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Hacettepe University Department of Mathematics

06800 Beytepe Ankara, Turkey

paydogdu@hacettepe.edu.tr,

ozcan@hacettepe.edu.tr

and

Patrick F. SMITH

University of Glasgow Department of Mathematics

G12 8QW Glasgow UK

pfs@maths.gla.ac.uk

Abstract

Let R be a ring. Modules satisfying ascending or descending chain

conditions (resp. acc and dcc) on non-summand submodules belongs to

some particular classes X , such as the class of all R-modules, finitely

generated, finite dimensional and cyclic modules, are considered. It is

proved that a module M satisfies acc (resp. dcc) on non-summands if

and only if M is semisimple or Noetherian (resp. Artinian). Over a right

Noetherian ring R, a right R-module M satisfies acc on finitely generated

non-summands if and only if M satisfies acc on non-summands; a right

R-module M satisfies dcc on finitely generated non-summands if and only

if M is locally Artinian. Moreover, if a ring R satisfies dcc on cyclic non-

summand right ideals, then R is a semiregular ring such that the Jacobson

radical J is left t-nilpotent.

Keywords: Noetherian, (locally) Artinian, regular, semisimple mod-

ules, semiregular rings.

1 Introduction

In this paper all rings have identity and all modules are unital right modules.
Let R be a ring. By a non–summand of an R-module M we mean a submodule
K which is not a direct summand of M . Among the non-summands of M we
could mention proper essential submodules and non-zero superfluous submod-
ules. This paper is concerned with the study of ascending and descending chain
conditions (respectively, acc and dcc) on certain non-summands.

Recall that a submodule S of a module M is superfluous or small provided
M 6= S + L for every proper submodule L of M . The sum of all superfluous
submodules of the module M is called the radical of M and will be denoted by
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Rad(M). For a ring R, it will be denoted by J . The socle of the module M

will be denoted by Soc(M). The module M will be called finite dimensional
provided M does not contain an infinite direct sum of non-zero submodules.
Recall that a non-zero module M is finite dimensional if and only if there exist
a positive integer n and independent uniform submodules Ui (1 ≤ i ≤ n) such
that U1 ⊕ · · · ⊕ Un is an essential submodule of M .

Let R be a ring. Goodearl [5, Proposition 3.6] proved that an R-module M

satisfies acc on essential submodules if and only if M/Soc(M) is Noetherian.
Goodearl’s result has a dual due to Armendariz [2, Proposition 1.1] who proved
that a module M satisfies dcc on essential submodules if and only if M/Soc(M)
is Artinian. The results of Goodearl and Armendariz can also be found at [3,
5.15]. Varadarajan [9, Lemma 2.1] proved that a module M satisfies acc on
superfluous submodules if and only if Rad(M) is Noetherian and Al-Khazzi
and Smith [1, Theorem 5] proved that a module M satisfies dcc on superfluous
submodules if and only if Rad(M) is Artinian. We shall give an example of a
commutative von Neumann regular ring R such that R satisfies acc and dcc on
essential ideals and on superfluous ideals but R satisfies neither acc nor dcc on
non-summands (Example 3.5).

Let R be any ring and M an R-module which satisfies acc on finite dimen-
sional non-summands. Let N be a non-zero finite dimensional submodule of
M . Then N = N1 ⊕ · · · ⊕ Nk is a direct sum of indecomposable submodules
Ni (1 ≤ i ≤ k), for some positive integer k. Let 1 ≤ i ≤ k. If L is a proper
non-zero submodule of Ni then L is not a direct summand of Ni and hence
is not a direct summand of M . By hypothesis, Ni is Noetherian. Thus N is
Noetherian. Thus every finite dimensional submodule of M is Noetherian. Such
modules are studied in [6] and [7]. It is proved in [6, Theorem 2.15] that if R is
a (commutative) Dedekind domain and M an R-module with torsion submod-
ule T then every finite dimensional submodule of M is Noetherian if and only
if T does not contain any non-zero injective submodule and every countably
generated torsion-free submodule of M is projective.

2 Module classes

Let R be a ring and let N be any submodule of an R-module M . By Zorn’s
Lemma there exists a submodule K of M which is maximal in the collection of
all submodules H of M such that N ∩H = 0. Such a submodule K is called a
complement of N (in M) and it is well known (and easy to prove) that N ⊕K

is an essential submodule of M (see [3, 1.10] for more details).
Let R be a ring. By a class X of R-modules we mean a collection of

R-modules which contains a zero module and which is closed under isomor-
phisms. If a module belongs to X , then we say that it is an X–module. By
an X–submodule (respectively, X–summand, X–non-summand) we mean an X–
module which is also a submodule (respectively, summand, non-summand) of
M . This section is concerned with chain conditions on X–non-summands of a
module. In what follows R is an arbitrary ring and X any class of R-modules,
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unless stated otherwise. It is clear that every semisimple R-module satisfies both
acc and dcc on X–non-summands and that every Noetherian (respectively, Ar-
tinian) R-module satisfies acc (respectively, dcc) on X–non-summands. Note
the following elementary fact.

