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Abstract. Let U be a submodule of a module M. We call U a strongly lifting submodule
of M if whenever M/U = (A+U)/U & (B+U)/U, then M = P& Q@ such that P < A,
(A+U)/U=(P+4+U)/U and (B4 U)/U = (Q@+U)/U. This definition is a generalization
of strongly lifting ideals defined by Nicholson and Zhou. In this paper, we investigate some
properties of strongly lifting submodules and characterize U-semiregular and U-semiperfect
modules by using strongly lifting submodules. Results are applied to characterize rings R
satisfying that every (projective) left R-module M is 7(M)-semiperfect for some preradicals
7 such as Rad, Z3 and 9.
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1 Introduction

Semiregular and semiperfect rings were generalized to I-semiregular and I-semi-
perfect rings for an ideal I of a ring R by Yousif and Zhou [15]. After that Nicholson
and Zhou [11] defined the concept of strongly lifting left ideals. A left ideal T is
called strongly lifting (or idempotents lift strongly modulo I) if whenever a®—a € I,
there exists e? = e € Ra (equivalently, e? = e € aR) such that e —a € I. Then they
proved that a ring R is I-semiregular ([-semiperfect, respectively) if and only if
R/I is regular (semisimple) and I is strongly lifting. Note that being I-semiregular
or I-semiperfect for an ideal I of a ring R is left-right symmetric by Theorems 28
and 36 in [11].

In [1] and [12], U-semiregular and U-semiperfect modules are defined as module
theoretic versions of I-semiregular and I-semiperfect rings by considering any fully
invariant submodule U of a module, and so some properties of I-semiregular and
I-semiperfect rings are generalized to modules.
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In Section 2, we investigate strongly lifting submodules and U-semipotent mod-
ules for a submodule U of a module. We call a submodule U of a module M strongly
lifting if whenever M /U = (A+U)/U @ (B +U)/U, then M has a decomposition
M = P&Q such that P < A, (A+U)/U = (P+U)/U and (B4+U)/U = (Q+U)/U.
We prove that an ideal I of a ring R is a strongly lifting ideal if and only if I is a
strongly lifting submodule of g R (Proposition 2.2). M is called U-semipotent if for
every submodule A of M such that A € U, there exists a summand B of M such
that B < A and B € U. We prove that if U < M and M is U-semipotent, then for
any submodule N of M with N € U, N is indecomposable if and only if N is local
(Proposition 2.9).

In Section 3, we give a new characterization of U-semiregular and U-semiperfect
modules by considering strongly lifting submodules for a projection-invariant sub-
module U. We prove that if M is finitely generated and projective, then M is U-
semiregular if and only if every finitely generated submodule of M /U is a summand
and U is strongly lifting (Corollary 3.3). If M is projective, then M is U-semiperfect
if and only if M/U is semisimple and U is strongly lifting (Corollary 3.8).

In Section 4, rings R satisfying the property that every (projective) R-module
M is 7(M)-semiperfect are characterized for some preradicals 7 such as Rad, Z,
and §. We prove that every left R-module M is Zy(M)-semiperfect if and only if
R is Zs(rR)-semiperfect; every projective left R-module M is 6(M)-semiperfect if
and only if R is left d-perfect; and a ring R is Z(gR)-semiperfect and Z3(grR) is
injective if and only if R is semiperfect and left self-injective.

Throughout this paper, R denotes an associative ring with identity and modules
M are unitary left R-modules. For a module M, Rad(M), Soc(M), Z(M) and
Z5(M) are the Jacobson radical, the socle, the singular submodule and the Goldie
torsion submodule of M, respectively. We write J(R) for the Jacobson radical of
R. A submodule N of M is called small in M, denoted by N < M, whenever for
any submodule L of M, N + L = M implies L = M. For a (direct) summand K
of M, we write K <% M. An element x in M is called regular if (zra)x = z for
some o € M*. Zelmanowitz [16] calls a module regular if each of its elements is
regular, equivalently, if every finitely generated submodule is a projective summand.
A submodule U of M is called projection-invariant if for every projection m of M,
(U)r <U.

Lemma 1.1. [6, Exercise 4.d, p.50] Let M = M; & My and U be any projection-
invariant submodule of M. Then U = (U N My) @ (U N My).

2 Strongly Lifting Submodules and U-Semipotent Modules

Definition 2.1. Let U be a submodule of a module M. U is called a strongly
lifting submodule of M if whenever M /U = (A+U)/U @& (B + U)/U, then M has
a decomposition M = P @ @ such that P < A, (A+U)/U = (P+U)/U and
(B+U)/U=(Q+U)/U.

