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Abstract

A module M is said to satisfy the property (S∗) if every submodule N
of M is cosingular of a direct summand of M . In this study we investigate
when a finite direct sum of modules with (S∗) satisfies (S∗). We prove
that a module M is a direct sum of modules satisfying (S∗) and Z∗(M)
has finite uniform dimension if and only if M = M1 ⊕ M2 ⊕ M3 where
M1 is semisimple with Z∗(M1) = 0, M2 has finite uniform dimension with
Z∗(M2) = M2 and M3 has finite uniform dimension and is a finite direct
sum of local submodules of M .

1. PRELIMINARIES

Direct sums of lifting modules have been studied by several authors for exam-
ple [5, 7]. In [8], the property (S∗) was introduced as a generalization of lifting
modules. A module M is said to satisfy the property (S∗) if every submodule N
of M is cosingular of a direct summand of M . In this note we are interested in
direct sums of modules with (S∗). We prove that a direct sum of a semisimple
module and a module with (S∗) also satisfies (S∗). Similarly, we show that a finite
direct sum of projective modules with (S∗) also satisfies the property (S∗). On
the other hand for a module M descending (ascending) chain conditions on small
modules which are submodules of M are investigated. We prove that a module M
is a direct sum of modules satisfying (S∗) and Z∗(M) has finite uniform dimension
if and only if M = M1 ⊕ M2 ⊕ M3 where M1 is semisimple with Z∗(M1) = 0,
M2 has finite uniform dimension with Z∗(M2) = M2 and M3 has finite uniform
dimension and is a finite direct sum of local submodules of M .

Throughout this note all rings have identity and all modules are unital right
modules. Let R be a ring and M be a right R-module. For a small (essential)
submodule N of M , we write N ¿ M (N ≤e M). M is called a small module if
it is a small submodule of some R-module. M is small if and only if M is small
in its injective hull E(M) [4]. We put

Z∗(M) = {m ∈ M : mR ¿ E(mR)}
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The Jacobson radical RadM is a submodule of Z∗(M). For further properties of
Z∗(.) see [8]. We call a module M cosingular if Z∗(M) = M . A ring R is called
right cosingular if the right R-module R is cosingular. Clearly small modules are
cosingular.

A module M is called lifting (or a (D1)-module) if for every submodule N of
M there is a decomposition M = M1⊕M2 such that M1 ≤ N and N ∩M2 ¿ M
(for example [5]). We shall say that M satisfies

(S∗) if for every submodule N of M there exists a direct summand K of M
such that K ≤ N and N/K is cosingular. [8]

A ring R satisfies (S∗) if the (right) R-module R satisfies (S∗). Lifting modules
satisfy (S∗). But for the converse, let R be the ring of integers Z. Since Z∗(R) = R
as an R-module, R satisfies (S∗), but R is not lifting [5, p.56]. Note that every
Z-module is cosingular and hence satisfies (S∗).

Lemma 1 [8, Lemma 3.1] Let M be an R-module. The following are equivalent.
(i) M satisfies (S∗),
(ii) For every submodule N of M , M has a decomposition M = M1 ⊕M2 such
that M1 ≤ N and N ∩M2 is cosingular,
(iii) For every submodule N of M , N has a decomposition N = N1 ⊕ N2 such
that N1 is a direct summand of M and N2 is cosingular.

The class of modules satisfying (S∗) is closed under submodules. If M satisfies
(S∗) and Z∗(M) ¿ M then M is lifting [8, Lemma 3.3]. If M satisfies (S∗) then
M = M1 ⊕M2 such that M1 is semisimple with Z∗(M1) = 0 and Z∗(M2) ≤e M2

[8, Corollary 3.6].
Oshiro [7] calls a ring R a right H-ring if every injective right R-module is

lifting. If every proper submodule of M is a small submodule then M is called
hollow.

2. FINITE DIRECT SUMS

Example 2 A finite direct sum of modules with (S∗) does not necessarily satisfy
(S∗).