Proposition 2.1 An R-module M satisfies acc (respectively, dcc) on X–sub-
modules if and only if M satisfies acc (respectively, dcc) both on X–summands
and on X–non–summands.

Proof Clear. ¤

Recall that a module is Noetherian if and only if it satisfies acc on finitely
generated submodules. Thus Proposition 2.1 shows that a module M is Noethe-
rian if and only if M satisfies acc both on finitely generated summands and on
finitely generated non-summands. Note too that every finite dimensional mod-
ule satisfies acc and dcc on summands so that we have the following immediate
corollary to Proposition 2.1.

Corollary 2.2 A finite dimensional module satisfies acc (respectively, dcc) on
X–non-summands if and only if M satisfies acc (respectively, dcc) on X–sub-
modules.

There is an analogue of Corollary 2.2 for modules with finite hollow dimen-
sion. For the definition of hollow dimension see [8].

Lemma 2.3 Let M be a module which satisfies acc (respectively, dcc) on X–
non-summands. Then every submodule of M satisfies acc (respectively, dcc) on
X–non-summands.

Proof Let N be any submodule of M . If K is an X–non-summand of N then
K is an X–non-summand of M . The result follows. ¤

Lemma 2.4 Let X be a class of R-modules which is closed under extensions
and let N be an X–submodule of an R-module M . Suppose that M satisfies acc
(respectively, dcc) on X–non-summands. Then M/N satisfies acc (respectively,
dcc) on X–non-summands.

Proof Let K be a submodule of M containing N such that K/N is an X–
non-summand of M/N . Then K is an X–submodule of M because X is closed
under extensions. Moreover, K is a non-summand of M . Thus K is an X–non-
summand of M . The result follows. ¤

We shall see in the next section that if N is a submodule of an R-module M

such that the modules N and M/N both satisfy acc (respectively, dcc) on non-
summands then M need not satisfy acc (respectively, dcc) on non-summands.
Indeed, more is true. We shall give an example of R-modules A1 and A2 which
both satisfy acc on non-summands such that the module A1 ⊕ A2 does not
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satisfy acc on non-summands and also an example of R-modules B1 and B2

which both satisfy dcc on non-summands but B1 ⊕ B2 does not satisfy dcc on
non-summands. However, in some situations the direct sum of modules with
acc (respectively, dcc) on X–non-summands also has the same property. For
example, note the following result.

Lemma 2.5 Let X be a class of R-modules such that, for each non-zero X–
module X, every non-zero submodule of X contains a non-zero X -submodule.
Let an R-module M = M1⊕M2 be a direct sum of submodules Mi (i = 1,2) such
that M1 contains no non-zero X–submodule and M2 satisfies acc (respectively,
dcc) on X–non-summands. Then M satisfies acc (respectively, dcc) on X–non-
summands.

Proof Let L be an X–non-summand of M . By hypothesis, L ∩M1 = 0. Let
π : M → M2 denote the canonical projection. Then π(L) ∼= L so that π(L) is
an X–submodule of M2. Next note that M1 ⊕ L = M1 ⊕ π(L) so that π(L)
is a non-summand of M and hence also of M2, because L is a non-summand
of M . Let L1 ⊆ L2 ⊆ . . . be any ascending chain of X–non-summands of M .
Then π(L1) ⊆ π(L2) ⊆ . . . is an ascending chain of X–non-summands of M2.
Suppose that there exists a positive integer n such that π(Ln) = π(Ln+1) = . . . .
Then M1 ⊕ Ln = M1 ⊕ Ln+1 = . . . and hence Ln = Ln+1 = . . . . Thus if M2

satisfies acc on X–non-summands then so too does M . A similar result give the
proof for descending chains. ¤

In particular, Lemma 2.5 applies to classes X which are closed under taking
submodules. However, it applies more widely. For example, the class of finitely
generated R-modules is not closed under taking submodules (if R is not right
Noetherian) but satisfies the property of Lemma 2.5.

Lemma 2.6 Let X be a class of modules closed under finite direct sums. Let
M be a module which satisfies acc (respectively, dcc) on X–non-summands.
Let L and N be submodules of M such that L ∩ N = 0. Then L satisfies
acc (respectively, dcc) on X–submodules or every X -submodule of N is a direct
summand of M and hence also of N .

