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Abstract. Let U be a submodule of a module M . We call U a strongly lifting submodule
of M if whenever M/U = (A + U)/U ⊕ (B + U)/U , then M = P ⊕ Q such that P ≤ A,
(A + U)/U = (P + U)/U and (B + U)/U = (Q + U)/U . This definition is a generalization
of strongly lifting ideals defined by Nicholson and Zhou. In this paper, we investigate some
properties of strongly lifting submodules and characterize U -semiregular and U -semiperfect
modules by using strongly lifting submodules. Results are applied to characterize rings R
satisfying that every (projective) left R-module M is τ(M)-semiperfect for some preradicals
τ such as Rad, Z2 and δ.
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1 Introduction

Semiregular and semiperfect rings were generalized to I-semiregular and I-semi-
perfect rings for an ideal I of a ring R by Yousif and Zhou [15]. After that Nicholson
and Zhou [11] defined the concept of strongly lifting left ideals. A left ideal I is
called strongly lifting (or idempotents lift strongly modulo I) if whenever a2−a ∈ I,
there exists e2 = e ∈ Ra (equivalently, e2 = e ∈ aR) such that e−a ∈ I. Then they
proved that a ring R is I-semiregular (I-semiperfect, respectively) if and only if
R/I is regular (semisimple) and I is strongly lifting. Note that being I-semiregular
or I-semiperfect for an ideal I of a ring R is left-right symmetric by Theorems 28
and 36 in [11].

In [1] and [12], U -semiregular and U -semiperfect modules are defined as module
theoretic versions of I-semiregular and I-semiperfect rings by considering any fully
invariant submodule U of a module, and so some properties of I-semiregular and
I-semiperfect rings are generalized to modules.
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In Section 2, we investigate strongly lifting submodules and U -semipotent mod-
ules for a submodule U of a module. We call a submodule U of a module M strongly
lifting if whenever M/U = (A + U)/U ⊕ (B + U)/U , then M has a decomposition
M = P⊕Q such that P ≤ A, (A+U)/U = (P +U)/U and (B+U)/U = (Q+U)/U .
We prove that an ideal I of a ring R is a strongly lifting ideal if and only if I is a
strongly lifting submodule of RR (Proposition 2.2). M is called U -semipotent if for
every submodule A of M such that A 6⊆ U , there exists a summand B of M such
that B ≤ A and B 6⊆ U . We prove that if U ≤ M and M is U -semipotent, then for
any submodule N of M with N 6⊆ U , N is indecomposable if and only if N is local
(Proposition 2.9).

In Section 3, we give a new characterization of U -semiregular and U -semiperfect
modules by considering strongly lifting submodules for a projection-invariant sub-
module U . We prove that if M is finitely generated and projective, then M is U -
semiregular if and only if every finitely generated submodule of M/U is a summand
and U is strongly lifting (Corollary 3.3). If M is projective, then M is U -semiperfect
if and only if M/U is semisimple and U is strongly lifting (Corollary 3.8).

In Section 4, rings R satisfying the property that every (projective) R-module
M is τ(M)-semiperfect are characterized for some preradicals τ such as Rad, Z2

and δ. We prove that every left R-module M is Z2(M)-semiperfect if and only if
R is Z2(RR)-semiperfect; every projective left R-module M is δ(M)-semiperfect if
and only if R is left δ-perfect; and a ring R is Z(RR)-semiperfect and Z2(RR) is
injective if and only if R is semiperfect and left self-injective.

Throughout this paper, R denotes an associative ring with identity and modules
M are unitary left R-modules. For a module M , Rad(M), Soc(M), Z(M) and
Z2(M) are the Jacobson radical, the socle, the singular submodule and the Goldie
torsion submodule of M , respectively. We write J(R) for the Jacobson radical of
R. A submodule N of M is called small in M , denoted by N ¿ M , whenever for
any submodule L of M , N + L = M implies L = M . For a (direct) summand K
of M , we write K ≤⊕ M . An element x in M is called regular if (xα)x = x for
some α ∈ M∗. Zelmanowitz [16] calls a module regular if each of its elements is
regular, equivalently, if every finitely generated submodule is a projective summand.
A submodule U of M is called projection-invariant if for every projection π of M ,
(U)π ≤ U .

Lemma 1.1. [6, Exercise 4.d, p. 50] Let M = M1⊕M2 and U be any projection-
invariant submodule of M . Then U = (U ∩M1)⊕ (U ∩M2).

2 Strongly Lifting Submodules and U-Semipotent Modules

Definition 2.1. Let U be a submodule of a module M . U is called a strongly
lifting submodule of M if whenever M/U = (A + U)/U ⊕ (B + U)/U , then M has
a decomposition M = P ⊕ Q such that P ≤ A, (A + U)/U = (P + U)/U and
(B + U)/U = (Q + U)/U .

Proposition 2.2. Let I be an ideal of R, R = R/I and r = r + I for any r ∈ R.
The following are equivalent:

(1) I is strongly lifting.



A Generalization of Semiregular and Semiperfect Modules 669

(2) I is a strongly lifting submodule of RR.

