc(kR)
is simple.
(3) Assume that rM lS(Soc(M)) = Soc(M) and let K be a semisimple submodule
of MR. We claim that K is essential in rM lS(K). If K ∩ xR = 0 for some x ∈
rM lS(K) , then by (1), lS(K ∩ xR) = lS(K) + lS(xR) = S = lS(xR) since x ∈
rM lS(K) ≤ rM lS(Soc(M)) = Soc(M) and lS(K) ≤ lS(xR). Then x = 0. Hence
K ≤e rM lS(K) ≤ rM lS(Soc(M)) = Soc(M). It follows that K = rM lS(K). The
converse is clear. �
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Proposition 4.4. Let M be a right R-module and S = EndR(M). Then the follow-
ing are equivalent:

(1) rM lS(K) = K for all semisimple submodules K of MR.
(2) rM [lS(K) ∩ Sa] = K + rM (a) for all semisimple submodules K of MR and

all a ∈ S.

Proof. (1) ⇒ (2) Clearly, K + rM (a) ≤ rM [lS(K) ∩ Sa]. Let x ∈ rM [lS(K) ∩ Sa]
and y ∈ lS(aK). Then yaK = 0 and ya ∈ Sa ∩ lS(K), so yax = 0 and y ∈ lS(ax).
Thus lS(aK) ≤ lS(ax), and so ax ∈ rM lS(ax) ≤ rM lS(aK). Since Soc(M) is fully
invariant, aK is a semisimple submodule of MR. By (1), ax ∈ aK. Hence ax = ak
for some k ∈ K and so x− k ∈ rM (a). This means that x ∈ rM (a) +K.

(2) ⇒ (1) The case when a = 1S. �

Proposition 4.5. Let M be a right R-module and S = EndR(M). If MR is strongly
soc-injective in σ[M ], then lS(A∩B) = lS(A)+lS(B) for all semisimple submodules
A and all submodules B of MR.

Proof. Let x ∈ lS(A ∩ B) and define ψ : A + B −→ MR by ψ(a + b) = xa for all
a ∈ A and b ∈ B. This induces an R-homomorphism ψ̃ : (A + B)/B −→ MR in
the obvious way. Since (A+B)/B is semisimple and MR is strongly soc-injective
in σ[M ], ψ̃ can be extended to an R-homomorphism ϕ : M/B −→ M . Now let
π : M −→ M/B be the natural epimorphism. Let denote s = ϕπ ∈ S. Let b ∈ B.
Then sb = ϕπ(b) = ϕ(b+B) = 0. For any a ∈ A, (x−s)a = xa−sa = xa−ϕπ(a) =
0. It follows that x = (x− s) + s ∈ lS(A) + lS(B). �

5. Strongly simple-injective modules in σ[M ]

Theorem 5.1. The following are equivalent for N ∈ σ[M ]:

(1) N is strongly mininjective in σ[M ].
(2) N is strongly simple-injective in σ[M ].
(3) Every homomorphism from a finitely generated semisimple submodule K of

any module T ∈ σ[M ] into N extends to T .
(4) Every homomorphism γ from a submodule K of any module T ∈ σ[M ] into

N , with γ(K) finitely generated semisimple, extends to T .

Proof. (4) ⇒ (3) ⇒ (1) Clear.

(1) ⇒ (2) Let L be a submodule of N and γ : L −→ K a homomorphism with
γ(L) simple. If T = Kerγ, then γ induces an embedding γ̃ : L/T −→ K defined
by γ̃(x + T ) = γ(x) for all x ∈ L. Since K is strongly mininjective and L/T is
simple, γ̃ extends to a homomorphism γ : N/T −→ K. If η : N −→ N/T is the
natural epimorphism, the homomorphism γη : N −→ K is an extension of γ, for
if x ∈ L, (γη)(x) = γ(x+ T ) = γ̃(x+ T ) = γ(x), as required.
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(2) ⇒ (4) Let T be any module in σ[M ], K a submodule of T , γ : K → N a
homomorphism with γ(K) finitely generated semisimple and consider the following
diagram

0 �� K

γ

��

i �� T

N

Write γ(K) = ⊕n
i=1Si where each Si is simple. Let πi⊕n

i=1Si → Si be the canonical
projection, 1 ≤ i ≤ n, and consider the following diagram

0 �� K

πiγ

��

i �� T

N

Since N is strongly simple-injective in σ[M ], for each i, 1 ≤ i ≤ n, there exists a
homomorphism γi : T → N such that γi(x) = πiγ(x), for all x ∈ K. Now, define
the map γ̂ : T → N by γ̂(x) =

∑n
i=1 γi(x). Then γ̂(x) = γ(x) for all x ∈ K. �

Hence we have the following implications:

soc-N -injective =⇒ min-N -injective
simple-N -injective =⇒ min-N -injective

strongly mininjective ⇐⇒ strongly simple-injective

Min-N -injective modules need not be soc-N -injective (see [1, Example 4.5]
and [1, Example 4.15]), and strongly simple-injective modules need not be strongly
soc-injective (see [2, Remark 2.4] and [1]).