Proof Suppose that M satisfies acc on X–non-summands. By Lemma 2.3 the
module L⊕N also satisfies acc on X–non-summands. Suppose there exists an
X–submodule K of N which is not a direct summand of M . Let H1 ⊆ H2 ⊆ . . .

be any ascending chain of X -submodules of L. For each i ≥ 1, Hi ∩K = 0 and
Hi⊕K is an X–non-summand of M (otherwise, K is a direct summand of M).
Thus H1 ⊕ K ⊆ H2 ⊕ K ⊆ . . . is an ascending chain of X–non-summands of
M and, by hypothesis, Hn ⊕K = Hn+1 ⊕K = . . . for some positive integer n.
It follows that Hn = Hn+1 = . . . . Thus L satisfies acc on X–submodules. The
proof for descending chains is similar. ¤
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Theorem 2.7 Let X be a class of R-modules which is closed under finite direct
sums and under taking direct summands. Then an R-module M satisfies acc
on X–non-summands if and only if, for every X–non-summand N of M , M

satisfies acc on X -submodules which contain N .

Proof The sufficiency is clear. Conversely, suppose that M satisfies acc on
X–non-summands. Let L be any X -submodule of M such that there exists
a properly ascending chain L = L1 ⊂ L2 ⊂ . . . of X -submodules of M . By
hypothesis, there exists a positive integer n such that Ln is a direct summand
of M . Let N be a submodule of M such that M = Ln ⊕ N . For each i ≥ n,
Li = Ln ⊕ (Li ∩ N). By hypothesis, Ln ∩ N ⊂ Ln+1 ∩ N ⊂ . . . is a properly
ascending chain of X -submodules of N . By Lemma 2.6, L is a direct summand
of M . The result follows. ¤

Corollary 2.8 Let X be a class of R-modules which is closed under extensions
and also under taking homomorphic images. Then an R-module M satisfies
acc on X–non-summands if and only if M/N satisfies acc on X–submodules for
every X–non-summand N of M .

Proof Suppose first that M satisfies acc on X–non-summands. Let N be
any X–non-summand of M . Let L̄1 ⊆ L̄2 ⊆ . . . be any ascending chain of
X–submodules of M/N . For each i ≥ 1, L̄i = Li/N for some submodule Li of
M containing N . By hypothesis, Li is an X–submodule of M for all i ≥ 1. By
Theorem 2.7, Ln = Ln+1 = . . . and hence L̄n = L̄n+1 = . . . for some positive
integer n. Thus M/N satisfies acc on X–submodules.

Conversely, suppose that M/N satisfies acc on X–submodules for each X–
non-summand N of M . Let L be any X–non-summand of M and let H1 ⊆
H2 ⊆ . . . be any ascending chain of X–submodules of M such that L ⊆ H1.
Then H1/L ⊆ H2/L ⊆ . . . is an ascending chain of X–submodules of M/L.
There exists a positive integer k such that Hk/L = Hk+1/L = . . . and hence
Hk = Hk+1 = . . . . By Theorem 2.7, M satisfies acc on X–non-summands. ¤

The next result is a companion theorem to Theorem 2.7.

Theorem 2.9 Let X be a class of R-modules which is closed under finite direct
sums and under taking direct summands. Then an R-module M satisfies dcc on
X–non-summands if and only if every X–non-summand of M satisfies dcc on
X–submodules.

Proof The sufficiency is clear. Conversely, suppose that M satisfies dcc on
X–non-summands. Let N be any X–non-summand of M . Suppose that N

does not satisfy dcc on X -submodules and let N1 ⊃ N2 ⊃ . . . be a properly
descending chain of X–submodules of N . By hypothesis, there exists a positive
integer k such that Nk is a direct summand of M . Let L be a submodule of M

such that M = Nk ⊕ L. Now Nk ⊃ Nk+1 ⊃ . . . is a properly descending chain
of X–submodules of Nk so that, by Lemma 2.6, every X–submodule of L is a
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direct summand of L. However, N = Nk ⊕ (N ∩L) gives that N ∩L is a direct
summand of L and hence N is a direct summand of M , a contradiction. The
result follows. ¤

3 Special module classes

Let R be any ring. In this section we consider modules with ascending or
descending chain conditions on X–non-summands for some particular classes
X . We begin with the case X = Mod − R. Lemma 2.6 has the following
immediate consequence.

Lemma 3.1 Let M be a module which satisfies acc (respectively, dcc) on non-
summands and let L and N be submodules of M such that L ∩N = 0. Then L

is Noetherian (respectively, Artinian) or N is semisimple.

Now let R be a right Noetherian ring which is not semiprime Artinian and let
U be any non-finitely generated semisimple R-module. Then the R-modules R

and U both satisfy acc on non-summands but Lemma 3.1 shows that the module
R ⊕ U does not satisfy acc on non-summands. In the same way if R is right
Artinian (but not semiprime) then the R-modules R and U both satisfy dcc on
non-summands but the module R ⊕ U does not satisfy dcc on non-summands
by Lemma 3.1.