Proof. (1)⇒(2) Let R = A ⊕ B. Let 1 = a + b, where a ∈ A and b ∈ B. Then a
and b are orthogonal idempotents. By [11, Proposition 11], there exist orthogonal
idempotents e1 and e2 in R such that e1 = a, e2 = b and e1 ∈ Ra, e2 ∈ Rb. Then
R = Re1⊕R(1−e1) and Re1 ≤ Ra, Re1 = Ra = A, R(1−e1) = R(1−a) = Rb = B.
Hence, (2) holds.

(2)⇒(1) Let e2 = e ∈ R. Then R = Re⊕R(1− e). By hypothesis, R = P ⊕Q,
where P ≤ Re, P = Re and Q = R(1− e). Then there exists an idempotent f in
R such that P = Rf and Q = R(1 − f). Since P = Rf = Re, we have f = ae
and e = bf for some a, b in R. This implies that ef = e. Since Q = R(1− f) and
f = ef + (1− e)f , we have f = e. Hence, I is strongly lifting. 2

Proposition 2.3. Let M be a self-projective module and U ≤ M . If U is a
summand of M , then U is strongly lifting.

Proof. Let N be such that M = U ⊕N , and M/U = (A+U)/U ⊕ (B +U)/U . Let
f : N → M/U be the isomorphism. Then there exist submodules B1 and B2 of N
such that f(B1) = (A + U)/U = (B1 + U)/U , f(B2) = (B + U)/U = (B2 + U)/U .
Then M/U = (B1 +U)/U⊕(B2 +U)/U . Since B1∩B2 ≤ (B1 +U)∩(B2 +U) = U ,
B1∩B2 = 0. Also, N = B1+B2. Hence, M = U⊕N = U⊕B1⊕B2. Since U⊕B1 =
U +A is self-projective, there exists a submodule L of A such that U ⊕B1 = U ⊕L
by [14, 41.14]. Thus, M = U ⊕L⊕B2, where L ≤ A, (L + U)/U = (A + U)/U and
(B2 + U)/U = (B + U)/U , i.e., U is strongly lifting. 2

A left R-module M is said to have the exchange property if for any module X
and decompositions X = M ′⊕Y = ⊕i∈INi, where M ′ ' M , there exist submodules
N ′

i ≤ Ni for each i such that X = M ′ ⊕ (⊕N ′
i). If this condition holds for finite

sets I (equivalently, for |I| = 2), the module M is said to have the finite exchange
property. Note that a self-projective module M has the finite exchange property if
and only if whenever M = A + B, there exists a decomposition M = P ⊕ Q such
that P ≤ A and Q ≤ B [3, Theorem 3].

Theorem 2.4. Let M be a self-projective module. Then the following are equiv-
alent:

(1) M has the finite exchange property.
(2) Every submodule of M is strongly lifting.

Proof. (1)⇒(2) Let N ≤ M and M/N = (A + N)/N ⊕ (B + N)/N . Then M =
A+B +N . By [3, Theorem 3], there is a decomposition M = P1⊕P2 with P1 ≤ A
and P2 ≤ B + N . Then (P1 + N)/N = (A + N)/N and (P2 + N)/N = (B + N)/N .
Hence, N is strongly lifting.

(2)⇒(1) Let M = M1 + M2 and N = M1 ∩M2. Since M/N = M1/N ⊕M2/N ,
there is a decomposition M = P ⊕Q such that P ≤ M1, (P + N)/N = M1/N and
(Q+N)/N = M2/N . Then Q ≤ M2. By [3, Theorem 3], M has the finite exchange
property. 2

Definition 2.5. Let U be a submodule of M . M is called U -semipotent if for
every submodule A of M such that A 6⊆ U , there exists a summand B of M such
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that B ≤ A and B 6⊆ U . A ring R is called semipotent if R is J(R)-semipotent. M
is called U -potent if M is U -semipotent and U is a strongly lifting submodule of
M .

There exists a U -semipotent module M , where U is not strongly lifting (see [11,
Example 23]).

Hence, M is 0-potent if every nonzero submodule of M contains a nonzero
summand of M . Every regular module is 0-potent. In fact, let M be regular and
0 6= A ≤ M . Then there exist 0 6= a ∈ A and α ∈ HomR(M, R) such that (aα)a = a.
This implies that Ra is a nonzero summand of M in A.

On the other hand, modules M with zero radical and essential socle are 0-potent.
In fact, let 0 6= A ≤ M . Then A contains a simple submodule S. Since S is not
small in M , S is a summand of M .

Proposition 2.6. Let U be a projection-invariant submodule of a module M . If
M is U -semipotent, then M/U is 0-potent. The converse holds if U is strongly
lifting.

Proof. Let 0 6= A/U ≤ M/U . Then A 6⊆ U , and by hypothesis there exists a
summand B of M such that B ≤ A and B 6⊆ U . Let B′ be such that M = B ⊕B′.
Since U is projection-invariant, U = (B∩U)⊕(B′∩U) by Lemma 1.1. This implies
that (B + U)∩ (B′ + U) = [B + (B′ ∩U)]∩ [B′ + (B ∩U)] = U . Hence, (B + U)/U
is a nonzero summand of M/U in A/U . The converse is clear. 2

Proposition 2.7. Let U be a submodule of M . If M is U -semipotent, then for
every submodule N of M with N 6⊆ U , N is U ∩N -semipotent.

