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Abstract

A module M is said to satisfy the property (S*) if every submodule N
of M is cosingular of a direct summand of M. In this study we investigate
when a finite direct sum of modules with (S*) satisfies (S*). We prove
that a module M is a direct sum of modules satisfying (S*) and Z*(M)
has finite uniform dimension if and only if M = M; & My & M3 where
M, is semisimple with Z*(M;) = 0, M has finite uniform dimension with
Z*(Msy) = My and M3 has finite uniform dimension and is a finite direct
sum of local submodules of M.

1. PRELIMINARIES

Direct sums of lifting modules have been studied by several authors for exam-
ple [5, 7]. In [8], the property (S*) was introduced as a generalization of lifting
modules. A module M is said to satisfy the property (S*) if every submodule N
of M is cosingular of a direct summand of M. In this note we are interested in
direct sums of modules with (S*). We prove that a direct sum of a semisimple
module and a module with (S*) also satisfies (S*). Similarly, we show that a finite
direct sum of projective modules with (S*) also satisfies the property (S*). On
the other hand for a module M descending (ascending) chain conditions on small
modules which are submodules of M are investigated. We prove that a module M
is a direct sum of modules satisfying (S*) and Z* (M) has finite uniform dimension
if and only if M = M; ® My & Mz where M is semisimple with Z*(M;) = 0,
M has finite uniform dimension with Z*(M,) = My and Mj has finite uniform
dimension and is a finite direct sum of local submodules of M.

Throughout this note all rings have identity and all modules are unital right
modules. Let R be a ring and M be a right R-module. For a small (essential)
submodule N of M, we write N < M (N <, M). M is called a small module if
it is a small submodule of some R-module. M is small if and only if M is small
in its injective hull E(M) [4]. We put

(M) ={me M : mR < E(mR)}
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The Jacobson radical RadM is a submodule of Z*(M). For further properties of
Z*(.) see [8]. We call a module M cosingular if Z*(M) = M. A ring R is called
right cosingular if the right R-module R is cosingular. Clearly small modules are
cosingular.

A module M is called lifting (or a (D1)-module) if for every submodule N of
M there is a decomposition M = M; & M, such that M; < N and NN M, < M
(for example [5]). We shall say that M satisfies

(S*) if for every submodule N of M there exists a direct summand K of M
such that K < N and N/K is cosingular. [§]

A ring R satisfies (S*) if the (right) R-module R satisfies (S*). Lifting modules
satisfy (S*). But for the converse, let R be the ring of integers Z. Since Z*(R) = R
as an R-module, R satisfies (S*), but R is not lifting [5, p.56]. Note that every
Z-module is cosingular and hence satisfies (S*).

Lemma 1 [8, Lemma 3.1] Let M be an R-module. The following are equivalent.
(i) M satisfies (S*),

(i1) For every submodule N of M, M has a decomposition M = My & My such
that My < N and N N M, is cosingular,

(111) For every submodule N of M, N has a decomposition N = Ny & Ny such
that Ny is a direct summand of M and Ny is cosingular.

The class of modules satisfying (S*) is closed under submodules. If M satisfies
(S*) and Z*(M) < M then M is lifting [8, Lemma 3.3]. If M satisfies (S*) then
M = M; @& M, such that M; is semisimple with Z*(M;) = 0 and Z*(Ms) <. My
[8, Corollary 3.6].

Oshiro [7] calls a ring R a right H-ring if every injective right R-module is
lifting. If every proper submodule of M is a small submodule then M is called
hollow.

2. FINITE DIRECT SUMS

Example 2 A finite direct sum of modules with (S*) does not necessarily satisfy

(5°).

Proof Let R be a right Artinian ring such that every indecomposable injective
R-module is hollow but R is not a right H-ring (for the existence see [3, Example
5]). Then every indecomposable injective module is cyclic by [10, 41.4]. This
implies that there exists a finitely generated injective R-module E which is not
lifting by [7, Remark p.318]. Since RadF = Z*(F) < E, E does not satisfy (S*).
Since R is right Artinian, E is a finite direct sum of indecomposable injective
modules E; [2, Theorem 25.6]. By hypothesis and since hollow modules are
lifting, each E; satisfies (S*). Hence F is the finite direct sum of modules with
(S*) but E does not satisfy (S*). O



Theorem 3 Let M = M; & My where M, is semisimple and My satisfies (S*).
Then M satisfies (S*).