Proposition 2.2. Let I be an ideal of R, R = R/I and ¥ =1 + I for any r € R.
The following are equivalent:
(1) T is strongly lifting.
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(2) I is a strongly lifting submodule of rR.
Proof. (1)=>(2) Let R=A® B. Let 1 =a+b, where a € A and b € B. Then @
and b are orthogonal idempotents. By [11, Proposition 11], there exist orthogonal
idempotents e; and es in R such that e =@, e3 = b and e; € Ra, e; € Rb. Then
R=Re;®R(1—e;) and Re; < Ra, Re; = Ra= A, R(1-¢7) = R(1-a) = Rb=B
Hence, (2) holds.

(2)=(1) Let e =€ € R. Then R = Re® R(1 — ¢). By hypothesis, R=P & Q,
where P < Re, P = Re and Q = R(T —e). Then there exists an idempotent f in
R such that P = Rf and Q = R(1 — f). Since P = Rf = Re, we have f = ae
and € = bf for some @,b in R. This implies that ef = €. Since Q@ = R(1 — f) and
f=¢ef+ (1 —e)f, we have f =e. Hence, I is strongly lifting. O

Proposition 2.3. Let M be a self-projective module and U < M. If U is a
summand of M, then U is strongly lifting.

Proof. Let N be such that M = U® N, and M/U = (A+U)/U® (B+U)/U. Let
f: N — M/U be the isomorphism. Then there exist submodules B; and B of N
such that f(By) =(A+U)/U = (B1+U)/U, f(B2) =(B+U)/U=(B2+U)/U.
Then M/U = (B1+U)/U®(B2+U)/U. Since BiNBy < (B1+U)N (B, +U) =U,
BiNBy =0. Also, N = B1+B5. Hence, M =U®N = U B ®&Bs. Since UGB, =
U + A is self-projective, there exists a submodule L of A such that U B =U® L
by [14, 41.14]. Thus, M = U & L& By, where L < A, (L4+U)/U = (A+U)/U and
(B2+U)/U=(B+U)/U, ie., U is strongly lifting. O

A left R-module M is said to have the exchange property if for any module X
and decompositions X = M'@Y = @, N;, where M’ ~ M, there exist submodules
N! < N, for each i such that X = M’ @ (®&N/). If this condition holds for finite
sets I (equivalently, for |I| = 2), the module M is said to have the finite exchange
property. Note that a self-projective module M has the finite exchange property if
and only if whenever M = A 4+ B, there exists a decomposition M = P & @ such
that P < A and @ < B [3, Theorem 3].

Theorem 2.4. Let M be a self-projective module. Then the following are equiv-

alent:
(1) M has the finite exchange property.
(2) Every submodule of M is strongly lifting.

Proof. (1)=(2) Let N < M and M/N = (A+ N)/N & (B + N)/N. Then M =
A+ B+ N. By [3, Theorem 3], there is a decomposition M = P; & P, with P; < A
and Py < B+ N. Then (P, + N)/N = (A+ N)/N and (P, + N)/N = (B+ N)/N.
Hence, N is strongly lifting.

(2):>(].) Let M = M1 + M2 and N = M1 N MQ. Since M/N = Ml/N@ MQ/N,
there is a decomposition M = P @ @ such that P < M;, (P+ N)/N = M;/N and
(Q+N)/N = M,/N. Then Q < M,. By [3, Theorem 3|, M has the finite exchange
property. d

Definition 2.5. Let U be a submodule of M. M is called U-semipotent if for
every submodule A of M such that A € U, there exists a summand B of M such
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that B < A and B € U. A ring R is called semipotent if R is J(R)-semipotent. M
is called U-potent if M is U-semipotent and U is a strongly lifting submodule of
M.

There exists a U-semipotent module M, where U is not strongly lifting (see [11,
Example 23]).

Hence, M is 0-potent if every nonzero submodule of M contains a nonzero
summand of M. Every regular module is 0-potent. In fact, let M be regular and
0# A < M. Then there exist 0 # a € A and o € Hompg(M, R) such that (ax)a = a.
This implies that Ra is a nonzero summand of M in A.

On the other hand, modules M with zero radical and essential socle are 0-potent.
In fact, let 0 2 A < M. Then A contains a simple submodule S. Since S is not
small in M, S is a summand of M.

Proposition 2.6. Let U be a projection-invariant submodule of a module M. If
M is U-semipotent, then M /U is 0-potent. The converse holds if U is strongly
lifting.