Proof. Assume that M is U -semipotent. Let N ≤ M and X ≤ N be such that
X 6⊆ U ∩N . Then X 6⊆ U . By assumption, there exists a summand Y of M such
that Y ≤ X and Y 6⊆ U . Then Y is a summand of N such that Y ≤ X and
Y 6⊆ U ∩N . Hence, N is U ∩N -semipotent. 2

Proposition 2.8. If a module M is self-projective with the finite exchange prop-
erty, then M is Rad(M)-semipotent.

Proof. Let N ≤ M be such that N 6⊆ Rad(M). Let n ∈ N \ Rad(M). Then there
exists a maximal submodule K of M such that M = Rn + K. By [3, Theorem 3],
there is a decomposition M = P⊕Q such that P ≤ Rn and Q ≤ K. If P ≤ Rad(M),
then P ≤ K, and so M = K, a contradiction. Hence, P 6⊆ Rad(M), and so the
proof is completed. 2

A module M is called indecomposable if M 6= 0 and it is not a direct sum of two
nonzero submodules. If M has a largest proper submodule, i.e., a proper submodule
which contains all other proper submodules, then M is called a local module. Any
local module is indecomposable. By [14, Theorem 41.4], a nonzero module M is
local if and only if M is hollow (i.e., every proper submodule of M is small) and
cyclic.

Proposition 2.9. Let U be a submodule of a module M and assume that M is
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U -semipotent. Then the following are equivalent for a submodule N of M with
N 6⊆ U :

(1) N is indecomposable.
(2) For any submodule A of N with A 6⊆ U , A = N .
(3) N is local.

Proof. (3)⇒(1) It is obvious.
(1)⇒(2) Let A ≤ N with A 6⊆ U . Then there exists a summand B of M such

that B ≤ A and B 6⊆ U . So B is a summand of N . If B = 0, then B ≤ U , a
contradiction. Then B = N . This implies that A = N .

(2)⇒(3) Since N 6⊆ U , by (2), N is cyclic. Now let K be a proper submodule of
N and N = K + L for some L. We claim that L = N . Assume L ≤ U . If K ≤ U ,
then N = U , a contradiction. If K 6⊆ U , then K = N , again a contradiction. Hence,
L 6⊆ U and so L = N . By [14, Theorem 41.4], N is local. 2

Proposition 2.10. If M is Rad(M)-semipotent, then every indecomposable sum-
mand N of M with N 6⊆ Rad(M) is local.

Proof. Let N be an indecomposable summand of M with N 6⊆ Rad(M). We
claim that for every proper submodule K of N , K ≤ Rad(N). Let K be a proper
submodule of N and assume K 6⊆ Rad(N). Since Rad(N) = N ∩ Rad(M), K 6⊆
Rad(M). Since M is Rad(M)-semipotent, there exists a summand X of M such that
X ≤ K and X 6⊆ Rad(M). Then X is a summand of N . Since N is indecomposable,
we have X = N = K, a contradiction. Hence, N is local. 2

Proposition 2.11. Let U be a projection-invariant submodule of a module M . If
M is U -semipotent, then for any indecomposable summand (A + U)/U of M/U ,
there exists a summand P of M such that P ≤ A and (P + U)/U = (A + U)/U .

Proof. Let (A + U)/U be an indecomposable summand of M/U . Then A 6⊆ U .
Since M is U -semipotent, there exists a summand P of M such that P ≤ A and
P 6⊆ U . Since U is projection-invariant, (P +U)/U is a summand of M/U and then
a summand of (A + U)/U . Since (P + U)/U 6= 0, (P + U)/U = (A + U)/U . 2

3 U-Semiregular and U-Semiperfect Modules

Let U be a submodule of a module M . M is called U -semiperfect (U -semiregular,
respectively) if for any (finitely generated) submodule N of M , there exists a de-
composition M = A ⊕ B such that A is projective, A ≤ N and N ∩ B ≤ U . If
U is a projection-invariant submodule of M , then this is equivalent to that for any
(finitely generated) submodule N of M , there exists a decomposition N = A ⊕ B
such that A is a projective summand of M and B ≤ U (see also [1] and [12]).
Clearly, U -semiperfect modules are U -semiregular. Note that M is semiregular if
and only if M is Rad(M)-semiregular. If M is projective and Rad(M) ¿ M , then
M is semiperfect if and only if M is Rad(M)-semiperfect.

Let U and N be any submodules of a module M . Following [11], we say that U
respects N if there exists a summand A of M contained in N such that M = A⊕B
and B ∩N ≤ U .
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Lemma 3.1. Let U be a projection-invariant submodule of M and N any sub-
module of a module M . Then the following are equivalent:

(1) U respects N .

(2) There exists a summand A of M contained in N such that N = A⊕B and
B ≤ U .