Proof Let R be a right Artinian ring such that every indecomposable injective
R-module is hollow but R is not a right H-ring (for the existence see [3, Example
5]). Then every indecomposable injective module is cyclic by [10, 41.4]. This
implies that there exists a finitely generated injective R-module E which is not
lifting by [7, Remark p.318]. Since RadE = Z∗(E) ¿ E, E does not satisfy (S∗).
Since R is right Artinian, E is a finite direct sum of indecomposable injective
modules Ei [2, Theorem 25.6]. By hypothesis and since hollow modules are
lifting, each Ei satisfies (S∗). Hence E is the finite direct sum of modules with
(S∗) but E does not satisfy (S∗). 2
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Theorem 3 Let M = M1 ⊕M2 where M1 is semisimple and M2 satisfies (S∗).
Then M satisfies (S∗).

Proof Let M = M1⊕M2 where M1 is semisimple and M2 satisfies (S∗). Let N ≤
M . Then M1 = (N∩M1)⊕M ′ for some M ′ ≤ M1. Thus M = (N∩M1)⊕M ′⊕M2

and N = (N ∩M1)⊕A where A = N ∩ (M ′⊕M2). Since (M2⊕M ′)/M ′ satisfies
(S∗), it follows that (A+M ′)/M ′ = K/M ′⊕L/M ′ for some submodules K and L
containing M ′ such that K/M ′ is a direct summand of (M2⊕M ′)/M ′ and, L/M ′

is cosingular. Thus K is a direct summand of M . But K = M ′⊕ (K∩A), so that
K ∩ A is also a direct summand of M . It is now clear that (N ∩M1)⊕ (K ∩ A)
is a direct summand of M . Moreover

N/((N ∩M1)⊕ (K ∩ A)) ∼= A/(K ∩ A) ∼= (A + K)/K = (A + M ′)/K ∼= L/M ′

is cosingular. It follows that M satisfies (S∗). 2

Corollary 4 Let M = M1 ⊕M2 where M1 is semisimple and M2 is cosingular.
Then M satisfies (S∗).

Let P and M be modules. P is said to be M-projective if for any module
N with an epimorphism π : M → N and homomorphism θ : P → N , there
exists a homomorphism θ′ : P → M such that πθ′ = θ. P is called projective if
it is M -projective for every module M . If P is P -projective, P is called quasi-
projective. A class of modules C = {Pi : i ∈ I} is called relatively projective if Pi

is Pj-projective for all distinct i, j ∈ I.

Lemma 5 [10, 41.14] Let M1 and M2 be modules and M = M1 ⊕ M2. The
following are equivalent.
(i) M1 is M2-projective,
(ii) For every submodule N of M such that M = N+M2, there exists a submodule
N ′ of N such that M = N ′ ⊕M2.

The following theorem is a generalization of Lemma 5.1 in [8].

Theorem 6 Let M = M1 ⊕ M2 be a direct sum of quasi-projective, relatively
projective modules M1, M2 such that M1 and M2 satisfy (S∗). Then M satisfies
(S∗).

Proof Let L ≤ M .
Case 1. If M1 ∩ (L + M2) = 0, then L ≤ M2. Since M2 satisfies (S∗), there exists
B1 ≤ L such that M2 = B1 ⊕ B2 and L ∩ B2 is cosingular for some submodule
B2 of M2. Hence M = M1 ⊕B1 ⊕B2 and L ∩ (M1 ⊕B2) = L ∩B2 is cosingular.
It follows that M satisfies (S∗).
Case 2. M1∩(L+M2) 6= 0, there exists A1 ≤ M1∩(L+M2) such that M1 = A1⊕A2

and M1 ∩ (L + M2)∩A2 = A2 ∩ (L + M2) is cosingular because M1 satisfies (S∗).
Then M = A1 ⊕ A2 ⊕M2 = L + (M2 ⊕ A2).
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If M2 ∩ (L + A2) = 0, then L ∩ A2 ≤ A2 and since A2 satisfies (S∗) there
exists C1 ≤ L ∩ A2 such that A2 = C1 ⊕ C2, L ∩ A2 ∩ C2 = L ∩ C2 is cosingular.
Then M = (A1 ⊕ C1) ⊕ (C2 ⊕ M2) = L + (C2 ⊕ M2). Since M1 is M1 ⊕ M2-
projective, A1 is C2 ⊕M2-projective and C1 is C2 ⊕M2-projective by [5]. Then
A1 ⊕ C1 is C2 ⊕M2-projective. This implies that there exists L′ ≤ L such that
M = L′⊕C2⊕M2, L∩ (C2⊕M2) ≤ C2∩ (L+M2) = L∩C2 is cosingular. Hence
M satisfies (S∗).