Proof. Let 0 # A/U < M/U. Then A € U, and by hypothesis there exists a
summand B of M such that B < A and B € U. Let B’ be such that M = B& B'.
Since U is projection-invariant, U = (BNU) @ (B'NU) by Lemma 1.1. This implies
that (B+U)N(B'+U)=[B+(B'NU)|N[B'+ (BNU)] =U. Hence, (B+U)/U
is a nonzero summand of M/U in A/U. The converse is clear. O

Proposition 2.7. Let U be a submodule of M. If M is U-semipotent, then for
every submodule N of M with N € U, N is U N N-semipotent.

Proof. Assume that M is U-semipotent. Let N < M and X < N be such that
X ZUNN. Then X € U. By assumption, there exists a summand Y of M such
that Y < X and Y € U. Then Y is a summand of N such that ¥ < X and
Y Z UNN. Hence, N is U N N-semipotent. O

Proposition 2.8. If a module M is self-projective with the finite exchange prop-
erty, then M is Rad(M)-semipotent.

Proof. Let N < M be such that N € Rad(M). Let n € N \ Rad(M). Then there
exists a maximal submodule K of M such that M = Rn + K. By [3, Theorem 3],
there is a decomposition M = P®Q such that P < Rnand Q < K. If P < Rad(M),
then P < K, and so M = K, a contradiction. Hence, P Z Rad(M), and so the
proof is completed. a

A module M is called indecomposable if M # 0 and it is not a direct sum of two
nonzero submodules. If M has a largest proper submodule, i.e., a proper submodule
which contains all other proper submodules, then M is called a local module. Any
local module is indecomposable. By [14, Theorem 41.4], a nonzero module M is
local if and only if M is hollow (i.e., every proper submodule of M is small) and
cyclic.

Proposition 2.9. Let U be a submodule of a module M and assume that M is
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U-semipotent. Then the following are equivalent for a submodule N of M with
N ZU:

(1) N is indecomposable.

(2) For any submodule A of N with AZ U, A= N.

(3) N is local.

Proof. (3)=(1) It is obvious.

(1)=(2) Let A < N with A € U. Then there exists a summand B of M such
that B < A and B € U. So B is a summand of N. If B = 0, then B < U, a
contradiction. Then B = N. This implies that A = N.

(2)=(3) Since N Z U, by (2), N is cyclic. Now let K be a proper submodule of
N and N = K + L for some L. We claim that L = N. Assume L < U. If K < U,
then N = U, a contradiction. If K € U, then K = N, again a contradiction. Hence,
L Z U and so L = N. By [14, Theorem 41.4], N is local. O

Proposition 2.10. If M is Rad(M)-semipotent, then every indecomposable sum-
mand N of M with N € Rad(M) is local.

Proof. Let N be an indecomposable summand of M with N ¢ Rad(M). We
claim that for every proper submodule K of N, K < Rad(N). Let K be a proper
submodule of N and assume K ¢ Rad(N). Since Rad(N) = N NRad(M), K ¢
Rad(M). Since M is Rad(M)-semipotent, there exists a summand X of M such that
X < K and X ¢ Rad(M). Then X is a summand of N. Since N is indecomposable,
we have X = N = K, a contradiction. Hence, N is local. O

Proposition 2.11. Let U be a projection-invariant submodule of a module M. If
M is U-semipotent, then for any indecomposable summand (A + U)/U of M/U,
there exists a summand P of M such that P < A and (P+U)/U =(A+U)/U.

Proof. Let (A+ U)/U be an indecomposable summand of M/U. Then A € U.
Since M is U-semipotent, there exists a summand P of M such that P < A and
P Z U. Since U is projection-invariant, (P+U)/U is a summand of M /U and then
a summand of (A+ U)/U. Since (P+U)/U #0, (P+U)/U=(A+U)/U. O

3 U-Semiregular and U-Semiperfect Modules

Let U be a submodule of a module M. M is called U-semiperfect (U-semiregular,
respectively) if for any (finitely generated) submodule N of M, there exists a de-
composition M = A @ B such that A is projective, A < N and NN B < U. If
U is a projection-invariant submodule of M, then this is equivalent to that for any
(finitely generated) submodule N of M, there exists a decomposition N = A @ B
such that A is a projective summand of M and B < U (see also [1] and [12]).
Clearly, U-semiperfect modules are U-semiregular. Note that M is semiregular if
and only if M is Rad(M)-semiregular. If M is projective and Rad(M) <« M, then
M is semiperfect if and only if M is Rad(M)-semiperfect.