Proof Let M = M;® M, where M is semisimple and M, satisfies (S*). Let N <
M. Then M; = (NNM;)® M’ for some M’ < M;. Thus M = (NNM;)®M'® M,
and N = (NN M;)® A where A= NN (M'® M,). Since (My@® M')/M' satisfies
(S%), it follows that (A+ M')/M’ = K/M'& L/M’ for some submodules K and L
containing M’ such that K /M’ is a direct summand of (M, & M')/M' and, L/M’
is cosingular. Thus K is a direct summand of M. But K = M'@ (K NA), so that
K N A is also a direct summand of M. It is now clear that (N N M;) & (K N A)
is a direct summand of M. Moreover

N/(NNM)a (KNA)2A/(KNA) 2 (A+K)/K=(A+M")/K = L/M'

is cosingular. It follows that M satisfies (S*). O

Corollary 4 Let M = My, & My where M, is semisimple and My is cosingular.
Then M satisfies (S*).

Let P and M be modules. P is said to be M -projective if for any module
N with an epimorphism 7 : M — N and homomorphism # : P — N, there
exists a homomorphism ¢’ : P — M such that 70" = 0. P is called projective if
it is M-projective for every module M. If P is P-projective, P is called quasi-
projective. A class of modules C = {P; : i € I} is called relatively projective if P;
is Pj-projective for all distinct ¢, j € I.

Lemma 5 [10, 41.14] Let My and My be modules and M = M; & M,. The
following are equivalent.

(i) My is Ms-projective,

(11) For every submodule N of M such that M = N+ My, there exists a submodule
N’ of N such that M = N' & M.

The following theorem is a generalization of Lemma 5.1 in [8].

Theorem 6 Let M = M; & M, be a direct sum of quasi-projective, relatively
projective modules My, My such that My and My satisfy (S*). Then M satisfies

(5°).

Proof Let L < M.

Case 1. It MyN (L + M) =0, then L < M. Since My satisfies (S*), there exists
By < L such that My = B; @ By and L N B, is cosingular for some submodule
By of Msy. Hence M = M, & B, & By and LN (M, & By) = LN By is cosingular.
It follows that M satisfies (S*).

Case 2. MiN(L+M;) # 0, there exists A} < MiN(L+M,) such that M; = A;® A,
and My N (L + My) N Ay = Ao N (L + My) is cosingular because M, satisfies (S*).
ThenM:Al@Ag@Mg :L—f—(MQ@AQ)



If Moyn (L+ Ay) =0, then L N Ay < Ay and since A, satisfies (S*) there
exists C7 < L N As such that Ay = C; & Cy, LN Ay N Cy = LN CYy is cosingular.
Then M = (Al @D Cl) @D (CQ D Mg) =L + (CQ @D Mg) Since M1 is M1 D Mg—
projective, Ay is Cy @& Ms-projective and Cy is Cy @& My-projective by [5]. Then
A & C; is Cy @& My-projective. This implies that there exists L' < L such that
M=L&Cyd® My, LN(Cy® M,y) < Con(L+ M,) = LNC, is cosingular. Hence
M satisfies (S*).

If My (L + Ay) # 0, there exists By < My N (L + Ay), My = By & Ba,
By N (L + Ay) is cosingular. Then M = L+ (A & M) = (A1 @ B1) & (Ay @ Bs)
and L N (Ay & By) is cosingular because Ay N (L + M) and By N (L + As) are
cosingular. Since A; @& B; is Ay @ Bs-projective there exists L' < L such that
M =L'"® Ay @ By. Hence M satisfies (S*) a

Corollary 7 Let M = M, & M, be a projective module such that M, and My
satisfy (S*). Then M satisfies (S5*).

R is semiperfect if and only if the right (left) R-module R is lifting [5, Corollary
4.42]. Hence semiperfect rings satisfy (S*). It is well known that if R is semiperfect
then every finitely generated projective R-module is lifting. As a corollary of
Theorem 6 we have the following result for a ring satisfying (S*).

Corollary 8 Let R be a ring satisfying (S*). Then every finitely generated pro-
jective R-module satisfies (S*).

Proof Let P be a finitely generated projective R-module. Then P is isomorphic
to a direct summand of a free R-module. Since Theorem 6 holds for a finite direct
sum of modules, P satisfies (S*). O

3. SOME CHAIN CONDITIONS FOR Z*(.)

Al-Khazzi and Smith [1] investigated some chain conditions that RadM satis-
fies for a module M. From now on we shall consider the similar results for Z*(M)
for a module M.

Clearly if Z*(M) is Artinian (Noetherian) then RadM is Artinian (Noethe-
rian). But if RadM is Artinian (Noetherian) Z*(M) need not. For example, let M
denote >°,7Z(1/p)/Z where p ranges over all prime integers. Since each Z(1/p)/Z
is simple, M is a semisimple Z-module and hence RadM = 0. But Z*(M) = M
is not Noetherian, and then not Artinian.