Theorem 3.2 A module M satisfies acc on non-summands if and only if M is
semisimple or Noetherian.

Proof The necessity is clear. For the sufficiency assume that M satisfies acc
on non-summands. Since M satisfies acc on essential submodules M/Soc(M)
is Noetherian by the proof of Proposition 3.6 in [5] (see also [4, Lemma 2]). If
Soc(M) is finitely generated, then M is Noetherian. Suppose that Soc(M) is
not finitely generated. Then Soc(M) = S1 ⊕ S2 for some non-finitely generated
submodules S1, S2. Because S2 is not Noetherian, M = S1 ⊕ L for some sub-
module L of M by Lemma 2.6. But S1 not being Noetherian gives that L is
semisimple by Lemma 3.1. Hence if Soc(M) is not finitely generated then M is
semisimple. ¤

Theorem 3.2 has the following analogue. The proof is rather similar but we
give it for completeness.

Theorem 3.3 A module M satisfies dcc on non-summands if and only if M is
semisimple or Artinian.

Proof The necessity is clear. For the sufficiency assume that M satisfies dcc
on non-summands. Since M satisfies dcc on essential submodules, M/Soc(M)
is Artinian by [2, Proposition 1.1] (see also [3, 5.15]). If Soc(M) is finitely
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generated then M is Artinian. On the other hand, if Soc(M) is not finitely
generated then M is semisimple by the proof of Theorem 3.2. ¤

Theorems 3.2 and 3.3 have the following immediate consequence.

Corollary 3.4 For any ring R, a finitely generated R-module M satisfies acc
(respectively, dcc) on non-summands if and only if M is Noetherian (respec-
tively, Artinian).

In particular, for a ring R, if RR satisfies dcc on non-summands, then RR

satisfies acc on non-summands. Now we give an example to show that there
exist modules with acc (resp. dcc) on essential and on superfluous submodules
but which do not have acc (resp. dcc) on non–summands.

Example 3.5 Let K be any field and let S be the commutative ring which is the
direct product of a countably infinite number of copies of K, that is S =

∏∞
i=1 Ki,

where Ki = K for all i ≥ 1. Let R denote the subring of S consisting of all
elements {ki} such that ki ∈ K (i ∈ I) and kn = kn+1 = . . . for some positive
integer n. Then R is a commutative von Neumann regular ring which satisfies
acc and dcc on essential ideals and on superfluous ideals but satisfies neither
acc nor dcc on non-summand ideals.

Proof It is clear that R is a von Neumann regular ring. Thus the Jacobson
radical J(R) of R is zero and trivially R satisfies acc and dcc on superfluous
ideals. Moreover Soc(RR) is the set of elements {ki} of R such that, for some
positive integer n, ki = 0 for all i ≥ n. Thus R/Soc(RR) is isomorphic to K and
R satisfies acc and dcc on essential ideals. By Corollary 3.4 R does not satisfy
acc on non-summand ideals and also does not satisfy dcc on non-summand
ideals. ¤

We now let X denote the class of finitely generated R-modules. Recall that
a module M is called regular if every finitely generated submodule is a direct
summand of M . Clearly regular modules satisfy both acc and dcc on finitely
generated non-summands. Note that semisimple modules are clearly regular.
We next prove a partial converse.

Lemma 3.6 Let M be a regular module such that every cyclic submodule is
finite dimensional. Then M is semisimple.

Proof Let M 6= 0 and let 0 6= m ∈ M . Because mR is finite dimensional, there
exist a positive integer n and non-zero indecomposable submodules Li (1 ≤ i ≤
n) of mR such that mR = L1 ⊕ · · · ⊕Ln. Let 1 ≤ i ≤ n and let 0 6= x ∈ Li. By
hypothesis, xR is a direct summand of M and hence also of Li so that Li = xR.
It follows that Li is simple for all 1 ≤ i ≤ n. Therefore mR is semisimple for all
m ∈ M . It follows that M is semisimple. ¤
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Theorem 3.7 The following statements are equivalent for a module M .
(i) M satisfies acc on finitely generated non-summands.
(ii) M/L is Noetherian for every finitely generated non-summand L of M .
(iii) For every non-finitely generated submodule N of M , every finitely gen-

erated submodule of N is a direct summand of M .

Proof (i) ⇔ (ii) By Corollary 2.8.
(ii) ⇒ (iii) Let N be any non-finitely generated submodule of M . Let L be

any finitely generated submodule of N . If L is not a direct summand of M then
M/L is Noetherian by (ii) and hence N is finitely generated, a contradiction.
Thus every finitely generated submodule L of N is a direct summand of M .