Let U and N be any submodules of a module M. Following [11], we say that U
respects N if there exists a summand A of M contained in IV such that M = A® B
and BNN <U.
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Lemma 3.1. Let U be a projection-invariant submodule of M and N any sub-
module of a module M. Then the following are equivalent:
(1) U respects N.
(2) There exists a summand A of M contained in N such that N = A ® B and
B<U.
(3) There exists 72 = 7 in Endg(M) with (M)m < N such that (N)(1—-7) <U.

Proof. By Lemma 1.1, it is obvious.

Recall that a module M is called lifting (or (D1)) (see [7]) if for any submodule
N of M, N has a decomposition N = A ® B, where A <% M and B < M. Then
B < Rad(M). Hence, if M is lifting, then Rad(M) respects every submodule of M.

First we want to characterize U-semiregular modules. Clearly, if M is U-semi-
regular, then U respects every finitely generated submodule of M. If M is projective,
then the converse is true.

Theorem 3.2. Let U be a projection-invariant submodule of a module M and
M = M/U. Consider the following conditions:
(1) (i) Every finitely generated submodule of M is a summand.
(ii) If M = A® B, where A is finitely generated, then there exists a decom-
position M = P @ @Q such that P < A, P = A and Q = B.
(2) U respects every finitely generated submodule of M.
Then (1)=(2); and (2)=-(1) if M is self-projective.

Proof. (1)=(2) Let N be a finitely generated submodule of M. Then M = N & B
for some submodule B. By hypothesis, M = P @ Q such that P < N, P = N,
Q=B.Snce N=P+(NNU)and U = (UNP)®(UNQ), we have QNN < U.
So (2) follows.

(2)=(1)(i) Let X/U < M/U be finitely generated. Choose a finitely generated
submodule N of M such that X/U = (N +U)/U. By (2), M = A® B such that
A< Nand BNN <U. Then X/U = (A+U)/U. Since U = (UNA)® (UN B)
and (B+U)N(A+U)=(B+UNA)N(A+UNB))=U, weget A®B =M.
So X is a summand of M.

For (i), let M = A @ B, where A is finitely generated. Let N be a finitely
generated submodule of A such that A = N. Then M = C @ D such that C < N
and DNN <U. Since N=C®(DNN),M =(A+U)+B=(C+U)+ B. Since
C' is a summand of M and M is self-projective, there exists a summand @) of M
such that M = C® Q and Q < U + B [14, 41.14]. Now it can be seen that C' < A,
C=Aand Q = B. O

Corollary 3.3. Let U be a projection-invariant submodule of a projective module
M and M = M/U. Then the following are equivalent:
(1) M is U-semiregular.
(2) (i) Every finitely generated submodule of M is a summand.
(ii) If M = A® B, where A is finitely generated, then there exists a decom-
position M = P& Q such that P< A, P=A and Q = B.
In addition, if M is finitely generated, then they are equivalent to
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(3) (i) Every finitely generated submodule of M is a summand.
(ii) U is strongly lifting.

Corollary 3.4. Let U be a submodule of a module M. If M is U-semiregular,
then M is U-semipotent. If in addition, M is finitely generated and self-projective,
then M is U-potent.

Proof. Let A be a submodule of M with A Z U. Let a € A\U. Then M = X @Y,
where X < Ra and Y N Ra < U. This implies that Ra = X @ (Y N Ra) and so
X € U. Hence, M is U-semipotent. If M is finitely generated self-projective, by
the proof of (2)=-(1)(ii) in Theorem 3.2, U is strongly lifting. O

U-semipotent modules need not be U-semiregular even if M/U is regular (see
[11, Example 52]).

Proposition 3.5. Let U be a proper submodule of a module M. If M is inde-
composable and Rad(M) <« M, then the following are equivalent:

(1) U respects every finitely generated submodule of M.

(2) M is U-semipotent.

(3) M is local and U = Rad(M).

Proof. (1)=-(2) By the proof of Corollary 3.4.

(2)=-(3) By Proposition 2.9, M is local. Since Rad(M) is maximal, we have
U < Rad(M). Now let x € Rad(M) \ U. Then there exists a summand B of M
such that B < Rx and B € U. Since Rxr < M, we have B < M. Then B =0, a
contradiction. Hence, Rad(M) = U.