(3) There exists π2 = π in EndR(M) with (M)π ≤ N such that (N)(1− π) ≤ U .

Proof. By Lemma 1.1, it is obvious. 2

Recall that a module M is called lifting (or (D1)) (see [7]) if for any submodule
N of M , N has a decomposition N = A ⊕ B, where A ≤⊕ M and B ¿ M . Then
B ≤ Rad(M). Hence, if M is lifting, then Rad(M) respects every submodule of M .

First we want to characterize U -semiregular modules. Clearly, if M is U -semi-
regular, then U respects every finitely generated submodule of M . If M is projective,
then the converse is true.

Theorem 3.2. Let U be a projection-invariant submodule of a module M and
M = M/U . Consider the following conditions:

(1) (i) Every finitely generated submodule of M is a summand.

(ii) If M = A⊕ B, where A is finitely generated, then there exists a decom-
position M = P ⊕Q such that P ≤ A, P = A and Q = B.

(2) U respects every finitely generated submodule of M .

Then (1)⇒(2); and (2)⇒(1) if M is self-projective.

Proof. (1)⇒(2) Let N be a finitely generated submodule of M . Then M = N ⊕B
for some submodule B. By hypothesis, M = P ⊕ Q such that P ≤ N , P = N ,
Q = B. Since N = P + (N ∩ U) and U = (U ∩ P )⊕ (U ∩Q), we have Q ∩N ≤ U .
So (2) follows.

(2)⇒(1)(i) Let X/U ≤ M/U be finitely generated. Choose a finitely generated
submodule N of M such that X/U = (N + U)/U . By (2), M = A ⊕ B such that
A ≤ N and B ∩N ≤ U . Then X/U = (A + U)/U . Since U = (U ∩ A) ⊕ (U ∩ B)
and (B + U)∩ (A + U) =

(
B + (U ∩A)

)∩ (
A + (U ∩B)

)
= U , we get A⊕B = M .

So X is a summand of M .
For (ii), let M = A ⊕ B, where A is finitely generated. Let N be a finitely

generated submodule of A such that A = N . Then M = C ⊕D such that C ≤ N
and D ∩N ≤ U . Since N = C ⊕ (D ∩N), M = (A + U) + B = (C + U) + B. Since
C is a summand of M and M is self-projective, there exists a summand Q of M
such that M = C ⊕Q and Q ≤ U + B [14, 41.14]. Now it can be seen that C ≤ A,
C = A and Q = B. 2

Corollary 3.3. Let U be a projection-invariant submodule of a projective module
M and M = M/U . Then the following are equivalent:

(1) M is U -semiregular.

(2) (i) Every finitely generated submodule of M is a summand.

(ii) If M = A⊕ B, where A is finitely generated, then there exists a decom-
position M = P ⊕Q such that P ≤ A, P = A and Q = B.

In addition, if M is finitely generated, then they are equivalent to
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(3) (i) Every finitely generated submodule of M is a summand.
(ii) U is strongly lifting.

Corollary 3.4. Let U be a submodule of a module M . If M is U -semiregular,
then M is U -semipotent. If in addition, M is finitely generated and self-projective,
then M is U -potent.

Proof. Let A be a submodule of M with A 6⊆ U . Let a ∈ A \U . Then M = X⊕Y ,
where X ≤ Ra and Y ∩ Ra ≤ U . This implies that Ra = X ⊕ (Y ∩ Ra) and so
X 6⊆ U . Hence, M is U -semipotent. If M is finitely generated self-projective, by
the proof of (2)⇒(1)(ii) in Theorem 3.2, U is strongly lifting. 2

U -semipotent modules need not be U -semiregular even if M/U is regular (see
[11, Example 52]).

Proposition 3.5. Let U be a proper submodule of a module M . If M is inde-
composable and Rad(M) ¿ M , then the following are equivalent:

(1) U respects every finitely generated submodule of M .

(2) M is U -semipotent.

(3) M is local and U = Rad(M).

Proof. (1)⇒(2) By the proof of Corollary 3.4.
(2)⇒(3) By Proposition 2.9, M is local. Since Rad(M) is maximal, we have

U ≤ Rad(M). Now let x ∈ Rad(M) \ U . Then there exists a summand B of M
such that B ≤ Rx and B 6⊆ U . Since Rx ¿ M , we have B ¿ M . Then B = 0, a
contradiction. Hence, Rad(M) = U .

(3)⇒(1) Let N be a finitely generated submodule of M . If N = M , there is
nothing to prove. Assume N 6= M . Then N ≤ Rad(M). Hence, the decomposition
M = 0⊕M completes the proof. 2

In [1, Proposition 2.2], it is proved that for any fully invariant submodule U of
M , M is U -semiregular if and only if for any x ∈ M , there exists a regular element
y ∈ Rx such that x− y ∈ U and Rx = Ry ⊕R(x− y). The same proof shows that
the condition “Rx = Ry ⊕ R(x − y)” is removable, even for a projection-invariant
submodule U of M . We give below its proof for completeness. Also, it is proved in
[1, Corollary 2.7] that with some conditions, M is U -semiregular if and only if for
any x ∈ M , there exists a regular element y ∈ M such that x− y ∈ U .