The following three propositions can be seen by the proof of Proposition 2,
Proposition 3 and Theorem 5 in [1]. But we give the proofs for convenience.

Proposition 9 The following are equivalent for a module M.

(i) Z*(M) is Noetherian.

(i1) Every small module in M is Noetherian.

(111) The ascending chain condition holds on small modules in M.

(iv) M satisfies the ascending chain condition on cosingular submodules.



Proof (i) < (ii); (i) = (iii), (iv) Clear.

(iii) = (i) By (iii), M has a maximal small module K. Then K < Z*(M). Let
x € Z*(M). Since a finite sum of small modules is small, K + 2R < E(M).
Then K = K + 2R and z € K. It follows that Z*(M) = K and hence Z*(M) is
Noetherian.

(iv) = (i) Since the class of cosingular modules is closed under submodules the
proof is completed as in (iii) = (i). a

A module M is called locally Artinian if every finitely generated submodule
of M is Artinian.

Proposition 10 The following are equivalent for a module M.

(1) Z*(M) is Artinian,

(11) Every small module in M is Artinian,

(i1i) The descending chain condition holds on small modules in M.

(iv) M satisfies the descending chain condition on cosingular submodules.

Proof (i) = (ii) = (iii), (i) = (iv) Clear.

(iv) = (i) Z*(M) is cosingular. Hence every submodule of Z*(M) is cosingular.
By (iv), Z*(M) is Artinian.

(iii) = (i) Let N be a finitely generated submodule of Z*(M). Then N is a small
module and hence N is Artinian. It follows that Z*(M) is locally Artinian. Let
K be any proper submodule of Z*(M). Let x € Z*(M) \ K. Then zR is Artinian
and (xR + K)/K is a non-zero Artinian module. It follows that Z*(M)/K has
essential socle.

Suppose that Z*(M) is not Artinian. Then there exists a submodule L of
Z*(M) such that Z*(M)/L is not finitely cogenerated [2, Proposition 10.10]. Let
P be a minimal submodule of Z*(M) with respect to Z*(M)/P not finitely co-
generated (by Zorn’s Lemma). Let Soc(Z*(M)/P) = S/P where S < Z*(M). We
have seen that S/P is an essential submodule of Z*(M)/P. Therefore S/P is not
finitely generated by [2, Proposition 10.7].

We claim that P < M. Let M = P+ for some @) < M. Then S = P+ (SN
(). Suppose that PNQ # P. Then Z*(M)/(PNQ) is finitely cogenerated by the
choice of P. But S/P = (P+(SNQ))/P = (SNQ)/(PNQ) < Soc(Z*(M)/(PNQ))
and hence S/P is finitely generated, a contradiction. Thus P < M.

Now we claim that S < E(M). Let E(M) = S + V for some submodule V'
of E(M). Then E(M)/(P+V)=(S+V)/(P+V)=S/(P+(SNV)). Thus
E(M)/(P + V) is semisimple. If E(M) # P + V then there exists a maximal
submodule W of E(M) such that P+V < W. But S < Z*(M) < RadE(M) < W
and this gives that E(M) = W, a contradiction. Thus E(M) = P + V. Since
P < M, P < E(M). This implies that E(M) = V. Thus S <« E(M) and, by
hypothesis S is Artinian. It follows that S/ P is finitely generated, a contradiction.
Thus Z*(M) is Artinian. O

A module M has finite uniform dimension k, for some non-negative integer
k if M does not contain any infinite direct sum of non-zero submodules and k is
the maximal number of summands in a direct sum of non-zero submodules of M.



Proposition 11 The following are equivalent for a module M.

(1) Z*(M) has finite uniform dimension,

(i1) Every small module in M has finite uniform dimension and there exists a
positive integer k such that uniform dimension of N < k for every N < M, N <
E(M>?

(111) M does not contain an infinite direct sum of non-zero small modules.

Proof (i) = (ii) It is clear because if N < M, N < E(N), then N < Z*(M)
and dimension of N < k where k is the uniform dimension of Z*(M).

(ii) = (iii) Let Ny @ Ny @ - - - be an infinite direct sum of non-zero small modules
in M. Then Ny & --- @& N, is a small module. This implies that the uniform
dimension of Ny @ --- & Niy1 > k + 1, a contradiction.

(iii) = (i) Let Ny @& Ny @ - - - be an infinite direct sum of non-zero submodules of
Z*(M). Let z; € N; for each @ > 1. Then ;R < E(z;R) (¢ > 1). This implies
that 1R + 22 R + - -+ 1s an infinite direct sum of non-zero small modules in M.
Hence Z*(M) has finite uniform dimension. O

A module M is called local if M is hollow and RadM # M. Clearly if M is a
local module then M = mR for all m € M, m ¢RadM [10].