If M2 ∩ (L + A2) 6= 0, there exists B1 ≤ M2 ∩ (L + A2), M2 = B1 ⊕ B2,
B2 ∩ (L + A2) is cosingular. Then M = L + (A2 ⊕M2) = (A1 ⊕B1)⊕ (A2 ⊕B2)
and L ∩ (A2 ⊕ B2) is cosingular because A2 ∩ (L + M2) and B2 ∩ (L + A2) are
cosingular. Since A1 ⊕ B1 is A2 ⊕ B2-projective there exists L′ ≤ L such that
M = L′ ⊕ A2 ⊕B2. Hence M satisfies (S∗) 2

Corollary 7 Let M = M1 ⊕ M2 be a projective module such that M1 and M2

satisfy (S∗). Then M satisfies (S∗).

R is semiperfect if and only if the right (left) R-module R is lifting [5, Corollary
4.42]. Hence semiperfect rings satisfy (S∗). It is well known that if R is semiperfect
then every finitely generated projective R-module is lifting. As a corollary of
Theorem 6 we have the following result for a ring satisfying (S∗).

Corollary 8 Let R be a ring satisfying (S∗). Then every finitely generated pro-
jective R-module satisfies (S∗).

Proof Let P be a finitely generated projective R-module. Then P is isomorphic
to a direct summand of a free R-module. Since Theorem 6 holds for a finite direct
sum of modules, P satisfies (S∗). 2

3. SOME CHAIN CONDITIONS FOR Z∗(.)

Al-Khazzi and Smith [1] investigated some chain conditions that RadM satis-
fies for a module M . From now on we shall consider the similar results for Z∗(M)
for a module M .

Clearly if Z∗(M) is Artinian (Noetherian) then RadM is Artinian (Noethe-
rian). But if RadM is Artinian (Noetherian) Z∗(M) need not. For example, let M
denote

∑
p Z(1/p)/Z where p ranges over all prime integers. Since each Z(1/p)/Z

is simple, M is a semisimple Z-module and hence RadM = 0. But Z∗(M) = M
is not Noetherian, and then not Artinian.

The following three propositions can be seen by the proof of Proposition 2,
Proposition 3 and Theorem 5 in [1]. But we give the proofs for convenience.

Proposition 9 The following are equivalent for a module M .
(i) Z∗(M) is Noetherian.
(ii) Every small module in M is Noetherian.
(iii) The ascending chain condition holds on small modules in M .
(iv) M satisfies the ascending chain condition on cosingular submodules.
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Proof (i) ⇔ (ii); (i) ⇒ (iii), (iv) Clear.
(iii) ⇒ (i) By (iii), M has a maximal small module K. Then K ≤ Z∗(M). Let
x ∈ Z∗(M). Since a finite sum of small modules is small, K + xR ¿ E(M).
Then K = K + xR and x ∈ K. It follows that Z∗(M) = K and hence Z∗(M) is
Noetherian.
(iv) ⇒ (i) Since the class of cosingular modules is closed under submodules the
proof is completed as in (iii) ⇒ (i). 2

A module M is called locally Artinian if every finitely generated submodule
of M is Artinian.

Proposition 10 The following are equivalent for a module M .
(i) Z∗(M) is Artinian,
(ii) Every small module in M is Artinian,
(iii) The descending chain condition holds on small modules in M .
(iv) M satisfies the descending chain condition on cosingular submodules.

Proof (i) ⇒ (ii) ⇒ (iii), (i) ⇒ (iv) Clear.
(iv) ⇒ (i) Z∗(M) is cosingular. Hence every submodule of Z∗(M) is cosingular.
By (iv), Z∗(M) is Artinian.
(iii) ⇒ (i) Let N be a finitely generated submodule of Z∗(M). Then N is a small
module and hence N is Artinian. It follows that Z∗(M) is locally Artinian. Let
K be any proper submodule of Z∗(M). Let x ∈ Z∗(M) \K. Then xR is Artinian
and (xR + K)/K is a non-zero Artinian module. It follows that Z∗(M)/K has
essential socle.