(iii) ⇒ (ii) Let H be any finitely generated non-summand of M . By (iii),
every submodule of M containing H is finitely generated and hence M/H is
Noetherian. ¤

Corollary 3.8 Let R be a right Noetherian ring. Then the following statements
are equivalent for a right R-module M .

(i) M satisfies acc on non-summands.
(ii) M satisfies acc on finitely generated non-summands.
(iii) M is semisimple or Noetherian.

Proof By Theorems 3.2 and 3.7 and Lemma 3.6. ¤

Corollary 3.9 Let M be a module which satisfies acc on finitely generated non-
summands. Then M is Noetherian or M contains an essential submodule N

such that every finitely generated submodule of N is a direct summand of M .

Proof If M is finite dimensional then M is Noetherian by Corollary 2.2.
Suppose that M is not finite dimensional. Let a submodule L = L1 ⊕ L2 ⊕ . . .

be a direct sum of non-zero submodules Li (i ≥ 1) of M . Let K be a complement
of L in M and let N = L⊕K. Then N is an essential submodule of M . Suppose
that H is any finitely generated submodule of N . Note that H ⊆ L1⊕· · ·⊕Ln⊕K

for some positive integer n and hence Ln+1⊕Ln+2⊕ . . . embeds in M/H. Thus
M/H is not Noetherian so that H is a direct summand of M by Theorem 3.7.
¤

Note that in Corollary 3.9, the essential submodule N of M is regular. Next
we aim to give an example of a module which satisfies acc on finitely generated
non-summands but which is neither Noetherian nor regular. First we state a
well known lemma whose proof we shall include for completeness.

Lemma 3.10 Let N be a finitely generated submodule of a module M such
that every cyclic submodule of N is a direct summand of M . Then N is a direct
summand of M .
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Proof There exist a positive integer k and elements xi ∈ N (1 ≤ i ≤ k) such
that N = x1R + · · · + xkR. If k = 1 then there is nothing to prove. Suppose
that k ≥ 1. There exists a submodule L of M such that M = x1R ⊕ L. Then
N = x1R ⊕ (N ∩ L). If π : N → N ∩ L is the canonical projection then N ∩ L

is generated by the (k-1) elements π(x2), . . . , π(xk). By induction, N ∩ L is a
direct summand of M and hence also of L and it follows that N is a direct
summand of M . ¤

Example 3.11 Let D be a commutative Noetherian domain with field of frac-
tions K 6= D. Let T be the subring of the ring R of Example 3.5 consisting
of all elements {ki} of R such that, for some positive integer n, ki ∈ D for all
i ≥ n. Then T is a commutative ring such that the T -module T satisfies acc on
finitely generated non-summands but T is not Noetherian nor regular.

Proof Note that Soc(T ) = Soc(R). Let L be any finitely generated non-
summand of TT . By Lemma 3.10 there exists x ∈ L such that xT is not a direct
summand of T . Then x = {ki} where kn = kn+1 = . . . and kn is a non-zero
element of D, for some positive integer n. Then xT contains all elements of
T of the form {hi} where hi = 0 for all 1 ≤ i ≤ n − 1 and for all i ≥ m for
some integer m ≥ n + 1. It follows that Soc(T )/(xT∩ Soc(R)) is Noetherian.
But T/Soc(T ) ∼= D so that T/Soc(T ) is Noetherian. This implies that T/xT ,
and hence also T/L, is Noetherian. By Theorem 3.7 TT satisfies acc on finitely
generated non-summands. Clearly T is not Noetherian because Soc(T ) is not
finitely generated. Also if a is any non-zero non-unit element of D and s is the
element {ki} of T with ki = a for all i ≥ 1 then sT is not a direct summand of
T so that TT is not regular. ¤

We now consider modules which satisfy dcc on finitely generated non- sum-
mands. Recall that a module M satisfies dcc on finitely generated submod-
ules if and only if M satisfies dcc on cyclic submodules, and in this case M

is semiartinian. (see, for example, [10, 31.8]). A module M is semiartinian
provided every non-zero homomorphic image of M has non-zero socle. As we
have already remarked, regular modules satisfy dcc on finitely generated non-
summands. Note the following result.

Theorem 3.12 A module M is regular if and only if M satisfies dcc on finitely
generated non-summands and every simple submodule is a direct summand of
M .

Proof The necessity is clear. Conversely, suppose that M satisfies the stated
conditions. Suppose further that M is not regular. Then M contains a finitely
generated non-summand. Let L be a minimal finitely generated non-summand
of M . Note that L 6= 0. Let x be any non-zero element of L. Suppose that
L 6= xR. It follows that xR is a direct summand of M so that M = xR⊕N for
some submodule N of M . Now L = xR⊕ (L∩N) and hence L∩N is a finitely
generated submodule of M . Clearly L 6= L ∩N and this implies that L ∩N is
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a direct summand of M and hence also of N , giving the contradiction that L is
a direct summand of M . Thus L = xR for every non-zero element x of L. It
follows that L is a simple module, a contradiction. ¤

Theorem 2.9 gives the following result without further proof.