(3)=(1) Let N be a finitely generated submodule of M. If N = M, there is
nothing to prove. Assume N # M. Then N < Rad(M). Hence, the decomposition
M = 0@ M completes the proof. O

In [1, Proposition 2.2], it is proved that for any fully invariant submodule U of
M, M is U-semiregular if and only if for any x € M, there exists a regular element
y € Rz such that x —y € U and Rz = Ry @ R(z — y). The same proof shows that
the condition “Rx = Ry @ R(x — y)” is removable, even for a projection-invariant
submodule U of M. We give below its proof for completeness. Also, it is proved in
[1, Corollary 2.7] that with some conditions, M is U-semiregular if and only if for
any x € M, there exists a regular element y € M such that x —y € U.

Theorem 3.6. Let U be a projection-invariant submodule of a module M. Then
the following are equivalent:

(1) M is U-semiregular.

(2) For any x € M, there exists a regular element y € Rx such that x —y € U.

Proof. (1)=-(2) See the proof of (2)=-(4) in [1, Proposition 2.2].

(2)=(1) Let z and y be as in (2) and let & € Hompg(M, R) be such that (ya)y
= y. Then by [8, Lemma 1.1], M = Ry & W, where W = {w € M | (wa)y = 0}.
Hence, Rz = Ry ® (ReN'W). Let # : M — W be the projection map. Then
RenNW = (RxenNW)r = (Rz)r = (R(x —y))r <Ur <U. O
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Now we consider U-semiperfect modules. If M is U-semiperfect, then U respects
every submodule of M. If M is projective, then the converse is true. The following
theorem generalizes Theorem 36 in [11]. The proof of some of the implications is
similar to that of [11, Theorem 36] but we give it for completeness.

Theorem 3.7. Let U be a projection-invariant submodule of a module M, M =
M/U and S = Endr(M). Consider the following conditions:
1) M is semisimple and U is strongly lifting.
2) U respects every submodule of M.
) U respects every countably generated submodule of M.
) M is U-semipotent and U respects @52, (M )m; for any orthogonal idempotents
m; €S,
(5) M is U-semipotent and there is no infinite orthogonal family of idempotents
m; € S such that (M)m; Z U.
(6) M is U-semipotent and M is semisimple.
Then (1)=(2)=(3), (5)=(2)=(6). If M is self-projective, then (2)=-(1). If M is
finitely generated, then (3)=(4)=(5). If M is finitely generated and self-projective,
then (6)=(1).

Proof. (1)=(2) Let N be a submodule of M. Since M is semisimple, there exists
B < M such that U < B and M = N @ B. By hypothesis, M has a decomposition
M = P®Q such that P < N, P =N and Q = B. Now we show QNN < U. Since
N=NN(N+U)=NnN(P+U)=P+(NNU), we have QNN = QN(P+(NNT))
<QN(P+HPNU)+(QNU))=QN(P+(QNU))=(QNU)+(QNP)=QnU

(
(
(3
(4

)=-(1) By a proof similar to that of (2)=-(1) in Theorem 3.2.
)=(3) It is clear.
)=>(4) By the proof of Corollary 3.4.

(4)=(5) Assume that M is finitely generated. Let {m;}5°, be a family of orthog-
onal idempotents in S such that (M)m; € U. By (4), &2, (M)m; = A @ B, where
A is a summand of M and B < U. Since A is finitely generated, A is contained
in @, (M)m; for some n. Then &2, (M)m;, = & (M)m; + B. Let k£ > n and
(m)m = (m1)m+- - -+ (myp)mp+b, where m,m; € M,i=1,... ,nand b € B. Then
(m)m, = (b)my. Since U is projection-invariant, (m)m, € U. Hence, (M)m, < U, a
contradiction.

(5)=(2) Assume that (2) is not satisfied. By Lemma 3.1, there exists N < M
such that N N (M)(1 — ) € U for all 72 = 7 € S with (M)r < N. Since
N ¢ U, there exists a summand A; of M such that A1 < N and A; € U. Let
M = Ay @ By and let m; : M — A; be the projection onto A; along Bi. Then
N=M)m & (NNB;y)and Ny = NNB; € U. Let As be a summand of M such
that Ao < Ny and Ay ZU. If M = Ay ® By and o : M — Aj is the projection onto
As along B, then am; = 0. Let mg = (1 — 71)a. Then {m, w2} is an orthogonal
set such that (M)m; < N for i =1,2. Since amy = o, (M)my € U. Continuing the
construction, suppose that m,... ,m, are orthogonal idempotents in S such that
(M)m; < Nand (M)m; LU fori=1,... ,n. Let # =7 + -+ m,. Then 7 is an
idempotent, (M)r < N and so NN (M)(1 —7) € U. Let Y be a summand of M

<U.
(2
(2
(3
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suchthat Y < NN(M)(1—m)andY U. f M =Y @Y ' and 8: M — Y is the
projection onto Y along Y”, then let 7,11 = (1 — 7)5. This implies that {m, 7,41}
is an orthogonal set of idempotents in S such that (M)n € U and (M)mp41 € U
since fm,41 = [. Hence, my,... ,m,, mhy1 are orthogonal idempotents in S such
that (M)m; € U for i =1,... ,n+ 1, and by induction, we have a contradiction.