Suppose that Z∗(M) is not Artinian. Then there exists a submodule L of
Z∗(M) such that Z∗(M)/L is not finitely cogenerated [2, Proposition 10.10]. Let
P be a minimal submodule of Z∗(M) with respect to Z∗(M)/P not finitely co-
generated (by Zorn’s Lemma). Let Soc(Z∗(M)/P ) = S/P where S ≤ Z∗(M). We
have seen that S/P is an essential submodule of Z∗(M)/P . Therefore S/P is not
finitely generated by [2, Proposition 10.7].

We claim that P ¿ M . Let M = P +Q for some Q ≤ M . Then S = P +(S∩
Q). Suppose that P ∩Q 6= P . Then Z∗(M)/(P ∩Q) is finitely cogenerated by the
choice of P . But S/P = (P+(S∩Q))/P ∼= (S∩Q)/(P∩Q) ≤ Soc(Z∗(M)/(P∩Q))
and hence S/P is finitely generated, a contradiction. Thus P ¿ M .

Now we claim that S ¿ E(M). Let E(M) = S + V for some submodule V
of E(M). Then E(M)/(P + V ) = (S + V )/(P + V ) ∼= S/(P + (S ∩ V )). Thus
E(M)/(P + V ) is semisimple. If E(M) 6= P + V then there exists a maximal
submodule W of E(M) such that P +V ≤ W . But S ≤ Z∗(M) ≤ RadE(M) ≤ W
and this gives that E(M) = W , a contradiction. Thus E(M) = P + V . Since
P ¿ M , P ¿ E(M). This implies that E(M) = V . Thus S ¿ E(M) and, by
hypothesis S is Artinian. It follows that S/P is finitely generated, a contradiction.
Thus Z∗(M) is Artinian. 2

A module M has finite uniform dimension k, for some non-negative integer
k if M does not contain any infinite direct sum of non-zero submodules and k is
the maximal number of summands in a direct sum of non-zero submodules of M .
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Proposition 11 The following are equivalent for a module M .
(i) Z∗(M) has finite uniform dimension,
(ii) Every small module in M has finite uniform dimension and there exists a
positive integer k such that uniform dimension of N ≤ k for every N ≤ M,N ¿
E(M),
(iii) M does not contain an infinite direct sum of non-zero small modules.

Proof (i) ⇒ (ii) It is clear because if N ≤ M , N ¿ E(N), then N ≤ Z∗(M)
and dimension of N ≤ k where k is the uniform dimension of Z∗(M).
(ii) ⇒ (iii) Let N1⊕N2⊕ · · · be an infinite direct sum of non-zero small modules
in M . Then N1 ⊕ · · · ⊕ Nk+1 is a small module. This implies that the uniform
dimension of N1 ⊕ · · · ⊕Nk+1 ≥ k + 1, a contradiction.
(iii) ⇒ (i) Let N1 ⊕N2 ⊕ · · · be an infinite direct sum of non-zero submodules of
Z∗(M). Let xi ∈ Ni for each i ≥ 1. Then xiR ¿ E(xiR) (i ≥ 1). This implies
that x1R + x2R + · · · is an infinite direct sum of non-zero small modules in M .
Hence Z∗(M) has finite uniform dimension. 2

A module M is called local if M is hollow and RadM 6= M . Clearly if M is a
local module then M = mR for all m ∈ M, m 6∈RadM [10].

Proposition 12 Let M be a module and Z∗(M) 6= M . If M = mR for all
m ∈ M, m 6∈Z∗(M), then M is hollow.

Proof If N is a proper submodule of M , then by hypothesis, N ≤Z∗(M) so
that Z∗(M) =Rad(M) is small. Then N is also small. 2

Corollary 13 Suppose Z∗(M) 6= M for a module M . Then the following are
equivalent.
(i) M = mR for all m ∈ M, m 6∈Z∗(M),
(ii) M is local.

Theorem 14 The following are equivalent for a module M .
(i) M is a direct sum of modules satisfying (S∗) and Z∗(M) has finite uniform
dimension.
(ii) M is a direct sum M = M1⊕M2⊕M3 where M1 is semisimple with Z∗(M1) =
0, M2 is cosingular and has finite uniform dimension and M3 has finite uniform
dimension and is a finite direct sum of local submodules of M .