Theorem 3.6. Let U be a projection-invariant submodule of a module M . Then
the following are equivalent:

(1) M is U -semiregular.

(2) For any x ∈ M , there exists a regular element y ∈ Rx such that x− y ∈ U .

Proof. (1)⇒(2) See the proof of (2)⇒(4) in [1, Proposition 2.2].
(2)⇒(1) Let x and y be as in (2) and let α ∈ HomR(M, R) be such that (yα)y

= y. Then by [8, Lemma 1.1], M = Ry ⊕W , where W = {w ∈ M | (wα)y = 0}.
Hence, Rx = Ry ⊕ (Rx ∩ W ). Let π : M → W be the projection map. Then
Rx ∩W = (Rx ∩W )π = (Rx)π = (R(x− y))π ≤ Uπ ≤ U . 2
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Now we consider U -semiperfect modules. If M is U -semiperfect, then U respects
every submodule of M . If M is projective, then the converse is true. The following
theorem generalizes Theorem 36 in [11]. The proof of some of the implications is
similar to that of [11, Theorem 36] but we give it for completeness.

Theorem 3.7. Let U be a projection-invariant submodule of a module M , M =
M/U and S = EndR(M). Consider the following conditions:

(1) M is semisimple and U is strongly lifting.
(2) U respects every submodule of M .
(3) U respects every countably generated submodule of M .
(4) M is U -semipotent and U respects⊕∞i=1(M)πi for any orthogonal idempotents

πi ∈ S.
(5) M is U -semipotent and there is no infinite orthogonal family of idempotents

πi ∈ S such that (M)πi 6⊆ U .
(6) M is U -semipotent and M is semisimple.

Then (1)⇒(2)⇒(3), (5)⇒(2)⇒(6). If M is self-projective, then (2)⇒(1). If M is
finitely generated, then (3)⇒(4)⇒(5). If M is finitely generated and self-projective,
then (6)⇒(1).

Proof. (1)⇒(2) Let N be a submodule of M . Since M is semisimple, there exists
B ≤ M such that U ≤ B and M = N ⊕B. By hypothesis, M has a decomposition
M = P ⊕Q such that P ≤ N , P = N and Q = B. Now we show Q∩N ≤ U . Since
N = N ∩(N +U) = N ∩(P +U) = P +(N ∩U), we have Q∩N = Q∩(P +(N ∩U))
≤ Q∩ (

P + (P ∩U) + (Q∩U)
)

= Q∩ (P + (Q∩U)) = (Q∩U) + (Q∩P ) = Q∩U
≤ U .

(2)⇒(1) By a proof similar to that of (2)⇒(1) in Theorem 3.2.
(2)⇒(3) It is clear.
(3)⇒(4) By the proof of Corollary 3.4.
(4)⇒(5) Assume that M is finitely generated. Let {πi}∞i=1 be a family of orthog-

onal idempotents in S such that (M)πi 6⊆ U . By (4), ⊕∞i=1(M)πi = A ⊕ B, where
A is a summand of M and B ≤ U . Since A is finitely generated, A is contained
in ⊕n

i=1(M)πi for some n. Then ⊕∞i=1(M)πi = ⊕n
i=1(M)πi + B. Let k > n and

(m)πk = (m1)π1+· · ·+(mn)πn+b, where m,mi ∈ M , i = 1, . . . , n and b ∈ B. Then
(m)πk = (b)πk. Since U is projection-invariant, (m)πk ∈ U . Hence, (M)πk ≤ U , a
contradiction.

(5)⇒(2) Assume that (2) is not satisfied. By Lemma 3.1, there exists N ≤ M
such that N ∩ (M)(1 − π) 6⊆ U for all π2 = π ∈ S with (M)π ≤ N . Since
N 6⊆ U , there exists a summand A1 of M such that A1 ≤ N and A1 6⊆ U . Let
M = A1 ⊕ B1 and let π1 : M → A1 be the projection onto A1 along B1. Then
N = (M)π1 ⊕ (N ∩ B1) and N1 = N ∩ B1 6⊆ U . Let A2 be a summand of M such
that A2 ≤ N1 and A2 6⊆ U . If M = A2⊕B2 and α : M → A2 is the projection onto
A2 along B2, then απ1 = 0. Let π2 = (1 − π1)α. Then {π1, π2} is an orthogonal
set such that (M)πi ≤ N for i = 1, 2. Since απ2 = α, (M)π2 6⊆ U . Continuing the
construction, suppose that π1, . . . , πn are orthogonal idempotents in S such that
(M)πi ≤ N and (M)πi 6⊆ U for i = 1, . . . , n. Let π = π1 + · · ·+ πn. Then π is an
idempotent, (M)π ≤ N and so N ∩ (M)(1 − π) 6⊆ U . Let Y be a summand of M
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such that Y ≤ N ∩ (M)(1− π) and Y 6⊆ U . If M = Y ⊕ Y ′ and β : M → Y is the
projection onto Y along Y ′, then let πn+1 = (1− π)β. This implies that {π, πn+1}
is an orthogonal set of idempotents in S such that (M)π 6⊆ U and (M)πn+1 6⊆ U
since βπn+1 = β. Hence, π1, . . . , πn, πn+1 are orthogonal idempotents in S such
that (M)πi 6⊆ U for i = 1, . . . , n + 1, and by induction, we have a contradiction.