(2)=-(6) By the proof of Corollary 3.4, M is U-semipotent, and by the proof of
(2)=(1)(i) in Theorem 3.2, M is semisimple.

(6)=(1) Assume that M is finitely generated and self-projective. Let M = A®B.
We show that there exists a decomposition M = P @ @Q such that P < A, P = A
and Q = B.

If ACU, then M = B and hence M = 0® M is the desired decomposition.

If A Z U, then there exists a summand Y; of M such that Y} < Aand Y} € U.
Let W; be such that M =Y, @ W;. Then A=Y, & (AN W).

If ANW; CU, then (A+U)/U = (Y1 +U)/U. Also, we have M = A+ B+ U
=Yi+(AnNnW1)+B+U=Y;+ B+ U. Since M is self-projective, there exists a
submodule X C B + U such that M =Y; @ X by [14, 41.14]. Since M = A® X =
A@ B, wehave X = B. Thus, weobtain M =Y, ®X,Y; <A, Y; =Aand X = B.

If ANW; € U, then there exists a summand Y5 of M such that Yo < AN W,
and Yo € U. Let Wy be such that M =Y, @ Wy. Then W7 = Ys @ (W7 N Ws). So
Miyl@Wl :Yl@YQ@(Wl ﬂWg) 1mphes that Aiyl@Y2@<AﬂW1 ﬂWg)
This process produces a strictly ascending chain Y; C Y] @Yy C --- € M. Since
M is Noetherian, this process must stop so that AN Wi N...N W, C U for some
positive integer n. Hence, the proof is completed. O

Corollary 3.8. Let M be projective and U a projection-invariant submodule of
M. The following are equivalent:

(1) M is U-semiperfect.

(2) M/U is semisimple and U is strongly lifting.

Now we characterize semiperfect modules. Recall that a projective module M
with Rad(M) <« M is semiperfect if and only if Rad(M) respects every submodule
of M.

A ring R is called clean if every element of R is written as the sum of an
idempotent and a unit in R. A module M is called discrete if M is lifting and if
for any submodule A of M such that M/A is isomorphic to a summand of M, A is
a summand of M (see [7]).

Theorem 3.9. Let M be a projective module with Rad(M) <« M and let S =
Endgr(M). Consider the following conditions:
(1) Every indecomposable summand of M is local and there is no infinite orthog-
onal family of idempotents m; € S such that (M)m; € Rad(M).
(2) Endgr(M) is clean and there is no infinite orthogonal family of idempotents
m; € S such that (M)m; € Rad(M).
(3) M has the finite exchange property and there is no infinite orthogonal family
of idempotents m; € S such that (M)m; € Rad(M).
(4) M is semiperfect.
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Then (1)< (2)<(3)=(4). In addition, if M is finitely generated, then (4)=(1).

Proof. (1)=-(2) Since there is no infinite orthogonal family of idempotents m; € S
such that (M)m; € Rad(M), M is a finite direct sum of indecomposable submodules
M; such that M; Z Rad(M). Then each M; is local. By [7, Corollary 4.54], M is
discrete. By [4, Corollary 4.2], Endg(M) is clean.

(2)=-(3) Since Endr (M) is clean, M has the finite exchange property by Propo-
sition 1.8 and Theorem 2.1 in [9].

(3)=(1) By Propositions 2.8 and 2.10, every indecomposable summand of M is
local.

(1)=-(4) By Corollaries 4.54 and 4.43 in [7], M is semiperfect.

(4)=(1) Assume that M is finitely generated. By Theorem 3.7 and Proposi-
tion 2.10, (1) holds. O

A ring R is called I-finite if R has no infinite set of orthogonal idempotents. If
rR has the finite exchange property, then R is called an exchange ring.

By Theorems 3.7 and 3.9, we have the following corollary. For the equivalences
of (1)—(4), see [10], and the equivalences of (1), (5) and (6) are given in [5].

Corollary 3.10. The following are equivalent for a ring R:
(1) R is semiperfect.
(2) R is semipotent and R/J(R) is semisimple.
(3) R is semipotent and I-finite.
(4) Every primitive idempotent in R is local and R is I-finite.
(5)
(6)

6

R is clean and I-finite.
R is an exchange ring and I-finite.