Theorem 3.13 A module M satisfies dcc on finitely generated non-summands
if and only if every finitely generated non-summand of M satisfies dcc on finitely
generated submodules.

Compare the next result with Corollary 3.9.

Proposition 3.14 Let M be a module which satisfies dcc on finitely generated
non-summands. Then M is regular or M has essential socle.

Proof Suppose that M is not regular. By Theorem 3.12 M contains a simple
submodule L which is not a direct summand. Let H be a complement of L in
M so that L ⊕H is an essential submodule of M . By Lemma 2.6, H satisfies
dcc on finitely generated submodules and hence H has essential socle. It follows
that M has essential socle. ¤

A module is called locally Artinian provided every finitely generated sub-
module is Artinian. Clearly locally Artinian modules satisfy dcc on finitely
generated submodules. Compare the next result with Corollary 3.8.

Theorem 3.15 Let R be a right Noetherian ring. Then a right R-module M

satisfies dcc on finitely generated non-summands if and only if M is locally
Artinian.

Proof The sufficiency is clear. Conversely, suppose that M satisfies dcc on
finitely generated non-summands. Let N be any finitely generated submodule
of M . If N ⊆ SocM then N is Artinian. Suppose that N * SocM . Then there
exists a maximal submodule L of N such that N ∩ SocM ⊆ L. Suppose that
L is not Artinian and let L1 ⊃ L2 ⊃ . . . be any properly descending chain of
submodules of L. Because N is finitely generated, so too is Li for each i ≥ 1
and hence Lk is a direct summand of M for some positive integer k. There
exists a submodule H of M such that M = Lk ⊕ H. By Lemma 2.6, every
finitely generated submodule of H is a direct summand of H. Let 0 6= h ∈ H.
Every submodule of hR is finitely generated, because R is right Noetherian, and
hence is a direct summand of hR. Thus hR is semisimple for every non-zero
h ∈ H. It follows that H is semisimple and thus H ⊆ SocM . It follows that
M = Lk + SocM and hence N = Lk + (N ∩ SocM) ⊆ L, a contradiction. Thus
L, and hence N , is Artinian. It follows that M is locally Artinian. ¤

The condition that R is right Noetherian cannot be removed in Theorem 3.15.
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Example 3.16 Let R be a commutative ring with unique maximal ideal J such
that J2 = 0 and J is not finitely generated. Then J is a non-finitely generated
semisimple R-module. The R-module R is not Artinian and hence is not locally
Artinian. Let A be a finitely generated non-summand of R. Then A 6= R so
that A ⊆ J . Thus A is Artinian because A is semisimple. Thus the R-module
R satisfies dcc on finitely generated non-summands but is not locally Artinian
and is not regular.

Recall that a submodule N of a module M is fully invariant in M if ϕ(N) ⊆
N for every endomorphism ϕ of M . If N is a fully invariant submodule of M

then N = (N∩M1)⊕(N∩M2) and hence M/N = ((M1+N)/N)⊕((M2+N)/N)
for all submodules M1 and M2 of M such that M = M1 ⊕M2. Compare the
following with Lemma 2.4.

Lemma 3.17 If an R-module M satisfies dcc on finitely generated non-sum-
mands then so too does every factor module M/N , where N is a fully invariant
submodule of M .

Proof Let N be a nonzero fully invariant submodule of M . Let M = M/N and
let K ⊆ L be finitely generated submodules of M . There exist positive integers
s, t and elements xi, yj in M (1 ≤ i ≤ s, 1 ≤ j ≤ t) such that L = (x1 + N)R +
· · ·+(xs +N)R and K = (y1 +N)R+ · · ·+(yt +N)R. For each 1 ≤ j ≤ t there
exist elements rij ∈ R (1 ≤ i ≤ s) and uj ∈ N such that yj =

∑s
i=1 xirij + uj .

Let zj =
∑s

i=1 xirij (1 ≤ j ≤ t). Then K = (z1 + N)R + · · · + (zt + N)R and
z1R + · · ·+ ztR ⊆ x1R + · · ·+ xsR.

Now let L1 ⊇ L2 ⊇ . . . be any descending chain of finitely generated non-
summands of M . By the above remarks we can suppose without loss of gener-
ality that Li = (Li + N)/N (i ≥ 1) for some descending chain L1 ⊇ L2 ⊇ . . .

of finitely generated submodules of M . Next note that the remarks preceding
this lemma show that Li is a non-summand of M for each i ≥ 1. By hypoth-
esis, there exists a positive integer k such that Lk = Lk+1 = . . . and hence
Lk = Lk+1 = . . . . ¤

Proposition 3.18 If M satisfies dcc on finitely generated non-summands, then
there exists a semiartinian submodule S of M such that M/S is regular.