(2)⇒(6) By the proof of Corollary 3.4, M is U -semipotent, and by the proof of
(2)⇒(1)(i) in Theorem 3.2, M is semisimple.

(6)⇒(1) Assume that M is finitely generated and self-projective. Let M = A⊕B.
We show that there exists a decomposition M = P ⊕ Q such that P ≤ A, P = A
and Q = B.

If A ⊆ U , then M = B and hence M = 0⊕M is the desired decomposition.
If A 6⊆ U , then there exists a summand Y1 of M such that Y1 ≤ A and Y1 6⊆ U .

Let W1 be such that M = Y1 ⊕W1. Then A = Y1 ⊕ (A ∩W1).
If A ∩W1 ⊆ U , then (A + U)/U = (Y1 + U)/U . Also, we have M = A + B + U

= Y1 + (A ∩W1) + B + U = Y1 + B + U . Since M is self-projective, there exists a
submodule X ⊆ B + U such that M = Y1 ⊕X by [14, 41.14]. Since M = A⊕X =
A⊕B, we have X = B. Thus, we obtain M = Y1⊕X, Y1 ≤ A, Y1 = A and X = B.

If A ∩W1 6⊆ U , then there exists a summand Y2 of M such that Y2 ≤ A ∩W1

and Y2 6⊆ U . Let W2 be such that M = Y2 ⊕W2. Then W1 = Y2 ⊕ (W1 ∩W2). So
M = Y1 ⊕W1 = Y1 ⊕ Y2 ⊕ (W1 ∩W2) implies that A = Y1 ⊕ Y2 ⊕ (A ∩W1 ∩W2).
This process produces a strictly ascending chain Y1 ⊂ Y1 ⊕ Y2 ⊂ · · · ⊂ M . Since
M is Noetherian, this process must stop so that A ∩W1 ∩ . . . ∩Wn ⊆ U for some
positive integer n. Hence, the proof is completed. 2

Corollary 3.8. Let M be projective and U a projection-invariant submodule of
M . The following are equivalent:

(1) M is U -semiperfect.

(2) M/U is semisimple and U is strongly lifting.

Now we characterize semiperfect modules. Recall that a projective module M
with Rad(M) ¿ M is semiperfect if and only if Rad(M) respects every submodule
of M .

A ring R is called clean if every element of R is written as the sum of an
idempotent and a unit in R. A module M is called discrete if M is lifting and if
for any submodule A of M such that M/A is isomorphic to a summand of M , A is
a summand of M (see [7]).

Theorem 3.9. Let M be a projective module with Rad(M) ¿ M and let S =
EndR(M). Consider the following conditions:

(1) Every indecomposable summand of M is local and there is no infinite orthog-
onal family of idempotents πi ∈ S such that (M)πi 6⊆ Rad(M).

(2) EndR(M) is clean and there is no infinite orthogonal family of idempotents
πi ∈ S such that (M)πi 6⊆ Rad(M).

(3) M has the finite exchange property and there is no infinite orthogonal family
of idempotents πi ∈ S such that (M)πi 6⊆ Rad(M).

(4) M is semiperfect.
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Then (1)⇔(2)⇔(3)⇒(4). In addition, if M is finitely generated, then (4)⇒(1).

Proof. (1)⇒(2) Since there is no infinite orthogonal family of idempotents πi ∈ S
such that (M)πi 6⊆ Rad(M), M is a finite direct sum of indecomposable submodules
Mi such that Mi 6⊆ Rad(M). Then each Mi is local. By [7, Corollary 4.54], M is
discrete. By [4, Corollary 4.2], EndR(M) is clean.

(2)⇒(3) Since EndR(M) is clean, M has the finite exchange property by Propo-
sition 1.8 and Theorem 2.1 in [9].

(3)⇒(1) By Propositions 2.8 and 2.10, every indecomposable summand of M is
local.

(1)⇒(4) By Corollaries 4.54 and 4.43 in [7], M is semiperfect.
(4)⇒(1) Assume that M is finitely generated. By Theorem 3.7 and Proposi-

tion 2.10, (1) holds. 2

A ring R is called I-finite if R has no infinite set of orthogonal idempotents. If
RR has the finite exchange property, then R is called an exchange ring.

By Theorems 3.7 and 3.9, we have the following corollary. For the equivalences
of (1)–(4), see [10], and the equivalences of (1), (5) and (6) are given in [5].

Corollary 3.10. The following are equivalent for a ring R:
(1) R is semiperfect.

(2) R is semipotent and R/J(R) is semisimple.

(3) R is semipotent and I-finite.

(4) Every primitive idempotent in R is local and R is I-finite.

(5) R is clean and I-finite.

(6) R is an exchange ring and I-finite.