Proof (ii) ⇒ (i) Cosingular modules and local modules satisfy (S∗). Then (i)
holds since Z∗(⊕Mi) = ⊕Z∗(Mi)(i ∈ I) for any family of modules Mi [8, Lemma
2.3].
(i) ⇒ (ii) Suppose that Z∗(M) has finite uniform dimension and M = ⊕i∈IMi

where, for each i ∈ I, Mi satisfies (S∗). Since Z∗(⊕i∈IMi) = ⊕i∈IZ
∗(Mi),

Z∗(Mi) = 0 for all but a finite number of elements i ∈ I. It follows that
Mi is semisimple for all but a finite number of elements i ∈ I. Then M =
M1⊕ ...⊕Mk⊕S, S is semisimple with Z∗(S) = 0. Let N be a module such that
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Z∗(N) ≤e N and N satisfies (S∗). Since Z∗(M) has finite uniform dimension then
N has finite uniform dimension. Suppose that N is uniform and Z∗(N) 6= N .
Let m ∈ N\Z∗(N). Since N satisfies (S∗), then there exist submodules K and
L of N such that N = K ⊕ L, K ≤ mR and mR/K =Z∗(mR/K). If K = 0
then m ∈Z∗(N), a contradiction. Thus K 6= 0 and hence L = 0. In this case
N = K = mR. By Corollary 13 , N is a local module.

Now suppose that each submodule having dimension less than or equal to n−1
in M is a direct sum of cosingular submodule and local submodule. Suppose that
n is the uniform dimension of N and Z∗(N) 6= N . Let x ∈ N\Z∗(N). There exist
submodules K and L of N such that N = K⊕L, K ≤ xR and xR/K =Z∗(xR/K).
Because x 6∈Z∗(N), it follows that K 6= 0. If L 6= 0 then K and L are both a direct
sum of local submodule and cosingular submodule. And hence N is a direct sum
of two local submodules and a cosingular submodule. Now suppose that L 6= 0
for all x ∈ N , x 6∈Z∗(N). Then N = K = xR. Thus N is a local module. 2

Corollary 15 Let M be a module which is a direct sum of modules, each of which
satisfies (S∗). Suppose that Z∗(M) is Noetherian. Then M = M1 ⊕M2 for some
semisimple module M1 with Z∗(M1) = 0 and Noetherian module M2.

Finally we give a decomposition of a module M satisfying (S∗) under which
condition Z∗(M) has ascending chain condition (acc) (descending chain condition
(dcc)) on direct summands.

Lemma 16 Let M be a module such that Z∗(M) ≤e M . Let M1 and M2 be direct
summands of M with M1 ≤ M2. Z∗(M1) = Z∗(M2) if and only if M1 = M2.

Proof Let M = M1⊕M ′
1. Then M2 = M1⊕ (M2∩M ′

1) and Z∗(M2) = Z∗(M1)⊕
Z∗(M2∩M ′

1). If Z∗(M1) = Z∗(M2), Z∗(M2∩M ′
1) = (M2∩M ′

1)∩Z∗(M) = 0. This
implies that M2 ∩M ′

1 = 0, by hypothesis. Hence M1 = M2. 2

Proposition 17 Let M be a module such that Z∗(M) ≤e M . If Z∗(M) has acc
(dcc) on direct summands, then M has acc (dcc) on direct summands.

Proof Clear by Lemma 16. 2

Theorem 18 Let M be a module satisfying (S∗). Assume that Z∗(M) has acc
(dcc) on direct summands. Then M = M1⊕M2 where M1 is semisimple and M2

is a finite direct sum of indecomposable modules Li (i ∈ F, F is finite) such that
every proper submodule of Li is cosingular.

Proof Let M be a module satisfying (S∗). Then M = M1 ⊕M2 where M1 is
semisimple with Z∗(M1) = 0 and Z∗(M2) ≤e M2. By Proposition 17, M2 has acc
(dcc) on direct summands. By [2, Proposition 10.14], M2 is a finite direct sum
of indecomposable modules Li (i ∈ F, F is finite). Let i ∈ F and K be a proper
submodule of Li. Since Li satisfies (S∗) and it is indecomposable, K is cosingular.
2
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