Proposition 5.2. (1) Let N ∈ σ[M ] and {Mi : i ∈ I} be a family of modules
in σ[M ]. Then the direct product

∏

i∈I Mi is min-N -injective if and only if
each Mi is min-N -injective, i ∈ I. In particular,

∏

i∈I Mi is strongly simple-
injective if and only if each Mi is strongly simple-injective, i ∈ I.

(2) If {Mi : i ∈ I} is a family of modules in σ[M ], then the direct sum ⊕i∈IMi

is strongly simple-injective if and only if each Mi is strongly simple-injective,
i ∈ I.

(3) A direct summand of a strongly simple-injective module is strongly simple-
injective.

(4) Let M be projective. M is strongly simple-injective if and only if every M -
generated projective module N ∈ σ[M ] is strongly simple-injective.

Proof. Routine. �

Note 5.3. As in Corollary 2.6, for a projective module M , every quotient of a
simple-injective module in σ[M ] is simple-injective if and only if Soc(M) is pro-
jective in σ[M ].



On Some Injective Modules In σ[M ] 327

Corollary 5.4. Let N ∈ σ[M ] such that Soc(N) is finitely generated (in particular,
if M is finite dimensional), then the following are equivalent:
(1) N is strongly mininjective in σ[M ].
(2) N is strongly simple-injective in σ[M ].
(3) N is strongly soc-injective in σ[M ].

Moreover, if in addition Soc(N) ≤e N , then each of the above conditions is equiv-
alent to
(4) M is injective.

Proof. By Theorem 5.1 and Corollary 3.2. �

Theorem 5.5. The following are equivalent for N ∈ σ[M ]:
(1) N is strongly simple-injective in σ[M ].
(2) N is min-M̂-injective.
(3) N is min-Ŝ-injective for every simple module S ∈ σ[M ].
(4) N is min-Ŝ-injective for every simple submodule S of N .

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) Clear.
(4) ⇒ (1) Let T ∈ σ[M ], γ : K → N a non-zero homomorphism with γ(K) simple,
and consider the following diagram

0 �� γ(K)

i

��

i �� γ̂(K)

N

where i is the inclusion map. Since N is min-γ̂(K)-injective, there exists an em-
bedding σ : γ̂(K) → N such that σγ(x) = γ(x) for every x ∈ K. Now, the map γ
may be viewed as a map from K into an M -injective submodule of N , and hence
has an extension γ̂ : T → N . �

Corollary 5.6. If N ∈ σ[M ] is strongly simple-injective, then every simple submod-
ule of N is essential in an M -injective direct summand of N .

Proof. Let S be a simple submodule of N and consider the following diagram

0 �� S

i

��

i �� Ŝ

N

where i is the inclusion map. Since N is min-Ŝ-injective and S ≤e Ŝ, there exists
an embedding σ of Ŝ in N such that σ(x) = x for all x ∈ S. If E = σ(Ŝ) ∼= Ŝ,
then S ≤e E ≤d N . �
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Proposition 5.7. The following are equivalent for M :
(1) M is locally Noetherian.
(2) Every strongly simple-injective module in σ[M ] is strongly soc-injective.

Proof. (1) ⇒ (2) Suppose M is locally Noetherian, and N is strongly simple-
injective in σ[M ]. Write Soc(N) = ⊕i∈ISi, where each Si is simple, i ∈ I. By
Corollary 5.6, each Si ≤e Ei ≤d N , where Ei is M -injective, i ∈ I. Since M is
locally Noetherian, E = ⊕i∈IEi is M -injective and hence E is a direct summand
of N , and so N = E ⊕ T , with Soc(T ) = 0. By Theorem 3.1, N is strongly
soc-injective in σ[M ].

(2) ⇒ (1) Let {Ki}i∈I be a family of simple modules in σ[M ]. Consider K̂i for
each i ∈ I. Therefore every K̂i is strongly simple-injective in σ[M ]. Then by
Proposition 5.2(2), E = ⊕∞

i=1K̂i is strongly simple-injective in σ[M ], and hence
strongly soc-injective in σ[M ]. Since E has essential socle, by Corollary 3.2, E is
injective in σ[M ]. Therefore M is locally Noetherian by [9, 27.3]. �

Proposition 5.8. Let M be a finitely generated self-projective module. Then the
following are equivalent:
(1) M is a Noetherian QF-module.
(2) Every strongly simple-injective module in σ[M ] is projective in σ[M ].

Proof. (1) ⇒ (2) By Proposition 5.7 and Proposition 3.7.
(2) ⇒ (1) By Proposition 3.7. �
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