4 Every Projective Module is τ ( )-Semiperfect

A functor τ from R-Mod to itself is called a preradical on R-Mod if it satisfies the
following properties:

(i) τ(M) is a submodule of M for every left R-module M .
(ii) If f : M ′ → M is a homomorphism in R-Mod, then f(τ(M ′)) ≤ τ(M) and

τ(f) is the restriction of f to τ(M ′).
Note that any fully invariant submodule defines a preradical (see [13]).
In this section, we characterize rings R for which every projective R-module M

is τ(M)-semiperfect for some preradicals τ on R-Mod.
By definition, every projective module M is τ(M)-semiperfect if and only if for

every projective module M , τ(M) respects every submodule of M .
Now we consider the preradical Rad. It is well known that a ring R is left

perfect if and only if every projective left R-module is semiperfect (see Theorem
4.41 and Corollary 4.43 in [7]). Also, if a projective module M is semiperfect, then
M is Rad(M)-semiperfect. The converse is true if Rad(M) ¿ M . The following
theorem may be known but we do not have a reference.

Theorem 4.1. Let R be a ring. Then the following are equivalent:
(1) Every projective left R-module M is Rad(M)-semiperfect.
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(2) R is left perfect.

Proof. (2)⇒(1) It is clear.
(1)⇒(2) By the above remark, it is enough to prove that for any projective R-

module P , Rad(P ) ¿ P . Let Y be a submodule of P such that P = Rad(P )+Y . By
hypothesis, P = A⊕B, where A ≤ Y and B∩Y ≤ Rad(P ). Then Y = A⊕ (B∩Y )
and so P = Rad(P ) + A. Since A is a summand of P , there exists a submodule X
of Rad(P ) such that P = X ⊕A by [14, 41.14]. Then Rad(X) = X ∩Rad(P ) = X.
Since X is projective, X = 0. So P = Y . 2

For the singular submodule Z(M) of a module M , the following theorem is given
in [15, Proposition 3.3].

Theorem 4.2. Let R be a ring. Then the following are equivalent:
(1) Every projective left R-module M is Z(M)-semiperfect.
(2) R is left perfect and Z(RR) = J(R).

There exists a left perfect ring R with Z(RR) 6= J(R), for example, the ring of
2× 2 upper triangular matrices over a field. Hence, this ring does not satisfy (1) of
Theorem 4.2.

Note also that in [12, Corollary 3.8], it is proved that R is a QF -ring (i.e., every
projective R-module is injective) if and only if every left R-module M is Z(M)-
semiperfect.

For the Goldie torsion submodule, we have the following result.

Theorem 4.3. Let R be a ring. The following are equivalent:
(1) R is Z2(RR)-semiperfect.
(2) For any module RM , M = Z2(M)⊕X, where RX is semisimple.
(3) Every nonsingular left R-module is injective.
(4) Every projective left R-module M is Z2(M)-semiperfect.
(5) Every left R-module M is Z2(M)-semiperfect.

Proof. The equivalences of (1)–(4) are given by [11, Theorem 49].
(5)⇒(1) It is clear.
(1)⇒(5) Let M be an R-module and N a submodule of M . Then by (2), N =

Z2(N)⊕X for some semisimple submodule X. So X is nonsingular and projective.
By (3), X is injective and hence a projective summand of M . It follows that N has
a decomposition N = A ⊕ B such that A ≤⊕ M , A is projective and B ≤ Z2(M).
Hence, M is Z2(M)-semiperfect. 2

Lemma 4.4. If R is Z2(RR)-semiperfect and Z2(RR) is injective, then every
finitely generated projective left R-module is injective. In particular, R is left self-
injective.

Proof. Let P be a finitely generated projective left R-module. Then P is a summand
of a finitely generated free R-module. Since Z2(RR) is injective, we have that Z2(P )
is injective. Hence, P = Z2(P ) ⊕ X for some submodule X. On the other hand,
P/Z2(P ) is injective by Theorem 4.3. Then X is injective and so P is injective. 2

Theorem 4.5. Let R be a ring. Then the following are equivalent:
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(1) R is Z(RR)-semiperfect and Z2(RR) is injective.

(2) R is Z2(RR)-semiperfect, Z2(RR) is injective and R is I-finite.

(3) R is semiperfect and left self-injective.

Proof. (1)⇒(2) By [15, Theorem 2.5], R is Z(RR)-semiperfect if and only if R is
semiperfect and J(R) = Z(RR). Hence, (2) follows.

(2)⇒(3) By Lemma 4.4, R is left self-injective. By [4, Corollary 3.12], any left
self-injective ring is clean. Hence, by Corollary 3.10, R is semiperfect.

(3)⇒(1) Since R is left self-injective, J(R) = Z(RR). Then R is Z(RR)-semi-
perfect. Since Z2(RR) is closed in R, we have that Z2(RR) is injective. 2

Theorem 4.6. Let R be a ring. Then the following are equivalent:
(1) R is a QF-ring.

(2) R is Z2(RR)-semiperfect, and for every projective left R-module P , Z2(P ) is
injective.