4 Every Projective Module is 7( )-Semiperfect

A functor 7 from R-Mod to itself is called a preradical on R-Mod if it satisfies the
following properties:

(i) 7(M) is a submodule of M for every left R-module M.

(ii) If f: M’ — M is a homomorphism in R-Mod, then f(r(M')) < 7(M) and
7(f) is the restriction of f to 7(M’).

Note that any fully invariant submodule defines a preradical (see [13]).

In this section, we characterize rings R for which every projective R-module M
is 7(M)-semiperfect for some preradicals 7 on R-Mod.

By definition, every projective module M is 7(M )-semiperfect if and only if for
every projective module M, 7(M) respects every submodule of M.

Now we consider the preradical Rad. It is well known that a ring R is left
perfect if and only if every projective left R-module is semiperfect (see Theorem
4.41 and Corollary 4.43 in [7]). Also, if a projective module M is semiperfect, then
M is Rad(M)-semiperfect. The converse is true if Rad(M) <« M. The following
theorem may be known but we do not have a reference.

Theorem 4.1. Let R be a ring. Then the following are equivalent:
(1) Every projective left R-module M is Rad(M)-semiperfect.



A Generalization of Semiregular and Semiperfect Modules 677

(2) R is left perfect.

Proof. (2)=(1) It is clear.

(1)=(2) By the above remark, it is enough to prove that for any projective R-
module P, Rad(P) <« P. Let Y be a submodule of P such that P = Rad(P)+Y. By
hypothesis, P = A® B, where A <Y and BNY < Rad(P). ThenY = A@(BNY)
and so P = Rad(P) + A. Since A is a summand of P, there exists a submodule X
of Rad(P) such that P = X @ A by [14, 41.14]. Then Rad(X) = X NRad(P) = X.
Since X is projective, X =0. So P =Y. O

For the singular submodule Z(M) of a module M, the following theorem is given
in [15, Proposition 3.3].

Theorem 4.2. Let R be a ring. Then the following are equivalent:
(1) Every projective left R-module M is Z(M)-semiperfect.
(2) R is left perfect and Z(rR) = J(R).

There exists a left perfect ring R with Z(gR) # J(R), for example, the ring of
2 x 2 upper triangular matrices over a field. Hence, this ring does not satisfy (1) of
Theorem 4.2.

Note also that in [12, Corollary 3.8], it is proved that R is a QF-ring (i.e., every
projective R-module is injective) if and only if every left R-module M is Z(M)-
semiperfect.

For the Goldie torsion submodule, we have the following result.

Theorem 4.3. Let R be a ring. The following are equivalent:
(1) R is Za(rR)-semiperfect.
(2) For any module pM, M = Z3(M) ® X, where pX is semisimple.
(3) Every nonsingular left R-module is injective.
(4) Every projective left R-module M is Zy(M)-semiperfect.
(5) Every left R-module M is Zy(M)-semiperfect.

Proof. The equivalences of (1)—(4) are given by [11, Theorem 49].

(5)=(1) It is clear.

(1)=(5) Let M be an R-module and N a submodule of M. Then by (2), N =
Z5(N)® X for some semisimple submodule X. So X is nonsingular and projective.
By (3), X is injective and hence a projective summand of M. It follows that N has
a decomposition N = A & B such that A <® M, A is projective and B < Zy(M).
Hence, M is Zs(M)-semiperfect. O

Lemma 4.4. If R is Za(rR)-semiperfect and Z3(rR) is injective, then every
finitely generated projective left R-module is injective. In particular, R is left self-
injective.

Proof. Let P be a finitely generated projective left R-module. Then P is a summand
of a finitely generated free R-module. Since Z3(gR) is injective, we have that Z5(P)
is injective. Hence, P = Z3(P) @ X for some submodule X. On the other hand,
P/Z5(P) is injective by Theorem 4.3. Then X is injective and so P is injective. O

Theorem 4.5. Let R be a ring. Then the following are equivalent:
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(1) R is Z(gR)-semiperfect and Zs(rR) is injective.
(2) R is Zo(rR)-semiperfect, Zo(rR) is injective and R is I-finite.
(3) R is semiperfect and left self-injective.

Proof. (1)=(2) By [15, Theorem 2.5], R is Z(rR)-semiperfect if and only if R is
semiperfect and J(R) = Z(gR). Hence, (2) follows.