Proof Let 0 = S0 ⊆ S1 ⊆ · · · ⊆ Sα ⊆ Sα+1 ⊆ . . . be the socle series of M
where for each ordinal α ≥ 0, Sα+1/Sα = Soc(M/Sα) and Sα =

⋃
0≤β<α Sβ

when α is a limit ordinal. Note that Sα is a fully invariant submodule of M for
each ordinal α ≥ 0. Because M is a set there must exists an ordinal ρ ≥ 0 such
that Sρ = Sρ+1 and hence M/Sρ has zero socle. Note that Sρ is semiartinian.

Now suppose that M satisfies dcc on finitely generated non-summands. By
Lemma 3.17, M/Sρ satisfies dcc on finitely generated non-summands. Finally,
by Proposition 3.14, M/Sρ is regular. ¤
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4 More special module classes

Theorem 4.1 Let M be a module such that every non-zero submodule con-
tains a uniform submodule. Then MR satisfies acc on finite dimensional non-
summands if and only if M is Noetherian or every uniform submodule of M is
a direct summand.

Proof (⇐) Suppose M is not Noetherian. Let L be a finite dimensional
submodule of M . Suppose L 6= 0. Let U ≤ L and U be uniform. Then M =
U⊕U ′ for some U ′ ≤ M . Then L = U⊕(L∩U ′) where udim(L∩U ′) < udim(L).
By induction, L ∩ U ′ is a direct summand of U ′ so that L is a direct summand
of M .

(⇒) Suppose M satisfies acc on finite dimensional non-summands. Suppose
M contains a (non-zero) finite dimensional non-summand. We shall show that
M is Noetherian. Let H be a maximal finite dimensional non-summand of M .
Then M 6= H because H is a non-summand of M . Suppose that H is not
essential in M . Then H ∩L = 0 for some non-zero submodule L. By hypothesis
L contains a uniform submodule U . Then H ⊕ U is finite dimensional and
hence, by the choice of H, a direct summand of M . This implies that H is a
direct summand of M , a contradiction. Thus H is essential in M and M is
finite dimensional. Every submodule of M is also finite dimensional. This gives
that M satisfies acc on non-summands. By Theorem 3.2, M is Noetherian or
semisimple and finite dimensional. Hence M is Noetherian. ¤

A non-empty subset I of a ring R acts t-nilpotently on an R-module M

if, for every sequence a1, a2 . . . of elements in I and every m ∈ M , we have
ma1a2 · · · ai−1ai = 0 for some i ∈ N (depending on m) (see, for example, [10]).
The set I is called left t-nilpotent if it acts t-nilpotently on RR. Note that the
ring R is left perfect if and only if its Jacobson radical J is left t-nilpotent and
R/J is semisimple and this occurs if and only if R satisfies dcc on cyclic right
ideals (see [10, 43.9]). By Proposition 2.1, we have the following.

Proposition 4.2 A ring R is left perfect if and only if R satisfies dcc both on
cyclic non-summand right ideals and cyclic summand right ideals.

Example 3.5 shows that there exists a commutative ring satisfying dcc on
finitely generated (cyclic) non-summands but which is not perfect.

Proposition 4.3 Let M be an R-module satisfying dcc on cyclic non-summands.
Then the Jacobson radical J of R acts t-nilpotently on M .

Proof Let a1, a2, . . . be a sequence of elements in J and m ∈ M . Consider the
descending chain

ma1R ⊇ ma1a2R ⊇ ma1a2a3R ⊇ · · · .

Assume that there exists a k such that ma1a2 . . . akR is a direct summand of
M . Since ma1a2 . . . akR ⊆ mJ ⊆ RadM , ma1a2 . . . akR is superfluous and a
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direct summand of M . This implies that ma1a2 . . . ak = 0. Now we assume
that for every k, ma1a2 . . . akR is not a direct summand of M . By hypothesis
there exists i such that ma1a2 . . . aiR = ma1a2 . . . ai+1R ⊆ ma1a2 . . . aiJ . By
Nakayama’s Lemma, we have ma1a2 . . . ai = 0. ¤

Proposition 4.4 Let M be an R-module satisfying dcc on cyclic non-summands
and let S = EndR(M). Suppose that the module M is a faithful right R-module
and a finitely generated left S-module. Then J is left t-nilpotent.