Proposition 12 Let M be a module and Z*(M) # M. If M = mR for all
m € M,m ¢Z*(M), then M is hollow.

Proof If N is a proper submodule of M, then by hypothesis, N <Z*(M) so
that Z*(M) =Rad(M) is small. Then N is also small. O

Corollary 13 Suppose Z*(M) # M for a module M. Then the following are
equivalent.

(i) M =mR for allm € M,m ¢Z(M),

(i) M is local.

Theorem 14 The following are equivalent for a module M.

(1) M is a direct sum of modules satisfying (S*) and Z*(M) has finite uniform
dimension.

(1i) M is a direct sum M = M, & M@ Ms where My is semisimple with Z*(M,) =
0, My is cosingular and has finite uniform dimension and Mz has finite uniform
dimension and is a finite direct sum of local submodules of M.

Proof (ii) = (i) Cosingular modules and local modules satisfy (S*). Then (i)
holds since Z*(®M;) = ®Z*(M;)(i € I) for any family of modules M; [8, Lemma
2.3].

(i) = (ii) Suppose that Z*(M) has finite uniform dimension and M = @,/ M;
where, for each i € I, M, satisfies (S*). Since Z*(®;e/M;) = @i Z*(M;),
Z*(M;) = 0 for all but a finite number of elements ¢ € I. It follows that
M; is semisimple for all but a finite number of elements ¢ € I. Then M =
My &..&M,®S, S is semisimple with Z*(S) = 0. Let N be a module such that



Z*(N) <. N and N satisfies (S*). Since Z*(M) has finite uniform dimension then
N has finite uniform dimension. Suppose that N is uniform and Z*(N) # N.
Let m € N\Z*(N). Since N satisfies (S*), then there exist submodules K and
L of N such that N = K® L, K < mR and mR/K =7Z*(mR/K). If K =0
then m €Z*(N), a contradiction. Thus K # 0 and hence L = 0. In this case
N = K =mR. By Corollary 13 , N is a local module.

Now suppose that each submodule having dimension less than or equal to n—1
in M is a direct sum of cosingular submodule and local submodule. Suppose that
n is the uniform dimension of N and Z*(N) # N. Let x € N\Z*(NN). There exist
submodules K and L of N such that N = K&L, K < zRandzR/K =7Z*(zR/K).
Because  ¢Z*(N), it follows that K # 0. If L # 0 then K and L are both a direct
sum of local submodule and cosingular submodule. And hence N is a direct sum
of two local submodules and a cosingular submodule. Now suppose that L # 0
for all z € N, x ¢Z*(N). Then N = K = zR. Thus N is a local module. O

Corollary 15 Let M be a module which is a direct sum of modules, each of which
satisfies (S*). Suppose that Z*(M) is Noetherian. Then M = My & My for some
semisimple module My with Z*(M;) = 0 and Noetherian module M.

Finally we give a decomposition of a module M satisfying (S*) under which
condition Z*(M) has ascending chain condition (acc) (descending chain condition
(dec)) on direct summands.

Lemma 16 Let M be a module such that Z*(M) <. M. Let My and My be direct
summands of M with My < My. Z*(My) = Z*(Ms) if and only if My = M.

Proof Let M = Ml@M{ Then MQ = Ml@(MQﬁM{) and Z*(MQ) = Z*(Ml)@
75 (M N MY). I Z5(My) = Z* (M), Z5(My (M) = (Mo M])NZ*(M) = 0. This
implies that My N M] = 0, by hypothesis. Hence M; = M,. O

Proposition 17 Let M be a module such that Z*(M) <., M. If Z*(M) has acc

(dcc) on direct summands, then M has acc (dec) on direct summands.

Proof Clear by Lemma 16. O

Theorem 18 Let M be a module satisfying (S*). Assume that Z*(M) has acc
(dec) on direct summands. Then M = My & My where M is semisimple and Mo
is a finite direct sum of indecomposable modules L; (i € F, F is finite) such that
every proper submodule of L; is cosingular.

Proof Let M be a module satisfying (S*). Then M = M; & M, where M is
semisimple with Z*(M;) = 0 and Z*(Ms) <. M,. By Proposition 17, M, has acc
(dec) on direct summands. By [2, Proposition 10.14], M, is a finite direct sum
of indecomposable modules L; (i € F, F' is finite). Let i € F' and K be a proper
submodule of L;. Since L; satisfies (S*) and it is indecomposable, K is cosingular.
(Il
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