(2)=(3) By Lemma 4.4, R is left self-injective. By [4, Corollary 3.12], any left
self-injective ring is clean. Hence, by Corollary 3.10, R is semiperfect.

(3)=(1) Since R is left self-injective, J(R) = Z(grR). Then R is Z(gR)-semi-
perfect. Since Z3(rR) is closed in R, we have that Zs(rR) is injective. O

Theorem 4.6. Let R be a ring. Then the following are equivalent:
(1) R is a QF-ring.
(2) R is Z3(rR)-semiperfect, and for every projective left R-module P, Z5(P) is
injective.
(3) R is Za(rR)-semiperfect, Zo(rR) is injective and R is left Noetherian.

Proof. We first assume (1), and prove (2) and (3). Since R is QF, R is semi-
perfect and J(R) = Z(grR) < Z3(gR). Then R is Z3(rR)-semiperfect. Let P be a
projective left R-module. Then P is injective. Since Z5(P) is closed in P, we have
Z5(P) <% P. Hence, Z5(P) is injective.

(2)=(1) Let P be a projective left R-module. Then P is a summand of a free
R-module R for some index set A. Since Zo(R™) is injective by hypothesis, this
implies that Zo(P) is injective. Hence, there exists a submodule X of P such that
P = Zy(P) ® X. Since P/Z3(P) is nonsingular, X is injective by Theorem 4.3.
Hence, P is injective.

(3)=(1) Let P be a projective left R-module. Then P is a summand of a free R-
module R™) for some index set A. Since R is left Noetherian, Zy(RM) = Zy(pR)WM)
is injective. Hence, Zs(P) is injective. By the proof of (2)=-(1), P is injective. O

Following [17], a submodule N of a module M is called d-small in M, denoted
by N «s M, if N + K # M for any submodule K of M with M /K singular. The
sum of all §-small submodules of M is a fully invariant submodule of M, and it is
denoted by 6(M). Also, (M) = N{N < M|M/N is singular simple}. Clearly,
Rad(M) < §(M). A pair (P,p) is called a projective d-cover of the module M if P
is projective and p is an epimorphism of P onto M with ker(p) <5 P. A ring R
is called d-semiperfect if every simple R-module has a projective d-cover. A ring R
is called left d-perfect if every left R-module has a projective d-cover (see [17]). In
the following theorem, we give a new characterization of a left J-perfect ring.

Theorem 4.7. Let R be a ring. Then the following are equivalent:
(1) Every projective left R-module M is §(M)-semiperfect.
(2) R is left d-perfect.

Proof. (2)=(1) Let R be a left §-perfect ring. Then for any submodule N of a
projective module P, P/N has a projective d-cover. By [17, Lemma 2.4], P is
§(P)-semiperfect.
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(1)=(2) If every projective left R-module M is 6(M)-semiperfect, then R is
d-semiperfect, and so idempotents lift modulo 6(zR) by [17, Theorem 3.6]. By [17,
Theorem 3.8], it is enough to prove that R = R/Soc(rR) is left perfect. Since
J(R) = §(rR)/Soc(rR), R/J(R) is semisimple.

We claim that for every projective left R-module P, §(P) <5 P. Let P be a
projective R-module and P = §(P) + Y, where P/Y is singular. By hypothesis,
P=A@Bsuchthat A<Y and BNY <§(P). ThenY = A (BNY) and so
P=§P)+Y =46(P)+ A. Since A is a summand of P, there exists a submodule
X < §(P) such that P = X & A by [14, 41.14]. Since 6(X) = X N§(P) = X,
X is semisimple projective by [12, Proposition 2.13]. Since P/Y is an epimorphic
image of P/A = X, P/Y is projective. Since it is singular, we have P =Y. Hence,
d(P) <s P.

Now by the proof of [17, Theorem 3.7], it can be seen that J(R) is left T-
nilpotent. By [2, Theorem 28.4], R is left perfect. 0

By [12, Corollary 3.10], R is semisimple if and only if every left R-module M is
d(M)-semiperfect, if and only if every left R-module M is §(M )-semiregular.

For the socle, the following results are given in Corollaries 2.24 and 3.5 of [12]:
Every projective left R-module M is Soc(M )-semiperfect if and only if R is Soc(gR)-
semiperfect. R is a QF-ring with J(R)? = 0 if and only if J(R) < Z(gR) and every
left R-module M is Soc(M )-semiperfect.

Finally, we note that for an ideal I of a ring R, R is I-semiperfect if and only if
every finitely generated projective R-module M is I M-semiperfect by [12, Corollary
2.11].
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