(3) R is Z2(RR)-semiperfect, Z2(RR) is injective and R is left Noetherian.

Proof. We first assume (1), and prove (2) and (3). Since R is QF, R is semi-
perfect and J(R) = Z(RR) ≤ Z2(RR). Then R is Z2(RR)-semiperfect. Let P be a
projective left R-module. Then P is injective. Since Z2(P ) is closed in P , we have
Z2(P ) ≤⊕ P . Hence, Z2(P ) is injective.

(2)⇒(1) Let P be a projective left R-module. Then P is a summand of a free
R-module R(Λ) for some index set Λ. Since Z2(R(Λ)) is injective by hypothesis, this
implies that Z2(P ) is injective. Hence, there exists a submodule X of P such that
P = Z2(P ) ⊕ X. Since P/Z2(P ) is nonsingular, X is injective by Theorem 4.3.
Hence, P is injective.

(3)⇒(1) Let P be a projective left R-module. Then P is a summand of a free R-
module R(Λ) for some index set Λ. Since R is left Noetherian, Z2(R(Λ)) = Z2(RR)(Λ)

is injective. Hence, Z2(P ) is injective. By the proof of (2)⇒(1), P is injective. 2

Following [17], a submodule N of a module M is called δ-small in M , denoted
by N ¿δ M , if N + K 6= M for any submodule K of M with M/K singular. The
sum of all δ-small submodules of M is a fully invariant submodule of M , and it is
denoted by δ(M). Also, δ(M) = ∩{N ≤ M |M/N is singular simple}. Clearly,
Rad(M) ≤ δ(M). A pair (P, p) is called a projective δ-cover of the module M if P
is projective and p is an epimorphism of P onto M with ker(p) ¿δ P . A ring R
is called δ-semiperfect if every simple R-module has a projective δ-cover. A ring R
is called left δ-perfect if every left R-module has a projective δ-cover (see [17]). In
the following theorem, we give a new characterization of a left δ-perfect ring.

Theorem 4.7. Let R be a ring. Then the following are equivalent:
(1) Every projective left R-module M is δ(M)-semiperfect.

(2) R is left δ-perfect.

Proof. (2)⇒(1) Let R be a left δ-perfect ring. Then for any submodule N of a
projective module P , P/N has a projective δ-cover. By [17, Lemma 2.4], P is
δ(P )-semiperfect.
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(1)⇒(2) If every projective left R-module M is δ(M)-semiperfect, then R is
δ-semiperfect, and so idempotents lift modulo δ(RR) by [17, Theorem 3.6]. By [17,
Theorem 3.8], it is enough to prove that R = R/Soc(RR) is left perfect. Since
J(R) = δ(RR)/Soc(RR), R/J(R) is semisimple.

We claim that for every projective left R-module P , δ(P ) ¿δ P . Let P be a
projective R-module and P = δ(P ) + Y , where P/Y is singular. By hypothesis,
P = A ⊕ B such that A ≤ Y and B ∩ Y ≤ δ(P ). Then Y = A ⊕ (B ∩ Y ) and so
P = δ(P ) + Y = δ(P ) + A. Since A is a summand of P , there exists a submodule
X ≤ δ(P ) such that P = X ⊕ A by [14, 41.14]. Since δ(X) = X ∩ δ(P ) = X,
X is semisimple projective by [12, Proposition 2.13]. Since P/Y is an epimorphic
image of P/A ∼= X, P/Y is projective. Since it is singular, we have P = Y . Hence,
δ(P ) ¿δ P .

Now by the proof of [17, Theorem 3.7], it can be seen that J(R) is left T -
nilpotent. By [2, Theorem 28.4], R is left perfect. 2

By [12, Corollary 3.10], R is semisimple if and only if every left R-module M is
δ(M)-semiperfect, if and only if every left R-module M is δ(M)-semiregular.

For the socle, the following results are given in Corollaries 2.24 and 3.5 of [12]:
Every projective left R-module M is Soc(M)-semiperfect if and only if R is Soc(RR)-
semiperfect. R is a QF-ring with J(R)2 = 0 if and only if J(R) ≤ Z(RR) and every
left R-module M is Soc(M)-semiperfect.

Finally, we note that for an ideal I of a ring R, R is I-semiperfect if and only if
every finitely generated projective R-module M is IM -semiperfect by [12, Corollary
2.11].
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[12] A.Ç. Özcan, M. Alkan, Semiperfect modules with respect to a preradical, Comm.

Algebra 34 (2006) 841–856.
[13] F. Raggi, J.R. Montes, R. Wisbauer, Coprime preradicals and modules, J. Pure Appl.

Algebra 200 (2005) 51–69.
[14] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading,

Philadelphia, 1991.
[15] M.F. Yousif, Y. Zhou, Semiregular, semiperfect and perfect rings relative to an ideal,

Rocky Mountain J. Math. 32 (4) (2002) 1651–1671.
[16] J. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc. 163 (1973) 341–355.
[17] Y. Zhou, Generalizations of perfect, semiperfect and semiregular rings, Algebra Col-

loq. 7 (3) (2000) 305–318.