Proof Since MR is faithful and SM is finitely generated it follows that RR

embeds in Mk
R for some positive integer k (see [10, 15.3 and 15.4]). By Propo-

sition 4.3, J acts t-nilpotently on Mk
R. Hence J is left t-nilpotent. ¤

Corollary 4.5 If R is a ring satisfying dcc on cyclic non-summand right ideals,
then J is left t-nilpotent.

An element a of a ring R is called regular if a = aba for some b ∈ R. Note
that if a ∈ R and a − aba is regular for some b in R then a is regular. For,
there exists c in R such that a − aba = (a − aba)c(a − aba) and thus a = ada

where d = b+(1− ba)c(1−ab). The ring R is called semiregular if R/J is a von
Neumann regular ring and idempotents can be lifted modulo J (see [10, 42.11]).

Theorem 4.6 Let R be a ring with Jacobson radical J such that R satisfies dcc
on cyclic non-summand right ideals. Then R is a semiregular ring such that J

is left t-nilpotent.

Proof By Corollary 4.5 J is left t-nilpotent. To prove that R is semiregular we
can suppose without loss of generality that J = 0 (adapt the proof of Lemma
3.17). Let 0 6= a ∈ R. There exists a maximal right ideal M1 of R such
that a /∈ M1. Then 1 = ar + b for some r ∈ R, b ∈ M1. It follows that
a1 = a − ara = ba ∈ M1. Now suppose that a1 6= 0. By the same argument
there exist a maximal right ideal M2 and elements r1 ∈ R, b1 ∈ M2 such that
a2 = a1 − a1r1a1 = b1a1 ∈ M1 ∩M2. If a2 6= 0 then repeat the argument. This
gives a sequence of elements a = a0, a1, a2, . . . of R and a sequence of maximal
right ideals M1,M2, . . . of R such that, for each i ≥ 0, ai+1 = ai − airiai for
some ri ∈ R and ai ∈ M1 ∩ · · · ∩Mi, ai /∈ Mi+1. Thus a0R ⊃ a1R ⊃ . . . . By
hypothesis, there exists a positive integer n such that anR is a direct summand
of RR. There exists an idempotent e in R such that anR = eR. It can easily
be checked that an = anean. Thus an is regular and by the remarks preceding
this result so too is a. It follows that every element of R is regular and so R is
von Neumann regular. ¤

The converse of Theorem 4.6 is false. Note the following fact.

Lemma 4.7 Let R be a ring with Jacobson radical J. Let e be an idempotent
in R such that eR + J is a direct summand of RR. Then J ⊆ eR.
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Proof Note that

eR+J = (eR+J)∩ [eR⊕ (1−e)R] = eR⊕ [(1−e)R∩(eR+J)] = eR⊕ (1−e)J.

It follows that (1 − e)J = fR for some idempotent f in R. But f ∈ J so that
f = 0. Hence (1− e)J = 0 and J ⊆ eR. ¤

Example 4.8 Let K be any field, let Ki = K (i ≥ 1) and let the ring S =∏
i≥1 Ki. Let U denote the simple ideal of S consisting of all elements in S of

the form (k,0,0,. . . ) with k ∈ K. Let R denote the trivial extension of S by U .
Then R is a commutative semiregular ring with simple Jacobson radical J such
that J2 = 0 but R does not satisfy dcc on cyclic non-summand ideals.

Proof The ring R consists of all elements of the form (s, u), with s ∈ S and
u ∈ U , with addition and multiplication defined by

(s, u) + (s′, u′) = (s + s′, u + u′) and (s, u)(s′, u′) = (ss′, su′ + s′u)

for all s, s′ ∈ S, u, u′ ∈ U . It is well known that R is a commutative ring.
Moreover, the set J of all elements of R of the form (0, u) with u ∈ U is an
ideal of R such that R/J ∼= S so that R/J is von Neumann regular and J2 = 0.
Thus J is the Jacobson radical of R. Because U is a simple S-module, J is
a simple R-module. Let f0 = (1, 0, 0, ...) and for each i ≥ 1 let fi denote the
element (0, 0, ..., 0, 1, 1, 1, ...) of S with nth component 1 for all n ≥ i + 1. Let
ei = (fi, 0) ∈ R. Note that U = Sf0 and for each i ≥ 1, fi is an idempotent
of S such that fif0 = 0. Further note that Sf1 ⊃ Sf2 ⊃ . . . . Let i ≥ 1.
Then R(fi, f0) is a cyclic ideal of R such that R(fi, f0) = Rei + J . Because
ei is an idempotent in R such that Rei = {(sfi, 0) : s ∈ S} so that J * Rei

Lemma 4.7 gives that R(fi, f0) is not a direct summand of RR for each i ≥ 1.
Moreover R(f1, f0) ⊃ R(f2, f0) ⊃ . . . . Thus R does not satisfy dcc on cyclic
non-summand ideals. ¤
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